Exercise 1

(a)

\[1 + (\% + 2 + 12)(012)^*(\% + 0 + 01) \]

(b) Let

\[Y = \{1\} \cup \{\%, 2, 12\} \{012\}^* \{\%, 0, 01\}. \]

Since \(L(\alpha) = Y \), it will suffice to show that \(Y = X \).

Let

\[A = \{\%\} \cup \{w \in X \mid 2 \text{ is a suffix of } w\}, \]
\[B = \{\%\} \cup \{w \in X \mid 0 \text{ is a prefix of } w \text{ and } 2 \text{ is a suffix of } w\}. \]

Next, we prove a lemma that will help us show that \(Y \subseteq X \).

Lemma ES3.1.1

(1) \(\{012\} B \subseteq B \).

(2) \(\{012\}^* \subseteq B \).

(3) \(\{\%, 2, 12\} B \subseteq A \).

(4) \(A \{\%, 0, 01\} \subseteq X \).

Proof.

(1) Suppose \(w \in \{012\} B \). We must show that \(w \in B \). Since \(w \in \{012\} B \), we have that \(w = 012x \), for some \(x \in B \). Since \(x \in B \), there are two cases to consider. If \(x = \% \), then \(w = 012 \), so that \(w \in B \). So, suppose \(x \in X \), \(0 \) is a prefix of \(x \), and \(2 \) is a suffix of \(x \). Since \(x \in X \) and \(0 \) is a prefix of \(x \), we have that \(w = 012x \in X \). Clearly, \(0 \) is a prefix of \(012x = w \). And, since \(2 \) is a suffix of \(x \), we have that \(2 \) is a suffix of \(012x = w \). Hence \(w \in B \).

(2) It will suffice to show that, for all \(n \in \mathbb{N} \), \(\{012\}^n \subseteq B \). We proceed by mathematical induction.

(Basis Step) We have that \(\{012\}^0 = \{\%\} \subseteq B \).

(Inductive Step) Suppose \(n \in \mathbb{N} \), and assume the inductive hypothesis: \(\{012\}^n \subseteq B \). Then

\[\{012\}^{n+1} = \{012\} \{012\}^n \]
\[\subseteq \{012\} B \quad \text{(inductive hypothesis)} \]
\[\subseteq B \quad \text{(Part (1))}. \]
Furthermore,

\(w \in \{\%2, 12\}B \). We must show that \(w \in A \). Since \(w \in \{\%2, 12\}B \), we have that

\(w = xy \), for some \(x \in \{\%2, 12\} \) and \(y \in B \). Because \(x \in \{\%2, 12\} \), there are three cases to consider:

- Suppose \(x = \% \). Then \(w = xy = \% y = y \in B \subseteq A \).
- Suppose \(x = 2 \). Then \(w = xy = 2y \). Since \(y \in B \), there are two subcases to consider. If \(y = \% \), then \(w = 2y = 2 \in A \). Otherwise, \(y \in X \), 0 is a prefix of \(y \), and 2 is a suffix of \(y \). Thus \(w = 2y \in X \) and 2 is a suffix of \(2y = w \). Hence \(w \in A \).
- Suppose \(x = 12 \). Then \(w = xy = 12y \). Since \(y \in B \), there are two subcases to consider. If \(y = \% \), then \(w = 12y = 12 \in A \). Otherwise, \(y \in X \), 0 is a prefix of \(y \), and 2 is a suffix of \(y \). Thus \(w = 12y \in X \) and 2 is a suffix of \(12y = w \). Hence \(w \in A \).

(4) Suppose \(w \in A\{\%, 0, 01\} \). We must show that \(w \in X \). Since \(w \in A\{\%, 0, 01\} \), we have that

\(w = xy \), for some \(x \in A \) and \(y \in \{\%, 0, 01\} \). Since \(y \in \{\%, 0, 01\} \), there are three cases to consider:

- Suppose \(y = \% \). Then \(w = xy = x\% = x \in A \subseteq X \).
- Suppose \(y = 0 \). Then \(w = xy = x0 \). Since \(x \in A \), there are two subcases to consider. If \(x = \% \), then \(w = x0 = 0 \in X \). Otherwise, \(x \in X \) and 2 is a suffix of \(x \), so that \(w = x0 \in X \).
- Suppose \(y = 01 \). Then \(w = xy = x01 \). Since \(x \in A \), there are two subcases to consider. If \(x = \% \), then \(w = x01 = 01 \in X \). Otherwise, \(x \in X \) and 2 is a suffix of \(x \), so that \(w = x01 \in X \).

Now we can use the preceding lemma to show that \(Y \subseteq X \). We have that

\[
\begin{align*}
\{\%, 2, 12\}012\{\%, 0, 01\} & \subseteq \{\%, 2, 12\}B\{\%, 0, 01\} & \text{(Lemma ES3.1.1(2))} \\
& \subseteq A\{\%, 0, 01\} & \text{(Lemma ES3.1.1(3))} \\
& \subseteq X & \text{(Lemma ES3.1.1(4))}
\end{align*}
\]

Furthermore, \(1 \in X \), so that

\[
\begin{align*}
Y & = \{1\} \cup \{\%, 2, 12\}012\{\%, 0, 01\} \subseteq X \cup X \\
& = X.
\end{align*}
\]

Hence \(Y \subseteq X \).

