Exercise 1

First, we put the following text in the file `es2-ex1.sml`:

(* written so that the string length upper bound is a parameter; this
generality was not required *)

(* val zeroOne : str set
zeroOne = {0, 1} *)

val zeroOne = StrSet.fromString "0, 1";

(* val unwanted : int -> str set
if n >= 0, then unwanted n returns all length-n elements of {0, 1}* with an occurrence of either 000/111 *)

fun unwanted n = if n < 3 then Set.empty else let (* val bad : str set
bad = {000, 111} *)

val bad = StrSet.fromString "000, 111"

(* val unwanted : int -> str set
if 1 <= m <= n - 2, then unwanted m is all length n elements of {0, 1}* with an occurrence of 000/111
beginning at one of the positions 1, ..., m *)

fun unwanted i = StrSet.concat(bad, StrSet.power(zeroOne, n - 3)) |
unwanted m = StrSet.union
(StrSet.concat
(StrSet.power(zeroOne, m - 1),
StrSet.concat(bad,
StrSet.power(zeroOne, n - 3 - (m - 1)))),
unwant(m - 1))
in unwind(n - 2) end
val atMost : int -> str set

if n >= 0, then atMost n returns all elements of \{0, 1\} that have length at most n and have no occurrences of 000/111

fun atMost 0 = StrSet.minus(StrSet.power(zeroOne, 0), unwanted 0)
| atMost n = StrSet.union(StrSet.minus(StrSet.power(zeroOne, n), unwanted n),
 atMost(n - 1));

val atMostReg : int -> reg

if n >= 0, then atMostReg n returns a Reg.weakSubset-simplified regular expression whose meaning is the set of all elements of \{0, 1\} that have length at most n and have no occurrences of 000/111

fun atMostReg n = Reg.simplify Reg.weakSubset (Reg.fromStrSet(atMost n));

Next, we start Forlan, and then proceed as follows:

- use "es2-ex1.sml";
 [opening es2-ex1.sml]
 val zeroOne = - : str set
 val unwanted = fn : int -> str set
 val atMost = fn : int -> str set
 val atMostReg = fn : int -> reg
 val it = ();
 - val reg = atMostReg 4;
 val reg = - : reg
 - Reg.size reg;
 val it = 69 : int
 - Reg.output("", reg);
 \% + 0 + 1 + 0(0 + 1 + 0(1 + 1(0 + 1)) + 1(0 + 1 + 0(0 + 1) + 10)) +
 1(0 + 1 + 0(0 + 1 + 01 + 1(0 + 1)) + 1(0 + 0(0 + 1)))
 val it = ();

For fun, we also solve the version of the exercise where the upper bound on string length is 5:

- val reg = atMostReg 5;
 val reg = - : reg
 - Reg.size reg;
 val it = 121 : int
 - Reg.output("", reg);
 \% + 0 + 1 +
 0
 (0 + 1 + 0(1 + 1(0 + 1 + 0(0 + 1) + 10)) +
 1(0 + 1 + 0(0 + 1 + 01 + 1(0 + 1)) + 1(0 + 0(0 + 1))) +
 1
 (0 + 1 + 0(0 + 1 + 0(1 + 1(0 + 1)) + 1(0 + 1 + 0(0 + 1) + 10)) +
 ...
\(1(0 + 0(0 + 1 + 01 + 1(0 + 1)))\)
val it = () : unit

Exercise 2

(a) Suppose that \(n \in \mathbb{N}, A, B \in \text{Lan}, n \geq 1 \) and \(A^n \subseteq B\). To show that \(A^{n+1}A^* \cup B = A^nA^* \cup B\), it will suffice to show that
\[
A^{n+1}A^* \cup B \subseteq A^nA^* \cup B \subseteq A^{n+1}A^* \cup B.
\]

First, we show that \(A^{n+1}A^* \cup B \subseteq A^nA^* \cup B\). We have that \(A^{n+1}A^* = (A^nA)A^* = A^n(AA^*) \subseteq A^nA^*\). Hence \(A^{n+1}A^* \cup B \subseteq A^nA^* \cup B\).

Second, we show that \(A^nA^* \cup B \subseteq A^{n+1}A^* \cup B\). Suppose \(w \in A^nA^* \cup B\). We must show that \(w \in A^{n+1}A^* \cup B\). There are two subcases to consider.

