Balanced Sublists

1 Understanding the Balanced Function

The balanced function uses the tail-recursive auxiliary function bal to do its work. bal has three arguments:

- ms, which is the suffix of the overall input, ns, that remains to be processed;
- xs, which is the reversal of the longest nice (having no nonempty sublists summing to 0) suffix of the part of ns that’s already been processed; and
- zss, which is all the balanced sublists of the part of ns that’s already been processed, listed in strictly ascending order.

To begin with, ms = ns, xs = [] and zss = [], and when ms becomes empty, zss is balanced’s answer.

When ms is nonempty, the extend function is used to process its next element, m. The function scanZeroSum is first used to look for a prefix of xs such that the sum of m and the prefix’s sum is 0.

- If there is no such prefix, then extend communicates back to bal that no new balanced sublists of ns have been found, and that the new version of xs will be m :: xs, and then bal iterates, replacing ms with its tail, xs with m :: xs, and leaving zss unchanged. Only one list cell needed to be created in this case, but length of xs additions were needed. All of the processing is done tail-recursively. In the worst case, xs can grow to be as long as ns.

- On the other hand, if there is a prefix ys of xs such that m plus the sum of ys is 0, then extend communicates back to bal that the reversal of m :: ys is a newly found balanced sublist of ns and that all but the last element of m :: ys should be the new version of xs, and then bal iterates, replacing ms with its tail, xs with all but the last element of m :: ys, and adding the reversal of m :: ys to zss. It takes two times the length of ys plus 2 list cell allocations to build the new version of xs and find the new element of zss. And all of this processing is done tail-recursively, except for the insertion of the new answer into zss. If ys is short (when m = 0, it will be empty), then the new version of xs will also be short, making subsequent steps more efficient.

As a first example, let’s consider how balanced works with input ns = [1; 2; 3; 4; 5; −12; 3; 4; 5; −15]. We start out with

ms = [1; 2; 3; 4; 5; −12; 3; 4; 5; −15], xs = [], zss = []

The first five steps simply add elements to the front of xs. First, 1 is added, because there is no prefix of xs whose sum plus 1 is 0,

ms = [2; 3; 4; 5; −12; 3; 4; 5; −15], xs = [1], zss = []

Next 2 is added,

ms = [3; 4; 5; −12; 3; 4; 5; −15], xs = [2; 1], zss = [].
Then 3 is added,

\[ms = [4; 5; -12; 3; 4; 5; -15], \quad xs = [3; 2; 1], \quad zss = []. \]

Then 4 is added,

\[ms = [5; -12; 3; 4; 5; -15], \quad xs = [4; 3; 2; 1], \quad zss = []. \]

And finally 5 is added,

\[ms = [-12; 3; 4; 5; -15], \quad xs = [5; 4; 3; 2; 1], \quad zss = []. \]

Because the next element of \(ms \) is now \(-12\), and \([5; 4; 3]\) is a prefix of \(xs \) whose sum plus \(-12\) is 0, in the next step, \(xs \) becomes all but the last element of \([-12; 5; 4; 3]\), and the reversal of \([-12; 5; 4; 3]\) is inserted into \(zss \),

\[ms = [3; 4; 5; -15], \quad xs = [-12; 5; 4], \quad zss = [[3; 4; 5; -12]]. \]

Because the next element of \(ms \) is now 3, and \([12; 5; 4]\) is a prefix of \(xs \) whose sum plus 3 is 0, in the next step, \(xs \) becomes all but the last element of \([12; 5; 4]\), and the reversal of \([12; 5; 4]\) is inserted into \(zss \),

\[ms = [4; 5; -15], \quad xs = [3; 12; 5], \quad zss = [[3; 4; 5; -12]; [4; 5; -12; 3]]. \]

Because the next element of \(ms \) is now 4, and \([3; 12; 5]\) is a prefix of \(xs \) whose sum plus 4 is 0, in the next step, \(xs \) becomes all but the last element of \([3; 12; 5; 4]\), and the reversal of \([3; 12; 5; 4]\) is inserted into \(zss \),

\[ms = [5; -15], \quad xs = [4; 3; 12], \quad zss = [[3; 4; 5; -12]; [4; 5; -12; 3]; [5; -12; 3; 4]]. \]