Finally, we show that \(X \subseteq Y \). Since \(X \subseteq \{0, 1, 2\}^* \), it will suffice to show that, for all \(w \in \{0, 1, 2\}^* \),

\[
\begin{align*}
\text{if } w \in X, \text{ then } w \in Y.
\end{align*}
\]

We proceed by strong string induction. Suppose \(w \in \{0, 1, 2\}^* \), and assume the inductive hypothesis: for all \(x \in \{0, 1, 2\}^* \), if \(|x| < |w| \), then

\[
\begin{align*}
\text{if } x \in X, \text{ then } x \in Y.
\end{align*}
\]

"
We must show that

\[w \in X, \text{ then } w \in Y. \]

Suppose \(w \in X \). We must show that \(w \in Y \). There are four cases to consider.

- Suppose \(w = \% \). Then \(w = \% \in \{\%, 2, 12\}^2 \{\% , 0, 01\} \subseteq Y \).

- Suppose \(w = 0x \), for some \(x \in \{0, 1, 2\}^* \). If \(x = \% \), then \(w = 0 = \% \in \{\%, 2, 12\}^2 \{\% , 0, 01\} \subseteq Y \). So, suppose \(x \neq \% \). Since \(0x = w \in X \), it follows that \(x = 1y \), for some \(y \in \{0, 1, 2\}^* \). Thus \(w = 01y \). If \(y = \% \), then \(w = 01 = \% \{01\} \in \{\%, 2, 12\}^2 \{\% , 0, 01\} \subseteq Y \). So, suppose \(y \neq \% \). Since \(01y = w \in X \), it follows that \(y = 2z \), for some \(z \in \{0, 1, 2\}^* \). Thus \(w = 012z \). Because \(012z = w \in X \), we have that \(12z \in X \). Furthermore, since \(|12z| < |w| \), the inductive hypothesis tells us that \(12z \in Y \). Because \(12z \neq 1 \), we have that \(12z = twv \), for some \(t \in \{\%, 2, 12\}, u \in \{\% , 0, 01\} \) and \(v \in \{\%, 0, 01\} \).

Since \(t \in \{\%, 2, 12\} \), there are three subcases to consider.

 - Suppose \(t = \% \). Thus \(12z = twv = \% uv = uv \). Because \(u \in \{\% , 01\} \), it follows that \(u = \% \).
 Hence \(12z = uv = \% v = v \). But \(v \in \{\%, 0, 01\} \), and none of the elements of \(\{\%, 0, 01\} \) begin with \(1 \)—contradiction. Thus \(w \in Y \).

 - Suppose \(t = 2 \). Since \(12z = twv \), it follows that \(1 = 2 \)—contradiction. Thus \(w \in Y \).

 - Suppose \(t = 12 \). Thus \(w = 012z = 0(12z) = twv = (012)uv = \% (012)uv \in \{\%, 2, 12\} \{\% , 0, 01\} \subseteq \{\%, 2, 12\}^2 \{\% , 0, 01\} \subseteq Y \).

- Suppose \(w = 1x \), for some \(x \in \{0, 1, 2\}^* \). If \(x = \% \), then \(w = 1x = 1 \in Y \). So, suppose \(x \neq \% \). Since \(1x = w \in X \), it follows that \(x = 2y \), for some \(y \in \{0, 1, 2\} \). Thus \(w = 12y \). Because \(12y = w \in X \), we have that \(2y \in X \). Furthermore, since \(|2y| < |w| \), the inductive hypothesis tells us that \(2y \in Y \). Because \(2y \neq 1 \), we have that \(2y = twv \), for some \(t \in \{\%, 2, 12\}, u \in \{\% , 0, 01\} \) and \(v \in \{\%, 0, 01\} \).

 - Suppose \(t = \% \). Thus \(2y = twv = \% uv = uv \). Because \(u \in \{\% , 01\} \), it follows that \(u = \% \).
 Hence \(2y = uv = \% v = v \). But \(v \in \{\%, 0, 01\} \), and none of the elements of \(\{\%, 0, 01\} \) begin with \(2 \)—contradiction. Thus \(w \in Y \).

 - Suppose \(t = 2 \). Thus \(w = 12y = 1(2y) = 1twv = (12)uv \in \{\%, 2, 12\} \{\% , 0, 01\} \subseteq Y \).

 - Suppose \(t = 12 \). Since \(2y = twv \), it follows that \(2 = 1 \)—contradiction. Thus \(w \in Y \).

