Exercise 1

(a)

(b) Define the following languages:

\[Y = \{ w \in \{0,1\}^* \mid w \notin X \}, \]
\[A = \{ w \in \{0,1\}^* \mid w \in X \text{ and } 0 \text{ is not a suffix of } w \}, \]
\[B = \{ w \in \{0,1\}^* \mid w \in X \text{ and } 0, \text{ but not } 00, \text{ is a suffix of } w \}, \]
\[C = \{ w \in \{0,1\}^* \mid w \in X \text{ and } 00 \text{ is a suffix of } w \}, \]
\[D = \{ w \in \{0,1\}^* \mid w \notin X \text{ and } 0 \text{ is a suffix of } w \}, \]
\[E = \{ w \in \{0,1\}^* \mid w \notin X \text{ and } 1, \text{ but not } 11, \text{ is a suffix of } w \}, \]
\[F = \{ w \in \{0,1\}^* \mid w \notin X \text{ and } 11 \text{ is a suffix of } w \}. \]

Lemma ES4.1.1

(1) \% \in A.

(2) \{X\} \subseteq X.

(3) \{A\} \subseteq A.

(4) \{B\} \subseteq A.

(5) \{C\} \subseteq A.

(6) \{F\} \subseteq A.

(7) \{A\} \subseteq B.

(8) \{B\} \subseteq C.

(9) \{C\} \subseteq D.
We must show that \(\% \in A \). Because 0 is not a suffix of \(\% \), it remains to show that \(\% \in X \).
Suppose that \(x, y \in \{0, 1\}^* \) and \(\% = x000y \). We must show that 111 is a substring of \(y \). But
\(\% = x000y \) is impossible, and thus 111 is a substring of \(y \).

(2) Suppose \(w \in X \{1\} \). We must show that \(w \in X \). By the assumption, we have that \(w = z1 \)
for some \(z \in X \). To show that \(w \in X \), suppose \(x, y \in \{0, 1\}^* \) and \(w = x000y \). We must show
that 111 is a substring of \(y \). Because \(x000y = w = z1 \), we have that \(y = y'1 \) for some
\(y' \in \{0, 1\}^* \). Thus \(x000y'1 = x000y = z1 \), so that \(x000y' = z \). Because \(z \in X \), we have that
111 is a substring of \(y' \). Thus 111 is a substring of \(y'1 = y \).

(3) Suppose \(w \in A \{1\} \). We must show that \(w \in A \). By the assumption, we have that \(w = z1 \)
for some \(z \in A \). But \(A \subseteq X \), and thus \(w = z1 \in X \{1\} \subseteq X \), by Part (2). And 0 is not a suffix of
\(z1 = w \), completing the proof that \(w \in A \).

(4) Suppose \(w \in B \{1\} \). We must show that \(w \in A \). By the assumption, we have that \(w = z1 \)
for some \(z \in B \). But \(B \subseteq X \), and thus \(w = z1 \in X \{1\} \subseteq X \), by Part (2). And 0 is not a suffix of
\(z1 = w \), completing the proof that \(w \in A \).

(5) Suppose \(w \in C \{1\} \). We must show that \(w \in A \). By the assumption, we have that \(w = z1 \)
for some \(z \in C \). But \(C \subseteq X \), and thus \(w = z1 \in X \{1\} \subseteq X \), by Part (2). And 0 is not a suffix of
\(z1 = w \), completing the proof that \(w \in A \).

(6) Suppose \(w \in F \{1\} \). We must show that \(w \in A \). By the assumption, we have that \(w = z1 \)
for some \(z \in F \). Thus 0 is not a suffix of \(z1 = w \). So it remains to show that \(w \in X \). Suppose
\(x, y \in \{0, 1\}^* \) and \(w = x000y \). We must show that 111 is a substring of \(y \). Because \(z \in F \), we have that
111 is a suffix of \(z \). Thus \(z = z'111 \) for some \(z' \in \{0, 1\}^* \), so that \(w = z1 = z'111 \).
Since \(z'111 = w = x000y \), we have that 111 is a suffix of \(y \). Hence 111 is a substring of \(y \).