Because the next element of \(ms \) is now 5, and \([4; 3; -12]\) is a prefix of \(xs \) whose sum plus 5 is 0, in the next step, \(xs \) becomes all but the last element of \([4; 3; -12; 5]\), and the reversal of \([4; 3; -12; 5]\) is inserted into \(zss \),

\[ms = [-15], \quad xs = [5; 4; 3], \quad zss = [[-12; 3; 4; 5]; [3; 4; 5; -12]; [4; 5; -12; 3]; [5; -12; 3; 4]]. \]

Because the next element of \(ms \) is now \(-15\), and there is no prefix of \(xs \) whose sum plus \(-15\) is 0, in the next step, \(-15\) is simply added to the front of \(xs \),

\[ms = [], \quad xs = [-15; 5; 4; 3], \quad zss = [[-12; 3; 4; 5]; [3; 4; 5; -12]; [4; 5; -12; 3]; [5; -12; 3; 4]]. \]

Finally, \(ms \) is empty, so the result is \(zss \).

As a second example, let’s consider how \texttt{balanced} works with input \(ns = [1; 2; 3; 0; -3; -2; -1] \). We start out with

\[ms = [1; 2; 3; 0; -3; -2; -1], \quad xs = [], \quad zss = []. \]

First, we add 1 to \(xs \),

\[ms = [2; 3; 0; -3; -2; -1], \quad xs = [1], \quad zss = []. \]
Next, we add 2 to xs,

$$ms = [3; 0; -3; -2; -1], \quad xs = [2; 1], \quad zss = [].$$

Next, we add 3 to xs,

$$ms = [0; -3; -2; -1], \quad xs = [3; 2; 1], \quad zss =[].$$

Because the next element of ms is now 0, and $[]$ is a prefix of xs whose sum plus 0 is 0, in the next step, xs becomes all but the last element of $[0]$, and the reversal of $[0]$ is inserted into zss,

$$ms = [-3; -2; -1], \quad xs = [], \quad zss = [[0]].$$

The rest of the steps add -3, -2 and -1 to xs, without adding anything to zss.

2 Proving Correctness of the Balanced Function

In what follows, we’ll abbreviate `List.rev`, `List.hd` and `List.length` to `rev`, `hd` and `length`, respectively. `length` is defined so that, for all lists xs and ys of values of the same type, $\text{length}(xs @ ys) = \text{length}(xs) + \text{length}(ys)$. And `rev` is defined so that, for all lists xs and ys of values of the same type, $\text{rev}(xs @ ys) = \text{rev}(ys) @ \text{rev}(xs)$. We’ll use the following lemma about `rev` repeatedly and without citation:

Lemma 2.1

(1) For all lists xs, $\text{rev}(\text{rev}(xs)) = xs$.

(2) For all lists xs and ys of values of the same type, $xs = ys$ iff $\text{rev}(xs) = \text{rev}(ys)$.

(3) For all lists xs and ys of values of the same type, $xs = \text{rev}(ys)$ iff $\text{rev}(xs) = ys$.

(4) For all lists xs, $\text{length}(xs) = \text{length}(\text{rev}(xs))$.

Proof. (1) can be proved by induction on xs. (2) and (3) follow immediately from (1). And (4) follows by induction on xs. □

Lemma 2.2

For all nice lists xs and suffixes us and vs of xs, if us and vs have the same sum, then $us = vs$.

Proof. Suppose xs is a nice list and us and vs are suffixes of xs with the same sum. We must show that $us = vs$. We’ll consider the case where us is no longer than vs, the other case being symmetric. Thus $vs = us @ vs$ for some us. Since us is a sublist of vs, which is a sublist of xs, we have that us is a sublist of xs. Since us and vs have the same sum, and the sum of vs is the sum of us plus the sum of us, it follows that us has a sum of 0. Thus, because xs is nice and us is a sublist of xs, we have that $us = []$, so that $us = [] @ us = us @ us = vs$. □

Lemma 2.3

There is at most one balanced suffix of a list of integers ns.