- Suppose \(w = 2x \), for some \(x \in \{0, 1, 2\}^* \). If \(x = \% \), then \(w = 2x = 2 = 2\% \in \{\%, 2, 12\} \{\% , 0, 01\} \subseteq Y \). So, suppose \(x \neq \% \). Since \(2x = w \in X \), it follows that \(x = 0y \), for some \(y \in \{0, 1, 2\} \). Thus \(w = 20y \). Because \(20y = w \in X \), we have that \(0y \in X \). Furthermore, since \(0y \neq 0 \), the inductive hypothesis tells us that \(0y \in Y \). Because \(0y \neq 1 \), we have that \(0y = twv \), for some \(t \in \{\%, 2, 12\}, u \in \{\% , 0, 01\} \) and \(v \in \{\%, 0, 01\} \). Since \(0y = twv \) and \(t \in \{\%, 2, 12\} \), it follows that \(t = \% \). Thus \(w = 20y = 2(0y) = 2twv = 2w \in \{\%, 2, 12\} \{\% , 0, 01\} \subseteq Y \).

Because \(Y \subseteq X \subseteq Y \), we have that \(Y = X \).
Exercise 2

(a)

(b) First, we put the following text, which describes M in Forlan’s syntax, in the file `es3-ex2-fa`:

```plaintext
{states}
A, B, C
{start state}
A
{accepting states}
A, B
{transitions}
A, 0 -> B; A, 1 -> A;
B, 0 -> C; B, 1 -> A;
C, 0 -> C; C, 10 -> C; C, 11 -> A
```

Next, we load M into Forlan, and call it `fa`:

```plaintext
val fa = FA.input "es3-ex2-fa";
val fa = - : fa
```

Next, we find minimum-length labeled paths explaining why some strings in X are accepted by `fa` (M):

```plaintext
val findAcceptingLP = FA.findAcceptingLP fa;
val findAcceptingLP = fn : str -> lp
  fun test s =
    (print(s ^ "\n");
     LP.output("", findAcceptingLP(Str.fromString s)));
val test = fn : string -> unit
  app test
    ["%", "1", "0", "11", "101", "0101", "0111", "00110", "110", "01000100110", "0011010", "00011010", "00010100011"];
```

%:
A
I:
A, 1 => A
0:
A, 0 => B
I1:
A, 1 => A, 1 => A
Finally, we check that some strings that are not in X are not accepted by $fa (M)$:

val accepted = FA.accepted fa;
val accepted = fn : str -> bool
val test = fn : string -> string * bool
val it = [("00",false),("001",false),("0010",false),("000101",false),"000",false),
 ("010001100",false),("1100",false),("1010001100",false),
 ("1000011010010",false)] : (string * bool) list

(e) First we prove some basic properties about X.

Lemma ES3.2.1
1. For all $w \in \{0,1\}^*$, if 00 is not a substring of w, then $w \in X$.
2. $\{0,1\}^* \{11\} \subseteq X$.
3. $X \{1\} \subseteq X$.

Proof.
1. Suppose $w \in \{0,1\}^*$ and 00 is not a substring of w. To see that $w \in X$, suppose $x, y \in \{0,1\}^*$ and $w = x00y$. We must show that 11 is a substring of y. Then 00 is a substring of w—contradiction. Thus 11 is a substring of y.
(2) Suppose \(w \in \{0,1\}^* \{11\} \). Hence \(w = x11 \) for some \(x \in \{0,1\}^* \). To see that \(w \in X \), suppose \(u, v \in \{0,1\}^* \) and \(w = u00v \). We must show that \(11 \) is a substring of \(v \). We have that \(u00v = w = x11 \). Thus \(11 \) is a suffix, and thus a substring, of \(v \).

(3) Suppose \(w \in X \{1\} \). Thus \(w = x1 \) for some \(x \in X \). To see that \(w \in X \), suppose \(u, v \in \{0,1\}^* \) and \(w = u00v \). We must show that \(11 \) is a substring of \(v \). We have that \(u00v = w = x1 \). Thus \(v = t1 \) for some \(t \in \{0,1\}^* \). Because \(x1 = u00v = u00t1 \), we have that \(x = u00t \). Because \(x \in X \), it follows that \(11 \) is a substring of \(t \). But \(v = t1 \), and thus \(11 \) is a substring of \(v \).

\(q \)

By Lemma ES3.2.1(1), we have that \(%, 0 \in X \). Define languages \(A, B \) and \(C \) by:

\[
A = \{ w \in X \mid 0 \text{ is not a suffix of } w \},
B = \{ w \in X \mid 0 \text{ is a suffix of } w \},
C = \{ w \in \{0,1\}^* \mid w \not\in X \text{ and } 0 \text{ is a suffix of } w \}.
\]

It is easy to see that \(X = A \cup B \). Next, we prove a useful lemma that is derived from the definition of \(M \).

Lemma ES3.2.2

For all \(w \in \{0,1\}^* \):

(A) \(w \in A \) iff \(w = %, \) or \(w = x1 \) for some \(x \in A \), or \(w = x1 \) for some \(x \in B \), or \(w = x11 \) for some \(x \in C \);

(B) \(w \in B \) iff \(w = x0 \) for some \(x \in A \);

(C) \(w \in C \) iff \(w = x0 \) for some \(x \in B \), or \(w = x0 \) for some \(x \in C \), or \(w = x10 \) for some \(x \in C \).

Proof.

(A) ("only if" direction) Suppose \(w \in A \). Thus \(w \in X \) and \(0 \) is not a suffix of \(w \). If \(w = % \), then we are done, so suppose \(w \neq % \). Because \(0 \) is not a suffix of \(w \), we have that \(w = x1 \) for some \(x \in \{0,1\}^* \). There are two cases to consider.

- Suppose \(x \in X \). Because \(X = A \cup B \), we have that \(x \in A \) or \(x \in B \), and thus either \(w = x1 \) and \(x \in A \), or \(w = x1 \) and \(x \in B \).
- Suppose \(x \not\in X \). Thus \(x = u00v \) for some \(u, v \in \{0,1\}^* \) such that \(11 \) is not a substring of \(v \). Hence \(w = x1 = u00v1 \). Because \(u00v1 = w \in X \), it follows that \(11 \) is a substring of \(v1 \). But \(11 \) is not a substring of \(v \), and thus \(1 \) is a suffix of \(v \). Thus \(v = t1 \) for some \(t \in \{0,1\}^* \), so that \(x = u00v = u00t1 \). Hence \(w = x1 = u00/11 \). Because \(11 \) is not a substring of \(v \), it follows that \(11 \) is not a substring of \(t \) and \(1 \) is not a suffix of \(t \). Thus \(u00t \not\in X \). And, either \(t = % \) or \(0 \) is a suffix of \(t \). Hence we have that \(0 \) is a suffix of \(u00t \). Thus \(w = (u00t)11 \) and \(u00t \in C \).

("if" direction) Suppose \(w = %, \) or \(w = x1 \) for some \(x \in A \), or \(w = x1 \) for some \(x \in B \), or \(w = x11 \) for some \(x \in C \). There are four cases to consider.
• Suppose \(w = \% \). Then \(w = \% \in X \). And 0 is not a substring of \(\% = w \), completing the proof that \(w \in A \).

• Suppose \(w = x1 \) for some \(x \in A \). Thus \(x \in X \). By Lemma ES3.2.1(3), we have that \(w = x1 \in X \{1\} \subseteq X \). And 0 is not a suffix of \(x1 = w \), completing the proof that \(w \notin A \).

• Suppose \(w = x1 \) for some \(x \in B \). Thus \(x \in X \). By Lemma ES3.2.1(3), we have that \(w = x1 \in X \{1\} \subseteq X \). And 0 is not a suffix of \(x1 = w \), completing the proof that \(w \in A \).

• Suppose \(w = x11 \) for some \(x \in C \). By Lemma ES3.2.1(2), we have that \(w = x11 \in \{0,1\}\{1\} \subseteq X \). And 0 is not a suffix of \(x11 = w \), completing the proof that \(w \in A \).

(B) ("only if" direction) Suppose \(w \in B \). Thus \(w \in X \) and 0 is a suffix of \(w \). Hence \(w = x0 \) for some \(x \in \{0,1\}^* \).

Suppose, toward a contradiction, that 0 is a suffix of \(x \). Then \(x = y0 \) for some \(y \in \{0,1\}^* \), so that \(w = x0 = y00\% \). But then \(w \notin X \) — contradiction. Thus 0 is not a suffix of \(x \).

Suppose, toward a contradiction, that \(x \notin X \). Thus \(x = u00v \) for some \(u, v \in \{0,1\}^* \) such that \(11 \) is not a substring of \(v \). Because \(u00v0 = x0 = w \in X \), we have that \(11 \) is a substring of \(v0 \), so that \(11 \) is a substring of \(v \)—contradiction. Thus \(x \in X \), completing the proof that \(x \in A \).

Hence \(w = x0 \) and \(x \in A \).

("if" direction) Suppose \(w = x0 \) for some \(x \in A \). Thus \(x \in X \) and 0 is not a suffix of \(x \).

To see that \(w \in X \), suppose that \(u, v \in \{0,1\}^* \) and \(w = u00v \). We must show that \(11 \) is a substring of \(v \). We have that \(x0 = w = u00v \). Because 0 is not a suffix of \(x \), we have that \(v \neq \% \). Thus \(v = t0 \) for some \(t \in \{0,1\}^* \). Hence \(x0 = u00v = u00t0 \), so that \(x = u00t \).

Because \(x \in X \), it follows that \(11 \) is a substring of \(t \). But \(v = t0 \), and thus \(11 \) is a substring of \(v \).

Finally, 0 is a suffix of \(x0 = w \), completing the proof that \(w \in B \).