- Suppose \(w \in A^nA^*\). Hence \(w = xy\) for some \(x \in A^n\) and \(y \in A^*\), so that \(y \in A^m\) for some \(m \in \mathbb{N}\). There are two subcases to consider.
 - Suppose \(m = 0\). Because \(y \in A^m = A^0 = \{\%\}\), we have that \(y = \%\). And \(A^n \subseteq B\), so that \(w = xy = x\% = x \in A^n \subseteq B \subseteq A^{n+1}A^* \cup B\).
 - Suppose \(m \geq 1\). Thus \(w = xy \in A^nA^m = A^n(AA^m-1) = (A^nA)A^{m-1} = A^{n+1}A^{m-1} \subseteq A^{n+1}A^* \subseteq A^{n+1}A^* \cup B\).

- Suppose \(w \in B\). Then \(w \in A^{n+1}A^* \cup B\).

(b) Suppose \(n \in \mathbb{N}, \alpha, \beta \in \text{Reg}, n \geq 1\) and \(L(\alpha^n) \subseteq L(\beta)\). Thus \(L(\alpha)^n \subseteq L(\beta)\), so that
\[
L(\alpha^{n+1}\alpha^* + \beta) = L(\alpha^{n+1}\alpha^*) \cup L(\beta)
= L(\alpha^{n+1})L(\alpha^*) \cup L(\beta)
= L(\alpha)^{n+1}L(\alpha^*) \cup L(\beta)
= L(\alpha)^nL(\alpha^*) \cup L(\beta) \quad \text{(by Part (a) as } n \geq 1 \text{ and } L(\alpha)^n \subseteq L(\beta))
= L(\alpha^n)L(\alpha^*) \cup L(\beta)
= L(\alpha^n\alpha^*) \cup L(\beta)
= L(\alpha^n\alpha^* + \beta).
\]

Hence \(\alpha^{n+1}\alpha^* + \beta \approx \alpha^n\alpha^* + \beta\).

Exercise 3

(a) \(1(10)*0*(\% + 1(10)^*(\% + 1))\)

(b) Define languages
\[
A = \{1\}10^*\{0\} \quad \text{and} \quad B = \{1\}10^*\{\%, 1\}.
\]
Thus $L(1(10)^*0) = A$ and $L(1(10)^*(\% + 1)) = B$, so that $L(\alpha) = A^* (\{\%\} \cup B)$. Thus it will suffice to show that $A^*(\{\%\} \cup B) = X$. For $i \in \{0,1,2\}$, let the language Y_i be $\{ w \in \{0,1\}^* | w \in X$ and $\text{diff}(w) = i \}$.

Lemma ES2.3.1

(1) $\% \in Y_0$.

(2) $1 \in Y_1$.

(3) For all $i \in \{0,1,2\}$, $Y_0 Y_i \subseteq Y_i$.

(4) $Y_0 X \subseteq X$.

(5) For all $n \in \mathbb{N}$, $Y_0^n \subseteq Y_0$.

(6) $Y_0^* \subseteq Y_0$.

(7) $Y_1\{0\} \subseteq Y_0$.

(8) $Y_1\{10\} \subseteq Y_1$.

(9) For all $n \in \mathbb{N}$, $Y_1\{10\}^n \subseteq Y_1$.

(10) $Y_1\{10\}^* \subseteq Y_1$.

(11) $Y_1\{1\} \subseteq Y_2$.

(12) $\{1\}\{10\}^* \subseteq Y_1$.

(13) $A \subseteq Y_0$.

(14) $A^* \subseteq Y_0$.

(15) $B \subseteq X$.

(16) $\{\%\} \cup B \subseteq X$.

(17) $A^*(\{\%\} \cup B) \subseteq X$.

Proof.

(1) Because $\%$ is the only prefix of itself, $\text{diff}(\%) = 0$ and $0 \leq 0 \leq 2$, it follows that $\% \in X$. And $\text{diff}(\%) = 0$, completing the proof that $\% \in Y_0$.

(2) Because $\%$ and 1 are the only prefixes of 1, $\text{diff}(\%) = 0$, $\text{diff}(1) = 1$, $0 \leq 0 \leq 2$ and $0 \leq 1 \leq 2$, it follows that $1 \in X$. And $\text{diff}(1) = 1$, completing the proof that $1 \in Y_1$.