(7) Suppose \(w \in A \{0\} \). We must show that \(w \in B \). By the assumption, \(w = 0 \) for some \(z \in A \).
We have that 0 is a suffix of \(z0 = w \). Because \(z \in A \), it follows that 0 is not a suffix of \(z \).
Thus 00 is not a suffix of \(z0 = w \). So it remains to show that \(w \in X \). Suppose \(x, y \in \{0, 1\}^* \)
and \(w = x000y \). We must show that 111 is a substring of \(y \). We have that \(x000y = w = z0 \).
Because 0 is not a suffix of \(z \), there are two cases to consider.

- Suppose \(z = \% \). Thus \(x000y = z0 = 0 \)—contradiction. Thus 111 is a substring of \(y \).
Suppose $z = z'1$ for some $z' \in \{0, 1\}^*$. Thus $x000y = z0 = z'10$, so that $y = y0$ for some $y' \in \{0, 1\}^*$. Hence $x000y0 = x000y = z'10$, so that $x000y = z'1 = z$. Because $z \in A \subseteq X$, we have that 111 is a substring of y'. Thus 111 is a substring of $y1$. Suppose $w \in B\{0\}$. We must show that $w \in C$. By the assumption, $w = z0$ for some $z \in B$. Because $z \in B$, we have that $0 \not\in z$. Thus we have that 00 is a suffix of $z0 = w$. So, it remains to show that $w \in X$. Suppose $x, y \in \{0, 1\}^*$ and $w = x000y$. We must show that 111 is a substring of y. We have that $x000y = w = z0$. Because 0, but not 00, is a suffix of z, there are two cases to consider.

- Suppose $z = 0$. Thus $x000y = z0 = 00$—contradiction. Thus 111 is a substring of y.
- Suppose $z = z'10$ for some $z' \in \{0, 1\}^*$. Thus $x000y = z0 = z'100$, so that $y = y'100$ for some $y' \in \{0, 1\}^*$. Hence $x000y100 = x000y = z'100$, so that $x000y10 = z'10 = z$. Because $z \in B \subseteq X$, we have that 111 is a substring of $y'10$. Thus 111 is a substring of $y'100 = y1$.

(8) Suppose $w \in C\{0\}$. We must show that $w \in D$. By the assumption, $w = z0$ for some $z \in C$. Thus 0 is a suffix of $z0 = w$. So, it remains to show that $w \not\in X$. Because $z \in C$, we have that 00 is a suffix of z. Thus $z = z'00$ for some $z' \in \{0, 1\}^*$, so that $w = z0 = z'000 = z'000\%$. Because $w = z'000\%$ and 111 is not a substring of $%$, we have that $w \not\in X$.

(9) Suppose $w \in Y\{0\}$. We must show that $w \in Y$. By the assumption, $w = z0$ for some $z \in Y$. Thus $z \not\in X$, so that there are $x, y \in \{0, 1\}^*$ such that $z = x000y$ and 111 is not a substring of y. Thus $w = z0 = x000y0$ and 111 is not a substring of $y0$, showing that $w \not\in X$. Thus $w \in Y$.

(10) Suppose $w \in D\{0\}$. We must show that $w \in D$. By the assumption, $w = z0$ for some $z \in D$. Because $z \in D$, we have that $z \not\in X$, so that $z \in Y$. Thus $w = z0 \in Y\{0\} \subseteq Y$, by Part (10), so that $w \not\in X$. Furthermore, 0 is a suffix of $z0 = w$, completing the proof that $w \in D$.

(11) Suppose $w \in E\{0\}$. We must show that $w \in D$. By the assumption, $w = z0$ for some $z \in E$. Because $z \in E$, we have that $z \not\in X$, so that $z \in Y$. Thus $w = z0 \in Y\{0\} \subseteq Y$, by Part (10), so that $w \not\in X$. Furthermore, 0 is a suffix of $z0 = w$, completing the proof that $w \in D$.

