
First-class Synchronous Operations

CML supports selective communication in a very general way, using

first-class synchronous operations. The idea is to decouple the

description of a synchronous operation from the act of synchronizing

on it.

Synchronous operations are described as synchronization events, and

may be synchronized on using the function sync:

type ’a event

val sync : ’a event -> ’a

Synchronizing on a value of type ’a event will produce, if successful,

a value of type ’a. Synchronization may only succeed if an event is

enabled.

1



First-class Synchronous Operations

CML supports selective communication in a very general way, using

first-class synchronous operations. The idea is to decouple the

description of a synchronous operation from the act of synchronizing

on it.

Synchronous operations are described as synchronization events, and

may be synchronized on using the function sync:

type ’a event

val sync : ’a event -> ’a

Synchronizing on a value of type ’a event will produce, if successful,

a value of type ’a. Synchronization may only succeed if an event is

enabled.

1-a



Event Operations

(* base events *)

val sendEvt : ’a chan * ’a -> unit event

val recvEvt : ’a chan -> ’a event

val alwaysEvt : ’a -> ’a event

val never : ’a event

val timeOutEvt : Time.time -> unit event

val joinEvt : thread_id -> unit event

(* combinators *)

val wrap : ’a event * (’a -> ’b) -> ’b event

val choose : ’a event list -> ’a event

(* values provided for convenience/efficiency *)

val recv : ’a chan -> ’a

val send : ’a chan * ’a -> unit

val select : ’a event list -> ’a

recv = sync o recvEvt

send = sync o sendEvt

select = sync o choose

2



Example of Semantics

We’ll study the semantics of CML later on. For now, though, let’s look

at an example. Suppose ch1 is a bool chan and ch2 is an int chan.

Let ev be the unit event

choose

[wrap(sendEvt(ch1, true),

fn () => print "send!\n"),

wrap(recvEvt ch2,

fn x => print("received: " ^ Int.toString x ^ "\n")),

wrap(timeOutEvt(Time.fromSeconds 3),

fn () => print "timeout!\n")]

If we synchronize on ev , then CML will wait for at least one of the

three base events to become enabled. At such points, ev itself is

enabled, and CML may randomly choose one of the enabled events to

synchronize on, supply the value of this synchronization to the function

that is wrapped around it, and then return the value returned by this

function ((), in all three cases) as the result of synchronizing on ev .

3



Example of Semantics

We’ll study the semantics of CML later on. For now, though, let’s look

at an example. Suppose ch1 is a bool chan and ch2 is an int chan.

Let ev be the unit event

choose

[wrap(sendEvt(ch1, true),

fn () => print "send!\n"),

wrap(recvEvt ch2,

fn x => print("received: " ^ Int.toString x ^ "\n")),

wrap(timeOutEvt(Time.fromSeconds 3),

fn () => print "timeout!\n")]

If we synchronize on ev , then CML will wait for at least one of the

three base events to become enabled. At such points, ev itself is

enabled, and CML may randomly choose one of the enabled events to

synchronize on, supply the value of this synchronization to the function

that is wrapped around it, and then return the value returned by this

function ((), in all three cases) as the result of synchronizing on ev .

3-a



The Utility of First-class Synchronous Operations

The separation of synchronization into two parts allows:

• the definition of synchronization and communication abstractions

that may be used in selective communication;

• selective communication involving dynamically computed

possibilities.

4