3
Proof. Suppose \(us \) and \(vs \) are balanced suffixes of a list of integers \(ns \). We must show that they are equal. We’ll consider the case where \(us \) is no longer than \(vs \), the other case being symmetric. Thus \(vs = ws @ us \) for some \(ws \). Because \(us \) and \(vs \) both sum to 0, the sum of \(ws \) must also be 0. Thus, since \(ws @ us = vs \) is balanced, we have that either \(ws = [\] or \(us = [\] , as otherwise both of \(ws \) and \(us \) would be proper, nonempty sublists of \(vs \) with sum 0. In the first case, we have that \(us = [\] @ \(us = ws @ us = vs \). And, in the second case, we have that \([\] = \(us \) is balanced—contradiction. Thus \(us = vs \). \(\square \)

Lemma 2.4
If \(xs \) is a nice list, \(n \) is a nonzero integer, and the sum of \(xs \) plus \(n \) is 0, then \(xs @ [n] \) is balanced.

Proof. Suppose \(xs \) is a nice list, \(n \) is a nonzero integer, and the sum of \(xs \) plus \(n \) is 0. We must show that \(xs @ [n] \) is balanced. Because it clearly has a sum of 0 and is nonempty, it remains to show that it has no proper, nonempty sublist with sum 0. Suppose, toward a contradiction, that \(us \) is a proper, nonempty sublist of \(xs @ [n] \) with sum 0. There are two cases to consider.

- Suppose \(us \) is a sublist of \(xs \). Because \(us \) is nonempty and sums to 0, and \(xs \) is nice, we have a contradiction.

- Suppose \(us \) is a suffix of \(xs @ [n] \). Because \(us \) is nonempty, there is a suffix \(vs \) of \(xs \) such that \(us = vs @ [n] \). Because \(us \) sums to 0, it follows that \(vs \) sums to \(-n \). But the sum of \(xs \) plus \(n \) is 0, and thus \(xs \) also sums to \(-n \). Because \(xs \) and \(vs \) are suffixes of the same nice list \((xs) \) and have the same sum, Lemma 2.2 tells us that \(xs = vs \). But then \(us = vs @ [n] = xs @ [n] \), contradicting that \(us \) is a proper sublist of \(xs @ [n] \).

\(\square \)

Lemma 2.5
Suppose \(ns \) and \(xs \) are lists of integers. The following statements are equivalent:

(1) the reversals of the prefixes of \(xs \) are the nice suffixes of \(ns \);

(2) \(rev \, xs \) is the longest nice suffix of \(ns \).

Proof. Suppose that \(ns \) and \(xs \) are lists of integers.

- ((1) implies (2)) Suppose the reversals of the prefixes of \(xs \) are the nice suffixes of \(ns \). We must show that \(rev \, xs \) is the longest nice suffix of \(ns \). Because \(xs \) is a prefix of itself, \(rev \, xs \) is a nice suffix of \(ns \). Suppose, toward a contradiction, that there is nice suffix \(ms \) of \(ns \) that is longer than \(rev \, xs \). Then \(ms = rev \, ys \) for some prefix \(ys \) of \(xs \). Because \(rev \, ys = ms \) is longer than \(rev \, xs \), we have that \(ys = rev (rev \, ys) \) is longer than \(xs = rev (rev \, xs) \)—contradicting the fact that \(ys \) is a prefix of \(xs \). Thus \(rev \, xs \) is the longest nice suffix of \(ns \).

- ((2) implies (1)) Suppose \(rev \, xs \) is the longest nice suffix of \(ns \). We must show that the reversals of the prefixes of \(xs \) are the nice suffixes of \(ns \).

First, suppose that \(ys \) is a prefix of \(xs \). Then \(xs = ys @ us \) for some \(us \), so that \(rev \, us @ rev \, ys = rev (ys @ us) = rev \, xs \). Because \(rev \, ys \) is a suffix of \(rev \, xs \), which is in turn a suffix of \(ns \), we have that \(rev \, ys \) is a suffix of \(ns \). And since \(rev \, ys \) is a sublist of the nice list \(rev \, xs \), it
follows that \(\text{rev} \ ys \) is nice, as any nonempty sublist of \(\text{rev} \ ys \) with a sum of 0 would also be a nonempty sublist of \(\text{rev} \ xs \). Thus \(\text{rev} \ ys \) is a nice suffix of \(ns \).

Second, suppose that \(ms \) is a nice suffix of \(ns \). Because \(\text{rev} \ xs \) is the longest nice suffix of \(ns \), it follows that \(ms \) is a suffix of \(\text{rev} \ xs \). Thus there is a \(u s \) such that \(\text{rev} \ xs = u s @ ms \), so that \(xs = \text{rev}(\text{rev} \ xs) = \text{rev}(u s @ ms) = \text{rev} \ ms @ \text{rev} \ us \). Hence \(\text{rev} \ ms \) is a prefix of \(xs \) whose reversal is \(ms \).