(12) Suppose $w \in F\{0\}$. We must show that $w \in D$. By the assumption, $w = z0$ for some $z \in F$. Because $z \in F$, we have that $z \not\in X$, so that $z \in Y$. Thus $w = z0 \in Y\{0\} \subseteq Y$, by Part (10), so that $w \not\in X$. Furthermore, 0 is a suffix of $z0 = w$, completing the proof that $w \in D$.

(13) Suppose $w \in D\{1\}$. We must show that $w \in E$. By the assumption, we have that $w = z1$ for some $z \in D$. Thus $z \not\in X$ and 0 is a suffix of z, so that $z = z'0$ for some $z' \in \{0, 1\}^*$. Because $w = z1 = z'01$, we have that 1, but not 11, is a suffix of $z'01 = w$. So, it remains to show that $w \not\in X$. Because $z \not\in X$, there are $x, y \in \{0, 1\}^*$ such that $z = x000y$ and 111 is not a substring of y. Thus $w = z1 = x000y1$. Suppose, toward a contradiction, that 111 is a substring of $y1$. Because 111 is not a substring of y, we have that 11 is a suffix of y. Thus, since $z'01 = w = x000y1$, we have that 0 = 1—contradiction. Hence 111 is not a substring of $y1$. Because $w = x000y1$ and 111 is not a substring of $y1$, we have that $w \not\in X$.

3
(15) Suppose \(w \in E\{1\} \). We must show that \(w \in F \). By the assumption, we have that \(w = z1 \) for some \(z \in E \). Thus \(z \not\in X \) and \(1 \), but not \(11 \), is a suffix of \(z \). Hence \(z = z'1 \) for some \(z' \in \{0,1\}^* \), and \(1 \) is not a suffix of \(z' \). We have that \(11 \) is a suffix of \(z'11 = z1 = w \). So, it remains to show that \(w \not\in X \). Because \(z \not\in X \), there are \(x, y \in \{0,1\}^* \) such that \(z = x000y \) and \(111 \) is not a substring of \(y \). Hence \(w = z1 = x000y1 \). Suppose, toward a contradiction, that \(111 \) is a substring of \(y1 \). Because \(111 \) is not a substring of \(y \), it follows that \(11 \) is a suffix of \(y \). Thus, since \(z'11 = w = x000y1 \), it follows that \(1 \) is a suffix of \(z' \)—contradiction. Hence \(111 \) is not a substring of \(y1 \). Because \(w = x000y1 \) and \(111 \) is not a substring of \(y1 \), we have that \(w \not\in X \).

\[\Box \]

Lemma ES4.1.2

For all \(w \in \{0,1\}^* \):

(A) if \(\delta(A, w) = A \), then \(w \in A \).

(B) if \(\delta(A, w) = B \), then \(w \in B \).

(C) if \(\delta(A, w) = C \), then \(w \in C \).

(D) if \(\delta(A, w) = D \), then \(w \in D \).

(E) if \(\delta(A, w) = E \), then \(w \in E \).

(F) if \(\delta(A, w) = F \), then \(w \in F \).

Proof. We proceed by left string induction.

(Basis Step) We must show that (A)–(F) hold, where \% has been substituted for \(w \). By Lemma ES4.1.1(1), we have that \% \(\in A \), so that Part (A) holds. And Parts (B)–(F) hold vacuously, since \(\delta(A, \%) = A \).

(Inductive Step) Suppose \(a \in \{0,1\} \) and \(w \in \{0,1\}^* \). Assume the inductive hypothesis, that Parts (A)–(F) hold. We must show that Parts (A)–(F) hold, where \(wa \) has been substituted for \(w \). There are six parts to show.

(A) Suppose \(\delta(A, wa) = A \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = A \), we have that \((\delta(A, w), a, A) \in T \).

There are four cases to consider.

- Suppose \(\delta(A, w) = A \) and \(a = 1 \). Part (A) of the inductive hypothesis tells us that \(w \in A \). Thus \(wa = w1 \in A\{1\} \subseteq A \), by Lemma ES4.1.1(3).