(C) ("only if" direction) Suppose \(w \in C \). Thus \(w \in \{0,1\}^* \), \(w \notin X \) and 0 is a suffix of \(w \), so that \(w = x0 \) for some \(x \in \{0,1\}^* \). If \(x = \% \), then \(w = 0 \in X \) — contradiction. Thus \(x \neq \% \).

There are two cases to consider.

• Suppose \(x = y0 \) for some \(y \in \{0,1\}^* \). Thus 0 is a suffix of \(x \). There are two subcases to consider.

 - Suppose \(x \in X \). Thus \(w = x0 \) and \(x \in B \).

 - Suppose \(x \notin X \). Thus \(w = x0 \) and \(x \in C \).

• Suppose \(x = y1 \) for some \(y \in \{0,1\}^* \). Hence \(w = x0 = y10 \). Because \(w \notin X \), there are \(u, v \in \{0,1\}^* \) such that \(w = u00v \) and \(11 \) is not a substring of \(v \). Thus \(y10 = w = u00v \). Clearly \(v \neq \% \), and so 0 is a suffix of \(v \). And \(v \) cannot be 0, and thus \(v = t10 \) for some \(t \in \{0,1\}^* \). Because \(y10 = u00v = u00t10 \), we have that \(y = u00t \). Since \(11 \) is not a substring of \(v = t10 \), it follows that \(11 \) is not a substring of \(t \), and 1 is not a suffix of \(t \).

Hence \(y = u00t \notin X \). Because 1 is not a suffix of \(t \), either \(t = \% \) or 0 is a suffix of \(t \). In either case, we have that \(0 \) is suffix of \(u00t = y \), completing the proof that \(y \in C \). Thus \(w = y10 \) and \(y \in C \).
("if" direction) Suppose \(w = x0 \) for some \(x \in B \), or \(w = x0 \) for some \(x \in C \), or \(w = x10 \) for some \(x \in C \). There are three cases to consider.

- Suppose \(w = x0 \) for some \(x \in B \). Thus 0 is a suffix of \(x \), so that 00 is a suffix of \(x0 = w \). Hence \(w = u00\% \) for some \(u \in \{0, 1\}^* \), so that \(w \notin X \). And 0 is a suffix of \(x0 = w \), completing the proof that \(w \in C \).

- Suppose \(w = x0 \) for some \(x \in C \). Thus 0 is a suffix of \(x \), so that 00 is a suffix of \(x0 = w \). Hence \(w = u00\% \) for some \(u \in \{0, 1\}^* \), so that \(w \notin X \). And 0 is a suffix of \(x0 = w \), completing the proof that \(w \in C \).

- Suppose \(w = x10 \) for some \(x \in C \). Thus 0 is a suffix of \(x \) and \(x \notin X \), i.e., \(x = u00v \) for some \(u, v \in \{0, 1\}^* \) such that 11 is not a substring of \(v \). Because 0 is a suffix of \(x \), and \(x = u00v \), it follows that 1 is not a suffix of \(v \). Hence 11 is not a substring of \(v10 \). But \(w = x10 = u00v10 \), and thus \(w \notin X \). And 0 is a suffix of \(x10 = w \), completing the proof that \(w \in C \).

\[\square \]

Now we prove a lemma that will allow us to establish that \(L(M) \subseteq X \).

Lemma ES3.2.3

For all \(w \in \{0, 1\}^* \):

(A) if \(A \in \Delta(\{A\}, w) \), then \(w \in A \);

(B) if \(B \in \Delta(\{A\}, w) \), then \(w \in B \);

(C) if \(C \in \Delta(\{A\}, w) \), then \(w \in C \).

Proof. We proceed by strong string induction. Suppose \(w \in \{0, 1\}^* \), and assume the inductive hypothesis: for all \(x \in \{0, 1\}^* \), if \(|x| < |w| \), then:

(A) if \(A \in \Delta(\{A\}, x) \), then \(x \in A \);

(B) if \(B \in \Delta(\{A\}, x) \), then \(x \in B \);

(C) if \(C \in \Delta(\{A\}, x) \), then \(x \in C \).

We must show that:

(A) if \(A \in \Delta(\{A\}, w) \), then \(w \in A \);

(B) if \(B \in \Delta(\{A\}, w) \), then \(w \in B \);

(C) if \(C \in \Delta(\{A\}, w) \), then \(w \in C \).

We proceed as follows.

(A) Suppose \(A \in \Delta(\{A\}, w) \). We must show that \(w \in A \). Since \(A \in \Delta(\{A\}, w) \), there are two cases to consider.

- Suppose \(A = A \) and \(w = \% \). By Lemma ES3.2.2(A), \(w \in A \).
Suppose there are $q \in Q$ and $x, y \in \text{Str}$ such that $w = xy$, $q \in \Delta([A], x)$ and $(q, y, A) \in T$. Since $(q, y, A) \in T$, there are three cases to consider.

- Suppose $q = A$ and $y = 1$. Thus $A \in \Delta([A], x)$ and $w = xy = x1$. Since $|x| < |w|$, Part (A) of the inductive hypothesis tells us that $x \in A$. Hence, by Lemma ES3.2.2(A), we have that $w \in A$.

- Suppose $q = B$ and $y = 1$. Thus $B \in \Delta([A], x)$ and $w = xy = x1$. Since $|x| < |w|$, Part (B) of the inductive hypothesis tells us that $x \in B$. Hence, by Lemma ES3.2.2(A), we have that $w \in A$.

- Suppose $q = C$ and $y = 11$. Thus $C \in \Delta([A], x)$ and $w = xy = x11$. Since $|x| < |w|$, Part (C) of the inductive hypothesis tells us that $x \in C$. Hence, by Lemma ES3.2.2(A), we have that $w \in A$.

(B) Suppose $B \in \Delta([A], w)$. We must show that $w \in B$. Since $B \in \Delta([A], w)$, there are $q \in Q$ and $x, y \in \text{Str}$ such that $w = xy$, $q \in \Delta([A], x)$ and $(q, y, B) \in T$. Since $(q, y, B) \in T$, we have that $q = A$ and $y = 0$. Thus $A \in \Delta([A], x)$ and $w = xy = x0$. Since $|x| < |w|$, Part (A) of the inductive hypothesis tells us that $x \in A$. Hence, by Lemma ES3.2.2(B), we have that $w \in B$.

(C) Suppose $C \in \Delta([A], w)$. We must show that $w \in C$. Since $C \in \Delta([A], w)$, there are $q \in Q$ and $x, y \in \text{Str}$ such that $w = xy$, $q \in \Delta([A], x)$ and $(q, y, C) \in T$. Since $(q, y, C) \in T$, there are three cases to consider.

- Suppose $q = B$ and $y = 0$. Thus $B \in \Delta([A], x)$ and $w = xy = x0$. Since $|x| < |w|$, Part (B) of the inductive hypothesis tells us that $x \in B$. Hence, by Lemma ES3.2.2(C), we have that $w \in C$.

- Suppose $q = C$ and $y = 0$. Thus $C \in \Delta([A], x)$ and $w = xy = x0$. Since $|x| < |w|$, Part (C) of the inductive hypothesis tells us that $x \in C$. Hence, by Lemma ES3.2.2(C), we have that $w \in C$.

- Suppose $q = C$ and $y = 10$. Thus $C \in \Delta([A], x)$ and $w = xy = x10$. Since $|x| < |w|$, Part (C) of the inductive hypothesis tells us that $x \in C$. Hence, by Lemma ES3.2.2(C), we have that $w \in C$.

Now, we use the preceding lemma to show that $I(M) \subseteq X$. Suppose $w \in I(M)$. We must show that $w \in X$. Because $w \in I(M)$, we have that $\Delta([A], w) \cap \{A, B\} \neq \emptyset$, so that $A \in \Delta([A], w)$ or $B \in \Delta([A], w)$. Since alphabet(M) = $\{0, 1\}$, we have that $w \in \{0, 1\}^*$. Thus, we have that Parts (A)--(C) of Lemma ES3.2.3 hold. By Parts (A) and (B), it follows that $w \in A$ or $w \in B$. But $A \subseteq X$ and $B \subseteq X$, and thus $w \in X$.

Next, we prove a lemma that will allow us to establish that $X \subseteq I(M)$.

Lemma ES3.2.4

For all $w \in \{0, 1\}^$:

(A) if $w \in A$, then $A \in \Delta([A], w)$;*
(B) if \(w \in B \), then \(B \in \Delta(\{A\}, w) \);

(C) if \(w \in C \), then \(C \in \Delta(\{A\}, w) \).

Proof. We proceed by strong string induction. Suppose \(w \in \{0,1\}^* \), and assume the inductive hypothesis: for all \(x \in \{0,1\}^* \), if \(|x| < |w| \), then:

(A) if \(x \in A \), then \(A \in \Delta(\{A\}, x) \);

(B) if \(x \in B \), then \(B \in \Delta(\{A\}, x) \);

(C) if \(x \in C \), then \(C \in \Delta(\{A\}, x) \).

We must show that:

(A) if \(w \in A \), then \(A \in \Delta(\{A\}, w) \);

(B) if \(w \in B \), then \(B \in \Delta(\{A\}, w) \);

(C) if \(w \in C \), then \(C \in \Delta(\{A\}, w) \).

We proceed as follows.

(A) Suppose \(w \in A \). We must show that \(A \in \Delta(\{A\}, w) \). By Lemma ES3.2.2(A), there are four cases to consider.

- Suppose \(w = \% \). We have that \(A \in \Delta(\{A\}, \%) \), and thus that \(A \in \Delta(\{A\}, w) \).
- Suppose \(w = x1 \) for some \(x \in A \). Since \(|x| < |w| \), Part (A) of the inductive hypothesis tells us that \(A \in \Delta(\{A\}, x) \). Since \((A, 1, A) \in T \), we have that \(A \in \Delta(\{A\}, 1) \). Hence \(A \in \Delta(\{A\}, x1) \), i.e., \(A \in \Delta(\{A\}, w) \).
- Suppose \(w = x1 \) for some \(x \in B \). Since \(|x| < |w| \), Part (B) of the inductive hypothesis tells us that \(B \in \Delta(\{A\}, x) \). Since \((B, 1, A) \in T \), we have that \(A \in \Delta(\{B\}, 1) \). Hence \(A \in \Delta(\{A\}, x1) \), i.e., \(A \in \Delta(\{A\}, w) \).
- Suppose \(w = x11 \) for some \(x \in C \). Since \(|x| < |w| \), Part (C) of the inductive hypothesis tells us that \(C \in \Delta(\{A\}, x) \). Since \((C, 11, A) \in T \), we have that \(A \in \Delta(\{C\}, 11) \). Hence \(A \in \Delta(\{A\}, x11) \), i.e., \(A \in \Delta(\{A\}, w) \).

(B) Suppose \(w \in B \). We must show that \(B \in \Delta(\{A\}, w) \). By Lemma ES3.2.2(B), we have that \(w = x0 \) for some \(x \in A \). Since \(|x| < |w| \), Part (A) of the inductive hypothesis tells us that \(A \in \Delta(\{A\}, x) \). Since \((A, 0, B) \in T \), we have that \(B \in \Delta(\{A\}, 0) \). Hence \(B \in \Delta(\{A\}, x0) \), i.e., \(B \in \Delta(\{A\}, w) \).

(C) Suppose \(w \in C \). We must show that \(C \in \Delta(\{A\}, w) \). By Lemma ES3.2.2(C), there are three cases to consider.

- Suppose \(w = x0 \) for some \(x \in B \). Since \(|x| < |w| \), Part (B) of the inductive hypothesis tells us that \(B \in \Delta(\{A\}, x) \). Since \((B, 0, C) \in T \), we have that \(C \in \Delta(\{B\}, 0) \). Hence \(C \in \Delta(\{A\}, x0) \), i.e., \(C \in \Delta(\{A\}, w) \).
Suppose \(w = x0 \) for some \(x \in C \). Since \(|x| < |w|\), Part (C) of the inductive hypothesis tells us that \(C \in \Delta(\{A\}, x) \). Since \((C, 0, C) \in T\), we have that \(C \in \Delta(\{C\}, 0) \). Hence \(C \in \Delta(\{A\}, x0) \), i.e., \(C \in \Delta(\{A\}, w) \).

Suppose \(w = x10 \) for some \(x \in C \). Since \(|x| < |w|\), Part (C) of the inductive hypothesis tells us that \(C \in \Delta(\{A\}, x) \). Since \((C, 10, C) \in T\), we have that \(C \in \Delta(\{C\}, 10) \). Hence \(C \in \Delta(\{A\}, x10) \), i.e., \(C \in \Delta(\{A\}, w) \).

\(\square \)

Now, we use the preceding lemma to show that \(X \subseteq L(M) \). Suppose \(w \in X \). We must show that \(w \in L(M) \). Since \(X \subseteq \{0, 1\}^* \), we have that Parts (A)–(C) of Lemma ES3.2.4 hold. There are two cases to consider.

1. Suppose \(0 \) is a suffix of \(w \). Then \(w \in B \), so that \(B \in \Delta(\{A\}, w) \), by Part (B). Thus \(\Delta(\{A\}, w) \cap \{A, B\} \neq \emptyset \), showing that \(w \in L(M) \).

2. Suppose \(0 \) is not a suffix of \(w \). Then \(w \in A \), so that \(A \in \Delta(\{A\}, w) \), by Part (A). Thus \(\Delta(\{A\}, w) \cap \{A, B\} \neq \emptyset \), showing that \(w \in L(M) \).

Because \(L(M) \subseteq X \subseteq L(M) \), we have that \(L(M) = X \). Finally, we must show that \(M \) has as few states as possible.

Lemma ES3.2.5

For all FAs \(N \), if \(L(N) = X \) and \(|Q_N| \leq 2 \), then, for all \(q \in Q_N \), \(\Delta(\{q\}, \%) \cap A_N \neq \emptyset \).

Proof. There are two cases to consider.

1. Suppose \(|Q_N| = 1\). Because \(\% \in X = L(N) \), we have that \(s_N \in A_N \). Because \(s_N \in \Delta(\{s_N\}, \%) \), we have that \(\Delta(\{s_N\}, \%) \cap A_N \neq \emptyset \).

2. Suppose \(|Q_N| = 2\). Let \(q \) be the non-start state of \(N \).

 First, we show that \(\Delta(\{s_N\}, \%) \cap A_N \neq \emptyset \). If \(s_N \in A_N \), then \(s_N \in \Delta(\{s_N\}, \%) \) and \(s_N \in A_N \), and so we are done. So, suppose \(s_N \notin A_N \). Because \(\% \in L(N) \), we must have that \(s_N, \%, q \in T \) and \(q \in A_N \). Thus \(q \in \Delta(\{s_N\}, \%) \) and \(q \in A_N \), so that \(\Delta(\{s_N\}, \%) \cap A_N \neq \emptyset \).

 It remains to show that \(\Delta(\{q\}, \%) \cap A_N \neq \emptyset \). If \(q \in A_N \), then this holds, so suppose \(q \notin A_N \). Then \(s_N \in A_N \), as otherwise \(N \) would accept nothing. If \((s_N, 0, s_N) \in T \), then \(\%(00)\% = 00 \in L(N) = X \)—contradiction. Thus \((s_N, 0, s_N) \notin T \). Because \(0 \in X = L(N) \), there must be a labeled path \(lp \) that is valid for \(N \), starts and ends at \(s_N \), and is labeled by \(0 \). Since \((s_N, 0, s_N) \notin T \), \(lp \) must visit \(q \) on its way from \(s_N \) to \(s_N \). If its first return to \(s_N \) uses label \(\% \), then \((q, \%, s_N) \in T \), and thus \(\Delta(\{q\}, \%) \cap A_N \neq \emptyset \). Otherwise, its first return to \(s_N \) uses label \(0 \), so that \((q, 0, s_N) \in T \). But then \((s_N, \%, q) \in T \), as otherwise \(lp \) wouldn’t have label \(0 \). Thus \(s_N \in \Delta(\{s_N\}, \%), \% \), i.e., \(s_N \in \Delta(\{s_N\}, 00) \). But then \(s_N \in \Delta(\{s_N\}, 00) \), showing that \(00 \in L(N) = X \)—contradiction. Thus \(\Delta(\{q\}, \%) \cap A_N \neq \emptyset \).

\(\square \)

Lemma ES3.2.6

For all \(n \in \mathbb{N} \), \(00(0^n)11 \) is a length \(n + 4 \) element of \(X \), and, for all prefixes \(v \) of \(00(0^n)11 \), if \(2 \leq |v| \leq n + 3 \), then \(v \notin X \).
Proof. Suppose \(n \in \mathbb{N} \) and let \(w = 00(0^n)11 \). Clearly \(|w| = 2 + n + 2 = n + 4 \). By Lemma ES3.2.1(2), we have that \(w = 00(0^n)11 \in \{0, 1\}^* \{11\} \subseteq X \).

For the last part, suppose \(v \) is a prefix of \(w \) such that \(2 \leq |v| \leq n + 3 \). There are two cases to consider.

- Suppose \(v = 000^i \), for some \(i \in \mathbb{N} \) such that \(i \leq n \). Because \(v = \%(00)^i \) and 11 is not a substring of \(0^i \), it follows that \(v \not\in X \).

- Suppose \(v = 000^n1 \). Because \(v = \%(00)(0^n1) \) and 11 is not a substring of \(0^n1 \), it follows that \(v \not\in X \).

\(\square \)

Proposition ES3.2.7

For all FAs \(N \), if \(L(N) = X \), then \(|Q_N| \geq |Q_M| \).

Proof. Suppose, toward a contradiction, that it is not true that, for all FAs \(N \), if \(L(N) = X \), then \(|Q_N| \geq |Q_M| \). Thus there is an FA \(N \) such that \(L(N) = X \) and \(|Q_N| < |Q_M| \). Because \(|Q_M| = 3 \), this means that \(|Q_N| \leq 2 \). Let \(n \) be two times the maximum length of the labels of \(N \)'s transitions, and let \(w = 00(0^n)11 \). By Lemma ES3.2.6, \(w \in X \) and \(|w| = n + 4 \). Because \(w \in X = L(N) \), there is a labeled path \(lp \) such that \(lp \) is valid for \(N \), the start state of \(lp \) is \(s_N \), and the label of \(lp \) is \(w \). By the definition of \(n \), and since \(|w| = n + 4 \), the labels of at least three transitions of \(lp \) must be non-\%. Let \(lp' \) be the shortest initial part of \(lp \) that contains exactly two transitions with non-\% labels, let \(v \) be the label of \(lp' \), and let \(q \) be the end state of \(lp' \). Thus \(v \) is a prefix of \(w \). By the definition of \(n \), and because exactly two of the labels of \(lp' \) are non-\%, we have that \(2 \leq |v| \leq n \leq n + 3 \). Furthermore, by Lemma ES3.2.5, we have that \(\Delta(\{q\}, \%) \cap A_N \neq \emptyset \). Thus, there is a labeled path that is valid for \(N \), starts at \(s_N \), ends at an element of \(A_N \), and is labeled by \(v\% = v \), showing that \(v \in L(N) = X \). But by Lemma ES3.2.6, it follows that \(v \not\in X \)—contradiction. Thus, for all FAs \(N \), if \(L(N) = X \), then \(|Q_N| \geq |Q_M| \). \(\square \)