\(\square \)

Correctness Proof for extend

Suppose \(ns \) is a list of integers, \(n \) is an integer, and the reversals of the prefixes of \(xs \) are the nice suffixes of \(ns \). By Lemma 2.5, we have that \(\text{rev} \ xs \) is the longest nice suffix of \(ns \). There are two cases to consider.

- Suppose there is no prefix of \(xs \) whose sum, when added to \(n \), yields 0. Then \(\text{scanZeroSum} \ n \ xs \) returns \(\text{None} \), so that \(\text{extend} \ n \ xs \) returns \((\text{None}, n :: xs) \). Thus we must show that:

 1. there is no balanced suffix of \(ns @ [n] \), and
 2. the reversals of the prefixes of \(n :: xs \) are the nice suffixes of \(ns @ [n] \), which, by Lemma 2.5, is equivalent to showing that \(\text{rev} \ xs @ [n] = \text{rev}(n :: xs) \) is the longest nice suffix of \(ns @ [n] \).

We have that \(n \neq 0 \), since otherwise \([] \) would be a prefix of \(xs \) whose sum, when added to \(n \), yields 0.

Suppose, toward a contradiction, that there is a balanced suffix of \(ns @ [n] \). Because balanced lists are nonempty, it follows that there is a suffix \(ms \) of \(ns \) such that \(ms @ [n] \) is balanced. Because \(ms \) is a proper sublist of \(ms @ [n] \), it follows that \(ms \) is nice (a nonempty sublist of \(ms \) with sum 0 would be a proper, nonempty sublist of \(ms @ [n] \)). Thus, since \(ms \) is a nice suffix of \(ns \), we have that \(\text{rev} \ ms \) is a prefix of \(xs \). Because \(ms @ [n] \) is balanced, we have that the sum of \(ms \), when added to \(n \), yields 0. But then the sum of \(\text{rev} \ ms \), when added to \(n \), also yields 0, so that there is prefix of \(xs \) whose sum, when added to \(n \), yields 0—contradiction. Thus there is no balanced suffix of \(ns @ [n] \), i.e., (1) holds.

It remains to show (2). Suppose, toward a contradiction, that \(\text{rev} \ xs @ [n] \) is not nice. Because \(n \neq 0 \) and \(\text{rev} \ xs \) is nice, it follows that there is a nonempty suffix \(us \) of \(\text{rev} \ xs \) such that the sum of \(us \), when added to \(n \), yields 0. Because \(us \) is a sublist of \(\text{rev} \ xs \), and \(\text{rev} \ xs \) is nice, we have that \(us \) is nice. Thus Lemma 2.4 tells us that \(us @ [n] \) is balanced. Since \(us \) is a suffix of \(\text{rev} \ xs \), and \(\text{rev} \ xs \) is a suffix of \(ns \), we have that \(us \) is a suffix of \(ns \), so that \(us @ [n] \) is a balanced suffix of \(ns @ [n] \)—contradiction. Thus we have that \(\text{rev} \ xs @ [n] \) is a nice suffix of \(ns @ [n] \).

Finally, suppose, toward a contradiction, that there is a nice suffix \(us \) of \(ns @ [n] \) that is longer than \(\text{rev} \ xs @ [n] \). Then \(us = ms @ [n] \), where \(ms \) is a longer suffix of \(ns \) than \(\text{rev} \ xs \). Because \(us \) is nice and \(ms \) is a sublist of \(us \), we have that \(ms \) is nice, so that \(ms \) is a nice suffix of \(ns \) that is longer than \(\text{rev} \ xs \)—contradiction. This concludes the proof of (2).
• Suppose there is a prefix of xs whose sum, when added to n, yields 0. Let ys be the shortest such prefix. Then $\text{scanZeroSum } n \; xs$ returns $\text{Some } i$, where i is the length of ys. Since $0 \leq i$ and i is less-than-or-equal-to the length of $n :: xs$, $\text{splitRev } (n :: xs)$ returns (us, vs), where us is the reversal of the first i elements of $n :: xs$, and vs is the remaining elements of $n :: xs$. Thus $\text{extend } n \; xs$ returns $(\text{Some}(hd \; vs \; :: \; us), \; \text{rev } us)$.

Because i is the length of ys, and ys is a prefix of xs, it follows that $\text{rev } us$ is all but the last element of $n :: ys$, and that $hd \; vs$ is the last element of $n :: ys$. Thus $n :: ys = \text{rev } us \; @ \; [hd \; vs]$. Hence $\text{rev } (n :: ys) = \text{rev } (\text{rev } us @ [hd \; vs]) = \text{rev } [hd \; vs] @ \text{rev } (\text{rev } us) = [hd \; vs] @ us = hd \; vs :: us$. Thus $\text{extend } n \; xs$ returns $\text{Some}(\text{rev } (n :: ys))$ paired with all but the last element of $n :: ys$.

Hence we must show that:

1. $\text{rev } (n :: ys)$ is the unique balanced suffix of $ns @ [n]$, which, by Lemma 2.3, is equivalent to showing that $\text{rev } ys @ [n] = \text{rev } (n :: ys)$ is a balanced suffix of $ns @ [n]$, and

2. the reversals of the prefixes of all but the last element of $n :: ys$ are the nice suffixes of $ns @ [n]$, which, by Lemma 2.5, is equivalent to showing that the reversal of all but the last element of $n :: ys$ is the longest nice suffix of $ns @ [n]$.

We know that n plus the sum of ys is 0, and thus that $\text{rev } ys @ [n]$ has a sum of 0. And, clearly $\text{rev } ys @ [n]$ is nonempty. So for (1) it remains to show that $\text{rev } ys @ [n]$ has no proper, nonempty sublist with a sum of 0. To this end, suppose, toward a contradiction, that zs is a proper, nonempty sublist of $\text{rev } ys @ [n]$ with a sum of 0. Because ys is a prefix of zs, $\text{rev } ys$ is a nice suffix of ns. Thus zs is not a sublist of $\text{rev } ys$, so that $zs = us @ [n]$ for some suffix ws of $\text{rev } ys$. Since the sum of zs is 0, we have that the sum of ws is $-n$. But, since the sum of $\text{rev } ys @ [n]$ is 0, we also have that the sum of $\text{rev } ys$ is $-n$. Because $\text{rev } ys$ is nice, $\text{rev } ys$ and ws are suffixes of $\text{rev } ys$, and $\text{rev } ys$ and ws have identical sums, Lemma 2.2 tells us that $\text{rev } ys = ws$. But this means that $zs = us @ [n] = \text{rev } ys @ [n]$, showing that zs is not a proper sublist of $\text{rev } ys @ [n]$—contradiction. This completes the proof of (1).

For (2), there are two cases to consider.

- Suppose $n = 0$. Then $ys = []$, by its definition. Hence all but the last element of $n :: ys$ is $[]$. So we must show that $[] = \text{rev } []$ is the longest nice suffix of $ns @ [n]$. $[]$ is nice and is a suffix of any list. Furthermore, any longer suffix of $ns @ [n]$ would have $[0]$ as a sublist, and so wouldn’t be nice. So $[]$ is the longest nice suffix of $ns @ [n]$.

- Suppose $n \neq 0$. Then the sum of ys is $-n$, so that $ys = us @ [m]$ for some us and m. We must show that $\text{rev } us @ [n] = \text{rev } (n :: us)$ is the longest nice suffix of $ns @ [n]$. We have that $\text{rev } ys @ [n] = \text{rev } (us @ [m]) @ [n] = m :: \text{rev } us @ [n]$. From (1), we know that $\text{rev } ys @ [n]$ is a balanced suffix of $ns @ [n]$. Since $\text{rev } us @ [n]$ is a suffix of $\text{rev } ys @ [n]$, we have that $\text{rev } us @ [n]$ is a suffix of $ns @ [n]$. Furthermore, because $\text{rev } us @ [n]$ is a proper sublist of the balanced list $\text{rev } ys @ [n]$, it follows that $\text{rev } us @ [n]$ is nice (if $\text{rev } us @ [n]$ had a nonempty sublist with sum 0, then $\text{rev } ys @ [n]$ would have a proper, nonempty sublist with sum 0). Furthermore, any longer suffix of $us @ [n]$ would contain $m :: \text{rev } us @ [n] = \text{rev } ys @ [n]$ (which has a sum of 0) as a sublist, and so wouldn’t be nice. Thus $\text{rev } us @ [n]$ is the longest nice suffix of $ns @ [n]$.

Correctness Proof for balanced

Suppose \texttt{ns} is a list of integers. First, we’ll show that, under the assumption that the auxiliary function \texttt{bal} is correct, \texttt{balanced} \texttt{ns} returns the balanced sublists of \texttt{ns}, listed in strictly ascending order. Then, we’ll prove that \texttt{bal} is correct.

We have that \texttt{ns} is a suffix of itself, and the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ns} is \texttt{[]}.
Since the reversals of the prefixes of \texttt{[]} (there is only one, \texttt{[]} are the nice suffixes of \texttt{[]} (there is only one, \texttt{[]}), we have that the reversals of the prefixes of \texttt{[]} are the nice suffixes of the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ns}. Since there are no balanced sublists of \texttt{[]} , we have that \texttt{[]} is the balanced sublist of \texttt{[]} , listed in strictly ascending order, i.e., is the balanced sublist of the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ns} , listed in strictly ascending order. Thus, by \texttt{bal}’s specification, \texttt{bal ns [[]]} returns the balanced sublists of \texttt{ns} , listed in strictly ascending order. And this, in turn, is what \texttt{balanced ns} returns.

To prove that \texttt{bal} is correct, suppose \texttt{ms} is a suffix of \texttt{ns} , and the reversals of the prefixes of \texttt{xs} are the nice suffixes of the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ms} , and \texttt{zss} is the balanced sublists of the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ms} , listed in strictly ascending order. We must prove that \texttt{bal ms xs zss} returns all the balanced sublists of \texttt{ns} , listed in strictly ascending order. There are two cases to consider.

- Suppose \texttt{ms =[]} . Then the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ms} is \texttt{ns} , and so \texttt{zss} is the balanced sublists of \texttt{ns} , listed in strictly ascending order. But this is what \texttt{bal} returns.

- Suppose \texttt{ms = m:: ms'} for some integer \texttt{m} and list of integers \texttt{ms'}. Because \texttt{ms} is a suffix of \texttt{ns} , we have that \texttt{ms'} is a suffix of \texttt{ns} . Let \texttt{ls} be the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ms} . Then \texttt{ls @ [m]} is the prefix of \texttt{ns} of length \texttt{length ns} – \texttt{length ms'}. There are two subcases to consider.

 - Suppose there is no balanced suffix of \texttt{ls @ [m]}. Because the reversals of the prefixes of \texttt{xs} are the nice suffixes of \texttt{ls} , we have that \texttt{extend m xs} returns \texttt{(None, ys)} , where the reversals of the prefixes of \texttt{ys} are the nice suffixes of \texttt{ls @ [m]}. Because \texttt{zss} is the balanced sublists of \texttt{ls} , listed in strictly ascending order, and there is no balanced suffix of \texttt{ls @ [m]} , we have that \texttt{zss} is the balanced sublists of \texttt{ls @ [m]} , listed in strictly ascending order. Thus, by the specification of \texttt{bal} , we have that \texttt{bal ms' ys zss} returns the balanced sublists of \texttt{ns} , listed in strictly ascending order. But this is what \texttt{bal} returns.

 - Suppose there is a balanced suffix of \texttt{ls @ [m]}. Because the reversals of the prefixes of \texttt{xs} are the nice suffixes of \texttt{ls} , we have that \texttt{extend m xs} returns \texttt{(Some zss, ys)} , where \texttt{zss} is the unique balanced suffix of \texttt{ls @ [m]} , and the reversals of the prefixes of \texttt{ys} are the nice suffixes of \texttt{ls @ [m]}. Since the elements of \texttt{zss} are sorted in strictly ascending order, \texttt{insert zss zss} consists of \texttt{zss} plus all of the elements in \texttt{zss} , listed in strictly ascending order. Because \texttt{zss} is the balanced sublists of \texttt{ls} , and \texttt{zss} is the unique balanced suffix of \texttt{ls @ [m]} , it follows that \texttt{insert zss zss} is the balanced sublists of \texttt{ls @ [m]} , listed in strictly ascending order. Thus, by the specification of \texttt{bal} , we have that \texttt{bal ms' ys (insert zss zss)} returns the balanced sublists of \texttt{ns} , listed in strictly ascending order. But this is what \texttt{bal} returns.