- Suppose \(\delta(A, w) = B \) and \(a = 1 \). Part (B) of the inductive hypothesis tells us that \(w \in B \). Thus \(wa = w1 \in B\{1\} \subseteq A \), by Lemma ES4.1.1(4).

- Suppose \(\delta(A, w) = C \) and \(a = 1 \). Part (C) of the inductive hypothesis tells us that \(w \in C \). Thus \(wa = w1 \in C\{1\} \subseteq A \), by Lemma ES4.1.1(5).

- Suppose \(\delta(A, w) = F \) and \(a = 1 \). Part (F) of the inductive hypothesis tells us that \(w \in F \). Thus \(wa = w1 \in F\{1\} \subseteq A \), by Lemma ES4.1.1(6).
(B) Suppose \(\delta(A, wa) = B \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = B \), we have that \((\delta(A, w), a, B) \in T \). Thus \(\delta(A, w) = A \) and \(a = 0 \). Part (A) of the inductive hypothesis tells us that \(w \in A \). Thus \(wa = w0 \in A\{0\} \subseteq B \), by Lemma ES4.1.1(7).

(C) Suppose \(\delta(A, wa) = C \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = C \), we have that \((\delta(A, w), a, C) \in T \). Thus \(\delta(A, w) = B \) and \(a = 0 \). Part (B) of the inductive hypothesis tells us that \(w \in B \). Thus \(wa = w0 \in B\{0\} \subseteq C \), by Lemma ES4.1.1(8).

(D) Suppose \(\delta(A, wa) = D \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = D \), we have that \((\delta(A, w), a, D) \in T \). There are four cases to consider.

- Suppose \(\delta(A, w) = C \) and \(a = 0 \). Part (C) of the inductive hypothesis tells us that \(w \in C \). Thus \(wa = w0 \in C\{0\} \subseteq D \), by Lemma ES4.1.1(9).
- Suppose \(\delta(A, w) = D \) and \(a = 0 \). Part (D) of the inductive hypothesis tells us that \(w \in D \). Thus \(wa = w0 \in D\{0\} \subseteq D \), by Lemma ES4.1.1(11).
- Suppose \(\delta(A, w) = E \) and \(a = 0 \). Part (E) of the inductive hypothesis tells us that \(w \in E \). Thus \(wa = w0 \in E\{0\} \subseteq D \), by Lemma ES4.1.1(12).
- Suppose \(\delta(A, w) = F \) and \(a = 0 \). Part (F) of the inductive hypothesis tells us that \(w \in F \). Thus \(wa = w0 \in F\{0\} \subseteq D \), by Lemma ES4.1.1(13).

(E) Suppose \(\delta(A, wa) = E \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = E \), we have that \((\delta(A, w), a, E) \in T \). Thus \(\delta(A, w) = D \) and \(a = 1 \). Part (D) of the inductive hypothesis tells us that \(w \in D \). Thus \(wa = w1 \in D\{1\} \subseteq E \), by Lemma ES4.1.1(14).

(F) Suppose \(\delta(A, wa) = F \). Since \(\delta(\delta(A, w), a) = \delta(A, wa) = F \), we have that \((\delta(A, w), a, F) \in T \). Thus \(\delta(A, w) = E \) and \(a = 1 \). Part (E) of the inductive hypothesis tells us that \(w \in E \). Thus \(wa = w1 \in E\{1\} \subseteq F \), by Lemma ES4.1.1(15).

\(\square \)

Now, we use the preceding lemma to show that \(L(M) = X \).

\((L(M) \subseteq X) \) Suppose \(w \in L(M) \). Then \(w \in \{0, 1\}^* \) and \(\delta(A, w) \in \{A, B, C\} \). Thus, by Parts (A)–(C) of Lemma ES4.1.2, we have that \(w \in A \) or \(w \in B \) or \(w \in C \). But \(A \subseteq X \), \(B \subseteq X \) and \(C \subseteq X \), so that \(w \in X \).