(3) Suppose $i \in \{0,1,2\}$ and $w \in Y_0 Y_i$. Thus $w = xy$ for some $x \in Y_0$ and $y \in Y_i$. Hence $\text{diff}(w) = \text{diff}(x) + \text{diff}(y) = 0 + i = i$. So, to conclude that $w \in Y_i$, it remains to show that $w \in X$. Suppose v is a prefix of w. We must show that $0 \leq \text{diff}(v) \leq 2$. Because $w = xy$, there are two cases to consider.

- Suppose v is a prefix of x. Because $x \in Y_0 \subseteq X$, we have that $0 \leq \text{diff}(v) \leq 2$.

Suppose $v = xu$, for some prefix u of y. Because $y \in Y_i \subseteq X$, we have that $0 \leq \text{diff}(u) \leq 2$. Thus, since $\text{diff}(v) = \text{diff}(x) + \text{diff}(u) = 0 + \text{diff}(u) = \text{diff}(u)$, it follows that $0 \leq \text{diff}(v) \leq 2$.

(4) Suppose $w \in Y_0X$. Thus $w = xy$ for some $x \in Y_0$ and $y \in X$. Because $y \in X$ and y is a prefix of itself, it follows that $0 \leq \text{diff}(y) \leq 2$, i.e., $\text{diff}(y) \in \{0, 1, 2\}$. And, because $y \in X$ and $\text{diff}(y) = \text{diff}(y)$, we have that $y \in Y_{\text{diff}(y)}$. Hence, by Part (3), it follows that $w = xy \in Y_0Y_{\text{diff}(y)} \subseteq Y_{\text{diff}(y)} \subseteq X$.

(5) We proceed by mathematical induction.

(Basis Step) We have that $Y_0^0 = \{\%\} \subseteq Y_0$, by Part (1).

(Inductive Step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: $Y_0^n \subseteq Y_0$. Then $Y_0^{n+1} = Y_0^nY_0 \subseteq Y_0Y_0 \subseteq Y_0$, by the inductive hypothesis and Part (3).

(6) Suppose $w \in Y_0^*$. Thus $w \in Y_0^n$ for some $n \in \mathbb{N}$. Hence, by Part (5), we have that $w \in Y_0^* \subseteq Y_0$.

(7) Suppose $w \in Y_1\{0\}$. Thus $w = x0$ for some $x \in Y_1$. Because $\text{diff}(w) = \text{diff}(x) + 0 = 1 + 0 = 1$, it remains to show that $w \in X$. Suppose v is a prefix of w. We must show that $0 \leq \text{diff}(v) \leq 2$. Because $w = x0$, there are two cases to consider.

- Suppose v is a prefix of x. Because $x \in Y_1 \subseteq X$, it follows that $0 \leq \text{diff}(v) \leq 2$.
- Suppose $v = x0$. Thus $v = x0 = w$, so that $\text{diff}(v) = \text{diff}(w) = 0$. Hence $0 \leq \text{diff}(v) \leq 2$.

(8) Suppose $w \in Y_1\{10\}$. Thus $w = x10$ for some $x \in Y_1$. Because $\text{diff}(w) = \text{diff}(x) + 1 = 1 + 1 = 2$, it remains to show that $w \in X$. Suppose v is a prefix of w. We must show that $0 \leq \text{diff}(v) \leq 2$. Because $w = x10$, there are three cases to consider.

- Suppose v is a prefix of x. Because $x \in Y_1 \subseteq X$, it follows that $0 \leq \text{diff}(v) \leq 2$.
- Suppose $v = x1$. Thus $\text{diff}(v) = \text{diff}(x) + 1 = 1 + 1 = 2$, so that $0 \leq \text{diff}(v) \leq 2$.
- Suppose $v = x10$. Thus $v = x10 = w$, so that $\text{diff}(v) = \text{diff}(w) = 1$. Hence $0 \leq \text{diff}(v) \leq 2$.

(9) We proceed by mathematical induction.

(Basis Step) We have that $Y_1\{10\}^0 = Y_1\{\%\} = Y_1 \subseteq Y_1$.