\((X \subseteq L(M)) \) Suppose \(w \in X \). Since \(X \subseteq \{0, 1\}^* \), we have that \(w \in \{0, 1\}^* \). Suppose, toward a contradiction, that \(w \notin L(M) \). Thus \(\delta(A, w) \in \{D, E, F\} \). Thus, by Parts (D)–(F) of Lemma ES4.1.2, we have that \(w \in D \) or \(w \in E \) or \(w \in F \). Thus \(w \notin X \)—contradiction. Thus \(w \in L(M) \).

Exercise 2

(a) The regular expression \(\alpha = ((01)^*)^* \). To see that our answer is correct, we put the description

\{states\}
A, B, C, D

\{start state\}
A

\{accepting states\}
of the FA M_1 in the file es4-ex2-fa. We then load α and M_1 into Forlan, convert α to an FA, and check that it is isomorphic to M_1, as follows:

```plaintext
- val reg = Reg.input "";
  @ ((01)*)*
  @ .
  val reg = - : reg
- val fa1 = FA.input "es4-ex2-fa"
  val fa1 = - : fa
- FA.isomorphic(regToFA reg, fa1);
  val it = true : bool
```

(b) M_2 is formed from M_1 by the following process. First, the state A of M_1 is turned into the state $\langle 1, A \rangle$ of M_2. $\langle 1, A \rangle$ is the start state of M_2, since A is the start state of M_1; it is an accepting state, since A is an accepting state. Next, the state B of M_1 is turned into the state $\langle 1, B \rangle$ of M_2; $\langle 1, B \rangle$ is a non-accepting state, since B is a non-accepting state. Similarly, the states C and D of M_1 are turned into the non-accepting states $\langle 1, C \rangle$ and $\langle 1, D \rangle$ of M_2. Next, the transitions $(A, \%, B)$, $(B, \%, A)$, $(B, \%, C)$ and $(D, \%, B)$ of M_1 are turned into the transitions $\langle 1, A \rangle, \langle 1, B \rangle$, $\langle 1, B \rangle, \langle 1, A \rangle$, $\langle 1, B \rangle, \langle 1, C \rangle$ and $\langle 1, D \rangle, \langle 1, B \rangle$ of M_2, respectively. Finally, the transition $(C, 01, D)$ of M_1 is split into the M_2 transitions $\langle 1, C \rangle, 0, \langle 2, \langle C, 0, 1, D \rangle \rangle$ and $\langle 2, \langle C, 0, 1, D \rangle \rangle, 1, \langle 1, D \rangle$, where $\langle 2, \langle C, 0, 1, D \rangle \rangle$ is a new, non-accepting state of M_2.

Here is a drawing of M_2:

![Diagram of M2](image)

Continuing our Forlan session, We convert the FA M_1 into an EFA, as follows:

```plaintext
- val efa2 = faToEFA fa1;
  val efa2 = - : efa
- EFA.output("", efa2);
{states}
  \langle 1, A \rangle, \langle 1, B \rangle, \langle 1, C \rangle, \langle 1, D \rangle, \langle 2, \langle C, 0, 1, D \rangle \rangle
{start state}
  \langle 1, A \rangle
{accepting states}
  \langle 1, A \rangle
{transitions}
  \langle 1, A \rangle, \% -> \langle 1, B \rangle; \langle 1, B \rangle, \% -> \langle 1, A \rangle \mid \langle 1, C \rangle; \langle 1, C \rangle, 0 -> \langle 2, \langle C, 0, 1, D \rangle \rangle;
  \langle 1, D \rangle, \% -> \langle 1, B \rangle; \langle 2, \langle C, 0, 1, D \rangle \rangle, 1 -> \langle 1, D \rangle
```
It is easy to check that M_2 is the outputted EFA.