(Inductive Step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: $Y_1\{10\}^n \subseteq Y_1$. Then $Y_1\{10\}^{n+1} = Y_1\{10\}^n\{10\} \subseteq Y_1\{10\} \subseteq Y_1$, by the inductive hypothesis and Part (8).

(10) Suppose $w \in Y_1\{10\}^*$. Thus $w = xy$ for some $x \in Y_1$ and $y \in \{10\}^*$. Thus $y \in \{10\}^n$ for some $n \in \mathbb{N}$. Hence $w = xy \in Y_1\{10\}^n \subseteq Y_1$, by Part (9).

(11) Suppose $w \in Y_1\{1\}$. Thus $w = x1$ for some $x \in Y_1$. Because $\text{diff}(w) = \text{diff}(x) + 1 = 1+1 = 2$, it remains to show that $w \in X$. Suppose v is a prefix of w. We must show that $0 \leq \text{diff}(v) \leq 2$. Because $w = x1$, there are two cases to consider.

- Suppose v is a prefix of x. Because $x \in Y_1 \subseteq X$, it follows that $0 \leq \text{diff}(v) \leq 2$.

• Suppose \(v = x1 \). Thus \(v = x1 = w \), so that \(\text{diff}(v) = \text{diff}(w) = 2 \). Hence \(0 \leq \text{diff}(v) \leq 2 \).

(12) We have that \(\{1\}\{10\}^* \subseteq Y_1 \{10\}^* \subseteq Y_1 \), by Parts (2) and (10).

(13) By Parts (2), (10) and (7), we have that \(A = \{1\}\{10\}^*\{0\} \subseteq Y_1 \{10\}^*\{0\} \subseteq Y_1 \{0\} \subseteq Y_0 \).

(14) We have that \(A^* \subseteq Y_0^* \subseteq Y_0 \), by Parts (13) and (6).

(15) We have that
\[
B = \{1\}\{10\}^*\{%,1\}
\subseteq Y_1 \{10\}^*\{%,1\} \quad \text{(Part (2))}
\subseteq Y_1\{%,1\} \quad \text{(Part (10))}
= Y_1\{\{\} \cup \{1\}\}
= Y_1\{\} \cup Y_1\{1\} \quad \text{(Proposition 3.2.6(1))}
= Y_1 \cup Y_1\{1\}
\subseteq Y_1 \cup Y_2 \quad \text{(Part (11))}
\subseteq X \cup X
= X.
\]

(16) We have that \(\{\} \cup B \subseteq Y_0 \cup X \subseteq X \cup X = X \), by Parts (1) and (15).

(17) We have that \(A^*(\{\} \cup B) \subseteq Y_0 \cup X \subseteq X \), by Parts (14), (16) and (4).

\[\Box\]

Lemma ES2.3.2

\(X \subseteq A^*(\{\} \cup B) \).

Proof. Since \(X \subseteq \{0,1\}^* \), it will suffice to show that, for all \(w \in \{0,1\}^* \),

if \(w \in X \), then \(w \in A^*(\{\} \cup B) \).

We prove this using strong string induction. Suppose \(w \in \{0,1\}^* \), and assume the inductive hypothesis: for all \(x \in \{0,1\}^* \), if \(|x| < |w| \), then

if \(x \in X \), then \(x \in A^*(\{\} \cup B) \).

We must show that

if \(w \in X \), then \(w \in A^*(\{\} \cup B) \).

Suppose \(w \in X \). We must show that \(w \in A^*(\{\} \cup B) \). There are three cases to consider.

• Suppose \(w = \% \). Then \(w = \% = \%\% \in A^*(\{\} \cup B) \).

• Suppose \(w = 0t \) for some \(t \in \{0,1\}^* \). Because \(w \in X \) and \(0 \) is a prefix of \(w \), it follows that

\[0 \leq \text{diff}(0) = -1 \]—contradiction. Thus \(w \in A^*(\{\} \cup B) \).
• Suppose \(w = 1t \) for some \(t \in \{0,1\}^* \). Let \(x \) be the longest prefix of \(t \) such that \(x \in \{10\}^* \). (Such an \(x \) exists, because \(\% \) is a prefix of \(t \) that is in \(\{10\}^* \)). Let \(u \in \{0,1\}^* \) be such that \(t = xu \). Thus \(w = 1t = 1xu \). There are three subcases to consider.

 - Suppose \(u = \% \). Since \(1x = 1x\% \in \{1\}\{10\}\% \cup \{\%\} = B \subseteq \{\%\} \cup B \), we have that \(w = 1xu = 1x\% = \%(1x) \in A^*(\{\%\} \cup B) \).

 - Suppose \(u = 0y \) for some \(y \in \{0,1\}^* \). Thus \(w = 1xu = 1x0y \). We have that \(1x0 \in \{1\}\{10\}\{0\} = A \). By Lemma ES2.3.1(13), it follows that \(A \subseteq Y_0 \). Hence \(1x0 \in Y_0 \), so that \(\text{diff}(1x0) = 0 \).

 To see that \(y \in X \), suppose \(v \) is a prefix of \(y \). We must show that \(0 \leq \text{diff}(v) \leq 2 \). Because \(v \) is a prefix of \(y \), it follows that \(1x0v \) is a prefix of \(1x0y = w \). Thus, since \(w \in X \), we have that \(0 \leq \text{diff}(1x0v) \leq 2 \). But \(\text{diff}(v) = 0 + \text{diff}(v) = \text{diff}(1x0) + \text{diff}(v) = \text{diff}(1x0v) \), and thus \(0 \leq \text{diff}(v) \leq 2 \).

 Because \(y \in X \) and \(|y| < |w| \), the inductive hypothesis tells us that \(y \in A^*(\{\%\} \cup B) \).

 Hence \(w = (1x0)y \in AA^*(\{\%\} \cup B) \subseteq A^*(\{\%\} \cup B) \).

 - Suppose \(u = 1y \) for some \(y \in \{0,1\}^* \). Thus \(t = xu = x1y \) and \(w = 1xu = 1x1y \). There are three sub-subcases to consider.

 * Suppose \(y = \% \). Then \(w = 1x1y = 1x1\% = 1x1 \). We have that \(1x1 \in \{1\}\{10\}\% \cup \{\%\} \cup B \). Hence \(w = \%(1x1) \in A^*(\{\%\} \cup B) \).

 * Suppose \(y = 0z \), for some \(z \in \{0,1\}^* \). Thus \(t = x1y = x10z \). But \(x10 \in \{10\}\{10\} \subseteq \{10\}^* \) and \(x10 \) is a longer prefix of \(t \) than \(x \), contradicting the definition of \(x \). Thus \(w \in A^*(\{\%\} \cup B) \).

 * Suppose \(y = 1z \), for some \(z \in \{0,1\}^* \). Thus \(w = 1x1y = 1x11z \). By Parts (2) and (10) of Lemma ES2.3.1, we have that \(1x \in Y_1 \{10\}^* \subseteq Y_1 \). Thus \(\text{diff}(1x11) = \text{diff}(1x) + \text{diff}(11) = 1 + 2 = 3 \). But \(1x11 \) is a prefix of \(1x11z = w \in X \), and thus \(3 \leq \text{diff}(1x11) \).—contradiction. Thus \(w \in A^*(\% \cup B) \).

\[\square \]

Proposition ES2.3.3

\[A^*(\{\%\} \cup B) = X. \]

Proof. By Lemma ES2.3.1(17) and Lemma ES2.3.2, we have that \(A^*(\{\%\} \cup B) \subseteq X \subseteq A^*(\{\%\} \cup B) \).

Thus \(A^*(\{\%\} \cup B) = X \). \[\square \]

Exercise 4

Here is the text of the file es2-ex4.sml:

\[
\text{structure ES2Ex4 =}
\]

\[
\text{struct}
\]

\[
(* \text{ val zero : sym is the symbol 0)}
\]

\[
\text{val one : sym is the symbol 1 *})
\]
val zero = Sym.fromString "0"
val one = Sym.fromString "1"

(* val isZero : sym -> bool

 isZero a tests whether a is zero *)

fun isZero a = Sym.equal(a, zero)

(* val isOne : sym -> bool

 isOne a tests whether a is one *)

fun isOne a = Sym.equal(a, one)

(* val diffSym : sym -> int

 if diffSym is called with zero or one, then it returns the diff of
 its argument; otherwise, it returns 0 *)

fun diffSym a =
 if isZero a
 then ~1
 else if isOne a
 then 1
 else 0

(* val validStr : str -> bool

 validStr w tests whether w is in Y, returning true if it is, and
 false otherwise; when w is not in Y, it prints an explanation of
 why w fails to be in Y on the standard output *)

fun validStr w =
 let (* val valid : str * int * str -> bool

 in a call valid(ds, n, cs), diff ds = n and w = ds @ cs

 if every nonempty prefix of cs ends with a zero or one,
 and has a diff that when added to n is <= 1, then

 if n + diff cs = 1, then valid silently returns true

 otherwise, valid complains that w has a diff of n
 instead of 1, and returns false

 otherwise, let es be the shortest nonempty prefix of cs
 such that either es doesn’t end with a zero or one, or

the \(n + \text{diff} \ es > 1 \)

if the last symbol of \(es \) isn't a zero or one, then valid complains about this symbol of \(w \)

otherwise, valid compains that \(ds @ es \) is a prefix of \(w \) with a diff that is \(> 1 \)

\[
\begin{align*}
\text{fun valid}(_, n, \text{nil}) &= \\
& \quad \text{if } n = 1 \\
& \quad \text{then true} \\
& \quad \text{else (print "diff of string is "; print(Int.toString n); print " not 1\n"; false)} \\
& \quad | \text{valid}(ds, n, c :: cs) = \\
& \quad & \text{let val } m = n + \text{diffSym} c \\
& \quad & \text{val } ds = ds @ [c] \\
& \quad & \text{in if } m = n \\
& \quad & \quad \text{then (print "string has symbol other than 0/1 : "; print(Sym.toString c); print "\n"; false)} \\
& \quad & \quad \text{else if } m > 1 \\
& \quad & \quad \quad \text{then (print "prefix "; print(Str.toString ds); print " of string has diff "; print(Int.toString m); print " which is greater-than 1\n"; false)} \\
& \quad & \quad \quad \text{else valid}(ds, m, cs) \\
& \quad & \text{end} \\
& \quad \text{in valid(nil, 0, w) end}
\end{align*}
\]

(* val shortestPrefix : (int -> bool) -> str -> str *

if \(w \) is an str of zeros and ones, and there is a prefix \(x \) of \(w \) such that \(f(\text{diff} x) \), then shortestPrefix \(f \) \(w \) returns \((x, y) \), where \(x \) is the shortest such prefix, and \(y \) is such that \(x @ y = w \)

\[
\begin{align*}
\text{fun shortestPrefix } f \ w &= \\
& \quad \text{let (* val short : str * int * str -> str * str} \\
& \quad & \text{if } cs \text{ is a list of zeros and ones, and there is a} \\
& \quad & \text{prefix } ds \text{ of } cs \text{ such that } f(n + \text{diff} ds), \text{ then} \\
& \quad & \text{short}(bs, n, cs) \text{ returns } (bs @ ds, es), \text{ where } ds \text{ is the} \\
& \quad & \text{shortest such prefix, and } es \text{ is such that } cs = ds @ es \text{ *)} \\
& \quad \text{fun short}(bs, n, \text{nil}) &= \\
& \quad & \quad \text{if } n \text{ then (bs, nil) else raise Fail "shouldn't happen"} \\
& \quad & \quad | \text{short}(bs, n, c_cs as c :: cs) = \\
& \quad & \quad & \quad \text{if } f \ n
\end{align*}
\]
then (bs, c_cs)
 else short(bs @ [c], n + diffSym c, cs)
in short(nil, 0, w) end

(* val splitPositive : str -> str * str
 if w is an str of zeros and ones such that diff w >= 1, then
 splitPositive w returns a pair (x, y) such that w = x @ y,
 x is in Y and diff y = diff w - 1 *)
val splitPositive = shortestPrefix(fn n => n >= 1)

(* val indent : int -> unit
 indent n prints n spaces *)
fun indent n = print(StringCvt.padLeft #" " n "")

(* val text1 : int -> unit
 print explanation based on rule (1) of X's definition at given indentation *)
fun text1 ind = (indent ind; print "1 is in X, by (1)\n")

(* val text2 : int * str * str * str -> unit
 print explanation based on rule (2) of X's definition at given indentation *)
fun text2(ind, w, x, y) =
 (indent ind;
 print(Str.toString w ^ " = " ^
 Str.toString x ^ " @ 0 @ " ^
 Str.toString y ^ " is in X, by (2)\n")

(* val text3 : int * str * str * str -> unit
 print explanation based on rule (3) of X's definition at given indentation *)
fun text3(ind, w, x, y) =
 (indent ind;
 print(Str.toString w ^ " = 0 @ " ^
 Str.toString x ^ " @ " ^
 Str.toString y ^ " is in X, by (3)\n")

(* val expl : int * str -> unit
 if ind >= 0 and w is in Y, then expl(ind, w) prints an explanation
 of why w is in X, indented ind spaces; in recursive calls, the size
of the str goes down *)

fun expl(ind, w) =
 if Str.isEmpty w
 then raise Fail "cannot happen"
 else if isZero(hd w)
 then let val t = tl w (* w = [zero] @ t, diff t = 2 *)
 val (x, y) = splitPositive t (* t = x @ y *)
 (* x, y are in Y, w = [zero] @ x @ y *)
 in text3(ind, w, x, y); expl(ind + 2, x); expl(ind + 2, y)
 end
 else (* isOne(hd w) *)
 let val t = tl w (* w = [one] @ t, diff t = 0 *)
 in if Str.isEmpty t (* w = [one] *)
 then text1 ind
 else if isZero(hd t)
 then let val y = tl t (* t = [zero] @ y, w = [one, zero] @ y *)
 (* y is in Y *)
 in text2(ind, w, [one], y); text1(ind + 2);
 expl(ind + 2, y)
 end
 else (* isOne(hd t), w begins with [one, one] *)
 raise Fail "cannot happen"
 end

(* val explain : unit -> unit

 explain() reads an str from the standard input; if the str is not
 in Y, it prints an error message; otherwise, it prints an
 explanation of why the str is in X *)

fun explain() =
 let val w = Str.input ""
 in if validStr w then expl(0, w) else () end
end;

And, here is how the program was tested:

- use "es2-ex4.sml";
[opening es2-ex4.sml]
[autoloading]
[autoloading done]
structure ES2Ex4 :
 sig
 val zero : sym
 val one : sym
 val isZero : sym -> bool
 val isOne : sym -> bool
val diffSym : sym -> int
val validStr : sym list -> bool
val shortestPrefix : (int -> bool) -> sym list -> sym list * sym list
val splitPositive : sym list -> sym list * sym list
val indent : int -> unit
val text1 : int -> unit
val text2 : int * str * str * str -> unit
val text3 : int * str * str * str -> unit
val expl : int * str -> unit
val explain : unit -> unit
end

val it = () : unit
- ES2Ex4.explain();
@ 100011101
@
100011101 = 1 @ 0 @ 0011101 is in X, by (2)
 1 is in X, by (1)
 0011101 = 0 @ 011 @ 101 is in X, by (3)
 011 = 0 @ 1 @ 1 is in X, by (3)
 1 is in X, by (1)
 1 is in X, by (1)
 101 = 1 @ 0 @ 1 is in X, by (2)
 1 is in X, by (1)
 1 is in X, by (1)
val it = () : unit
- ES2Ex4.explain();
@ 0110
@
 diff of string is 0 not 1
val it = () : unit
- ES2Ex4.explain();
@ 01110
@
 prefix 0111 of string has diff 2 which is greater-than 1
val it = () : unit
- ES2Ex4.explain();
@ 1020
@
 string has symbol other than 0/1 : 2
val it = () : unit
- ES2Ex4.explain();
@ %
@
 diff of string is 0 not 1
val it = () : unit
- ES2Ex4.explain();
@ 00111101
@
000111101 = 0 ⊕ 00111 ⊕ 101 is in X, by (3)
00111 = 0 ⊕ 011 ⊕ 1 is in X, by (3)
011 = 0 ⊕ 1 ⊕ 1 is in X, by (3)
 1 is in X, by (1)
 1 is in X, by (1)
 1 is in X, by (1)
101 = 1 ⊕ 0 ⊕ 1 is in X, by (2)
 1 is in X, by (1)
 1 is in X, by (1)

val it = () : unit