(c) Continuing with our Forlan session, we rename the states of M_2, producing an EFA M_3, as follows:

- val efa3 = EFA.renameStatesCanonically efa2;
- val efa3 = - : efa
- EFA.output("", efa3);

{states}
A, B, C, D, E
{start state}
A
{accepting states}
A
{transitions}
A, % -> B; B, % -> A | C; C, 0 -> E; D, % -> B; E, 1 -> D
val it = () : unit

Here is a drawing of M_3:

(d) The NFA M_4 is formed from M_3 by the following process. Its states and start state are the same as those of M_3. The accepting states of M_4 are the elements of emptyCloseBackwards(A_{M_3}) = emptyCloseBackwards({A}) = {A, B, D}. The transitions of M_4 are formed by processing the non-% transitions of M_3. The transition (C,0,E) of M_3 is turned into the transitions (A,0,E), (B,0,E), (C,0,E) and (D,0,E), since emptyCloseBackwards({C}) = {A, B, C, D} and emptyClose({E}) = {E}. The transition (E,1,D) of M_3 is turned into the transitions (E,1,A), (E,1,B), (E,1,C) and (E,1,D), since emptyCloseBackwards({E}) = {E} and emptyClose({D}) = {A, B, C, D}.

Here is a drawing of M_4:
Continuing our Forlan session, we convert the EFA M_3 into an NFA, and output the result, as follows.

```haskell
val nfa4 = efaToNFA efa3;
val nfa4 = - : nfa
val it = () : unit
```

We form the DFA $\{states\}$

- A, B, C, D, E
- $\{accepting states\}$
- $\{transitions\}$
- $\{start state\}$
- $\{\langle\rangle\}$

It is easy to check that M_4 is the outputted NFA.

(e) We form the DFA M_5 from the NFA M_4, by the following process, which involves the construction of a set X of sets of states of M_4. First, $\{A\}$ is added to X and $\langle A \rangle$ is made the start state of M_5, since A is M_4's start state. Since A is an accepting state of M_4, $\langle A \rangle$ is an accepting state of M_5.

Since $\{A\} \in X$ and $\Delta(\{A\}, 0) = \{E\}$, we add $\{E\}$ to X, $\langle E \rangle$ to Q_{M_5} and $\langle\langle A\rangle, 0, \langle E \rangle\rangle$ to T_{M_5}. Since $\{A\} \in X$ and $\Delta(\{A\}, 1) = \emptyset$, we add \emptyset to X, $\langle\emptyset\rangle$ to Q_{M_5} and $\langle\langle A\rangle, 1, \langle\emptyset\rangle\rangle$ to T_{M_5}.

Since $\{E\} \in X$ and $\Delta(\{E\}, 0) = \emptyset$, we add \emptyset to X, $\langle\emptyset\rangle$ to Q_{M_5} and $\langle\langle E\rangle, 0, \langle\emptyset\rangle\rangle$ to T_{M_5}. Since $\{E\} \in X$ and $\Delta(\{E\}, 1) = \{A, B, C, D\}$, we add $\{A, B, C, D\}$ to X, $\langle A, B, C, D \rangle$ to Q_{M_5} and $\langle\langle E\rangle, 1, \langle A, B, C, D\rangle\rangle$ to T_{M_5}. Since A is an accepting state of M_5, $\langle A, B, C, D \rangle$ is an accepting state of M_5.

Since $\emptyset \in X$ and $\Delta(\emptyset, 0) = \emptyset$, we add \emptyset to X, $\langle\emptyset\rangle$ to Q_{M_5} and $\langle\langle\emptyset\rangle, 0, \langle\emptyset\rangle\rangle$ to T_{M_5}. Since $\emptyset \in X$ and $\Delta(\emptyset, 1) = \emptyset$, we add \emptyset to X, $\langle\emptyset\rangle$ to Q_{M_5} and $\langle\langle\emptyset\rangle, 1, \langle\emptyset\rangle\rangle$ to T_{M_5}.

Here is a drawing of M_5:

![Diagram of M5]

Continuing our Forlan session, we convert our NFA M_4 into a DFA, as follows:

```haskell
val dfa5 = nfaToDFA nfa4;
val dfa5 = - : dfa
val it = () : unit
```

8
It is easy to check that M_5 is the outputted DFA.

(f) Continuing our Fornan session, we rename the states of M_5, producing a DFA M_6, as follows:

```ml
val it = () : unit
```

Here is a drawing of M_6: