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ABSTRACT

This article describes eXene, a user interface toolkit implemented in a concurrent extension
of Standard ML. The design and use of eXene is inextricably woven with the presence
of multiple threads and a high-level language. These features replace the object-oriented
design of most toolkits, and provide a better basis for dealing with the complexities of user
interfaces, especially concerning such aspects as type safety, extensibility, component reuse
and the balance between the user interface and other parts of the program.

41 INTRODUCTION

In two previous papers [Rep86, Gan92], we have advocated an approach to the design of
a foundation for graphical user interfaces and interactive applications. In our view, such a
foundation includes support for concurrency, strong static typing, higher-order programming
(i.e., functions as values), support for modular program construction, and automatic memory
management. This article describes a multi-threaded X window system toolkit, called eXene,
built on such afoundation.

Thebasefor eXeneisConcurrent ML (CML) [Rep914], aconcurrent extension of Standard
ML (SML) [Mil90]. We employ CML as more than just the implementation language for
eXene! it providesthe semantic framework for thetool kit and permeatesitsdesignand use. This
isparticularly true concerning three aspects of eXene: concurrency, higher-level programming
and memory management. Taken together, these aspects induce greater simplicity and a high
degree of modularity in applications constructed using eXene.

The most significant characteristic of eXeneisthe fundamental rolethat concurrency plays
initsdesign and implementation. Concurrency iscritical inalowingthe programmer to cleanly
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structure an application and its interface to handle the asynchrony and multiple contexts of
interactive use. One need only consider a sample of common programming scenarios:

e A computationally intensive programthat providesperiodical updatesto agraphical display
of itsstatus. In addition to displaying new information, the user interface must also handle
externa asynchronous events such as being resized by the user.

e A program for editing and analyzing multiple views of graphs, which must allow editing
on one view while applying a potentially expensive layout a gorithm to another.

e A language-based editor that uses incremental attribute evaluation to give the user im-
mediate feedback about static semantic errors[Reps84]. Since a user’s editing operation
can result in an arbitrarily large number of attribute re-evaluations, we must structure the
evaluator so that those attributes affecting the user’s view will be evaluated first and those
remaining will be evaluated in the background.

The majority of user interface toolkits are based on sequentia languages and must emulate
concurrency using event loops. While this allows features such as multiple views to be sup-
ported, it also biases the architecture of the application towards the user interface. Because
the application is driven by the user interface, the event loop must be built to manage system
events aswell as graphics events, and computationally intensive code must be written in such
away asto divide up thework into small piecesthat can be interleaved between the handling
of externa events. In effect, the event loop isa poor man’'s concurrency.

In eXene, the system architectureisnot hobbled by thisuser interface bias. Graphical com-
ponents are implemented as independent threads, separate from each other and the application
code. This increases the modularity of the components and allows them and the application
to be implemented more naturally, not as finite state machines. Obviously, the interleaving of
computation happens automatically. This makes it simple to import code without worrying
whether its execution will cripple the user interface.

The high-level language features of CML provide many of the mechanisms for creating and
tailoring graphical componentsin eXene. Higher-order functions, parametric polymorphism,
abstract event values and parameterized modules are powerful tools for building reusable,
modular components. EXene promotes an applicative style programming. This increases the
clarity and reliability of the code, and is especialy important in a concurrent system where
the possibility of interference arises. We aso note that programming using eXene is type
safe. Because of the complexity of building user interfaces, the safety afforded by strong
dtatic typing is too valuable to be thrown away. Most of the advantages touted for weakly or
dynamically typed languages in building user interfaces are provided by the features such as
polymorphism and higher-order functions mentioned above.

Inatypical user interface, graphical componentsand systemresourcesare heavily distributed
and shared, making it difficult to determine when memory should be freed and resources
released. EXene provides garbage collection and object finalization® to free the programmer
from these decisions. As components can freely refer to other components without worrying
about them disappearing, components become simpler and more modular.

It is possible to address the problems solved by eXene, or provide similar features, using
conventional languages, libraries and toolkits. This, however, typicaly involves making the
application code more complex, bending or breaking the type system, relying on programmer

1 In object finalization, a value can be associated with a finalization function to be called on the value before the
value’'smemory is freed. With this mechanism, we can extend the model of automatic storage collection to system
objects such as bitmaps, fonts, etc.
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discipline, or ignoring the problem. The thrust of thework on eXene isthat, by building auser
interface toolkit on top of a concurrent, high-level foundation, one achieves a system that is
simpler, safer, more uniform, and more modular.

411 Rdated Work

CML and eXene are actually second generation systems emerging from these ideas. They
follow from our earlier work with the Pegasus system [Rep86, Nor87, Rep88, Gan92], which
used the PML language for its foundation. The work most closely related to Pegasus and
eXene in spirit is Newsqueak [Pik89b, Pik89a] and Montage [Haa90]. EXene differs in
being amore fully developed system, with a higher-level model of concurrency (CML events
values), aricher graphics model, more support for programming at the component level, and,
in comparison with Newsgueak, aricher base language. The NeWS window system [Gos89]
also relies on concurrency in its design. NeWS requires that the user interface code be split
between theclient (typicaly C code), and the display server (PostScript code). The PostScript
code running on the server can be multi-threaded. Whilethisallows concurrency ininteractive
applications, exploiting it increases the complexity of the client-server interaction.

User interface design seems to be one area where an “object-oriented” approach has a
clear utility. As a result, most graphics toolkits use an object-oriented approach. Examples
include InterViews [Lin89], Xt [Nye90b], NeWS, Iris [Gan88], Trestle [Man91] and Garnet
[MyeQ0]. EXene eschews an explicit object-oriented approach for severa reasons. Structural
polymorphism, first-class function values and a sophisticated module system provide similar
interface inheritance. Most importantly, our experience, and that of others [Pik89a, Haa90],
suggests that concurrency and delegation provide many of the same advantages as object-
oriented programming.? Threadsprovidel ocali zation of stateand clean wel | -defined interfaces.
Delegation and wrapper functions provide implementation inheritance.

In general, some form of concurrency isavailable or could be added to any of thesetoolkits.
Treating concurrency as an afterthought, however, prevents possibilitiesfor simplification and
component sharing. We feel that concurrency should be a design principle, and be exploited
at dl levels of an interactive system.

412 Summary of the Paper

In the next section, we briefly describe the important features of CML. This is followed by
Sections 4.3-4.5, which respectively describe drawing, user interaction and widgetsin eXene.
Section 4.6 presents some examples of eXene applications. We conclude with some future
directions. Throughout the article, we assume that the reader has some familiarity with the X
window system and its terminology as can be found, for example, in [Sch92]. Although we
useasmall amount of SML and CML notation, knowledge of these languagesis not necessary
in understanding the important concepts in the paper.

2 This should not come as a surprise, since delegation was originally a concept of concurrent actor systems.
3 Thisis also true for garbage collection.
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4.2 ANOVERVIEW OF CML

Both theimplementation and the user’s view of eXene rely heavily on the concurrency model
provided by CML.4 CML is based on the sequential language SML [Mil90] and inheritsthe
useful features of SML: functions as first-class values, strong static typing, polymorphism,
datatypes and pattern matching, lexical scoping, exception handling and a state-of-the-art
modulefacility. An introductionto SML can be foundin [Pau91] or [Har86]. The sequential
performance of CML benefits from the quality of the SML/NJcompiler [App87]. In addition
CML has the following properties:

e CML provides a high-level model of concurrency with dynamic creation of threads and
typed channels, and rendezvous communication. This distributed-memory model fits well
with the mostly applicative style of SML.

e CML is a higher-order concurrent language. Just as SML supports functions as first-
class values, CML supports synchronous operations as first-class values [Rep88, Rep91la,
Rep92]. These vaues, called events, provide the tools for building new synchronization
abstractions. Thisisthe most significant characteristic of CML.

e CML providesintegrated 1/0 support. Potentially blocking I/O operations, such as reading
from an input stream, are full-fledged synchronous operations. Low-level support is aso
provided, from which distributed communication abstractions can be constructed.

e CML providesautomatic reclamation of threads and channels, once they become inaccessi-
ble. This permits a technique of speculative communication, which isnot possible in other
threads packages.

e CML uses preemptive scheduling. To guarantee interactive responsiveness, asingle thread
cannot be allowed to monopolize the processor. Preemption insures that a context switch
will occur at regular intervals, which allows “off-the-shelf” code to be incorporated in a
concurrent thread without destroying i nteractive responsiveness.

o CML iséefficient. Thread creation, thread switching and message passing are very efficient
(benchmarks resultsare reported in [Rep92]). Experience with eXene has shown that CML
isaviablelanguage for implementing interactive systems.

e CML isportable. It iswrittenin SML and runs on essentially every system supported by
SML/NJ (currently seven different architectures and many different operating systems).

e CML has aforma foundation. Following the tradition of SML [Mil90, Mil91], a formal
semantics has been developed for the concurrency primitives of CML (see [Rep91b] or

[Rep92]).

4.3 BASIC EXENE FEATURES

Before we describe the more radical features of eXene, a discussion of some of the basic
features is in order. These features for the most part follow the Xlib model, but we have
attempted to provide an interface that is both cleaner, and more in keeping with the SML
programming style. For exampl e, we useimmutabl e objectswhere possible(such asimmutable
tiles for specifying textures, instead of pixmaps), and we perform more client-side error
checking, instead of relying on the X server for error checking.

4 Conversely, the development of CML was strongly motivated by the desire to be able to support user interface
systems comparableto eXene.
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Following the X model, eXene supports the notions of a display (a connection to a server),
a screen (a monitor driven by the server), and a window on a screen. An application might
have multiple displays (e.g., a multi-player game), multiple screens for a given display, and
multiple windows per screen. In Xlib, programmers must specify the display as an argument
to most operations; in eXene, we avoid this by incorporating the display in the representation
of most graphical objects (e.g., screens and windows).

Internally, eXene uses asmall collection of threads to implement each display connection.
These threads manage buffering and sequencing of communications with the X server. The
interface to these threads is a collection of CML channels that are bundled into an abstract
display value. A similar scheme is used for screens. Since these abstract values encapsulate
both the state and thread of control, supporting multipledisplaysand screensin an application
istrivial .

EXene usesacleaner, and dightly stripped-down, version of the X graphicsmoded [Sch92].
In X, drawing operations are performed with respect to a graphics context, which is a server-
side object that specifies the color, font, texture, etc., of the drawing operation. There are a
number of drawbacks to the way that graphics contexts are supported: they are fairly heavy-
weight, requiring communication with the server to create and update; the number of contexts
supported by the server may belimited (e.g., if theserver isan X terminal); and they are created
with respect to aparticul ar visual, and can only be used with that visua. Furthermore, the Xlib
interface to graphics contexts is not uniform: the clipping mask is part of the context, but is
specified independently of the other attributes.® Another wart is that fonts are specified both
as part of the graphics context, and as an argument to the XDr awText operation. Not only
does XDr awText takefontsinitsargument ligt, it actually updates the graphics context that
it uses, which makes sharing of graphics contexts more difficult. In additionto these problems,
multi-threaded toolkitsface the additiona problem that graphics contexts are shared mutable
objects, thus some form of concurrency control is required.

In eXene, we address these problems by providing a higher-level, but lighter-weight, client-
side value, called a pen, for specifying drawing attributes. Pens provide a cleaner, more
uniform interface to specifying the attributes of adrawing operation: they areimmutable, they
are independent of any visual, and they collect together all the drawing attributes uniformly.
Pens include the clipping region, but not fonts, which are specified as an argument to the text
drawing operations. Internally, concurrency control is provided by graphics-context servers
(one per visual), which map pens to server-side graphi cs contexts. Since pens are lightweight,
immutable and independent of any visual, the user is freed from having to manage graphics
contexts to reduce server memory usage: the toolkit does it for her. The use of a behind-
the-scenes manager alows better modularity in the application code. While Xt also provides
management of graphics contexts to promote sharing, its mechanism is weaker: it only sup-
ports the read-only use of shared graphics contexts, and does not provide security against
interference.

To further improve modularity, eXene supports automatic reclamation of server objects
such as fonts, colors, and pixmaps. Thisisimplemented by afinalization scheme built on top
of SML/NJs weak pointer mechanism. When the client-side version of the object becomes

5 This encapsulation property appears elsewhere in eXene (cf., Section 4.5), and can be exploited to easily support
multiple views in an application.

6 Thisis because the arguments to the graphics context operations are integers, while a clipping regionis represented
asalist of rectangles.
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garbage, afinalization procedureisinvoked, which sendsarequest to deall ocate the server-side
object. Thisfrees the user from explicit management of these resources.

The use of interna servers to multiplex server-side resources is exploited repeatedly in
eXene. Another example arises in the handling of fonts. There is a per-display font server
that maintains a table of open fonts, and checks requests for new fonts against the table. This
reduces the amount of client-server traffic (e.g., if ten independent button widgetsall attempt
to open the same font). Although not part of Xlib, asimilar optimizationisfrequently used in
toolkitsbuilt on the library.

Another place in which eXene provides a higher-level model is in the support for color.”
Colorsare specified abstractly using color names or RGB values (we plan to extend thisto the
X11R5 deviceindependent color spaces [Sch92]). Color specifications are mapped to abstract
colors by a color server (one per screen), again reducing client-server traffic and improving
modularity. Although inappropriate for color-intensive applications? this model, used with
finalization, is adequate for most uses of color.

EXene provides an abstract drawable type that gives a common interface to windows and
off-screen pixmaps. Internally, a drawable is represented as a connection to a draw-master
server that buffers drawing operations and handles the interaction with the graphics-context
server. This representation allows filtersto be interposed that modify the drawable€'s behavior
(e.g., coordinate trand ations).

The client-server communication in X is asynchronous, and this often shows in the pro-
gramming model. Ideally, drawing operations should not require exposing the asynchrony of
the protocol, but there are afew places where this breaks down. In eXene, we have attempted
to hide this asynchrony wherever possible, and provide a higher-level interface in those cases
where, for performance reasons, the asynchrony must be exposed.

Because it requires a system call to send a message to the X server, Xlib buffers client
requests so that the system call overhead isreduced. One of the most common mistakes made
by the neophyte Xlib programmer is failing to flush the buffer after a sequence of drawing
operations; without this, the graphics never appear on the screen. In a program structured
around a centra event loop (or one using the built-in event 1oop provided by many toolkits),
thisis not as big of a problem, since the output buffer is flushed prior to reading the next X
event. Aswe noted in Section 4.1, however, structuring programs around a central event loop
isnot alwaysdesirable. Our approach in eXeneisto have the output-buffer thread periodically
flush itself out to the wire. This removes the need for the user to explicitly flush the buffer,
which leads to better modularity. Unfortunately, this periodic buffer flushing does not provide
fast enough turn around when real-time feedback is required (e.g., when using the mouse
to adjust a scrollbar). To handle this problem, we provide a function for creating a feedback
drawable from a drawable. The feedback drawable uses the same drawing surface, but is
unbuffered for immediate visual feedback. A better solution may be to tie the mouse stream
and drawabl e together in these situations, such that the output buffer is flushed whenever the
client requestsinput.®

Another feature of the X protocol that often bites users is a race condition between the
client’sfirst drawing operation and when the server actually maps the window [Gg90]. To

7 We currently only provide accessto the default read-only colormap of a screen.

8 Since we do not expose the notion of pixels, applications are prevented from exploiting color-plane tricks, which
may not be a bad thing.

9 This was suggested by one of the referees.
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avoid this race, an application must wait for the first exposure event'® on the window before
attempting to draw graphics. In eXene, we hide thisrequired synchronization internally.

A third place in which the user is exposed to the asynchrony of the protocol in graphics
operationsisthe interface to the Copy Ar ea operation. When CopyAr ea is used to copy a
rectangle of pixelsfrom an on-screen window to some destination (e.g., when scrolling), it is
possible that a portion of the source rectangle will be unavailable (i.e., because it is obscured
by another window). In this case, the corresponding portion of the destination rectangle
will have to be repainted. Conceptualy, this can be viewed as a client request followed by
a server reply, but if implemented this way, the round-trip delays cause noticeable screen
flicker. What is needed is an asynchronous remote procedure call (RPC), sometimes called a
promise [Lis88]. Providing an asynchronous RPC interface to the CopyAr ea operation is
not possible in a language like C, so thisis implemented by using X events to deliver the
reply. The client receives either aGr aphi csExposur e event or aNoExpose event as an
acknowledgment of a Copy Ar ea operation. In eXene, we exploit thefirst-class synchronous
operationsprovided by CML to provideatrue asynchronous RPC interfaceto the Copy Ar ea
operation. When a client executes a Copy Ar ea operation, it receives aCML event value that
isthe promise of alist of exposure rectangles (the empty list signifiesNoExpose). The client
can proceed with drawing, and later synchronize on the event to check for any needed repairs
(see [Gan9l] or [Rep92] for more details).

44 USER INTERACTION

The most significant departure in eXene from traditional user interface toolkits is in our
approach to handling user input. As we argued in [Gan92], the multiplexing required by
graphical applications maps naturally onto a concurrent programming model. Instead of a
centralized event loop for processing user input, eXene usesadistributed hierarchy of threadsto
routeuser input to the appropriate place. The hierarchy basically mirrorsthe window hierarchy
of the application. Each component in the hierarchy has an environment, consisting of three
streams of input from the component’ sparent (mouse, keyboard and control),*! and one output
stream for requesting services from the component’s parent. For each child of the component,
there are corresponding output streams and an input stream. A component is responsible for
routing messages to its children, but this can almost always be done using a generic router
function provided by eXene. This event-handling model, with its top-down decentralized
routing, is similar to those of [Pik89a] and [Haa90]. It is substantially different from the
bottom-up approach used by most toolkits. In particular, it allows parentsto interpose filters
on the event streams of their children, which is an important mechanism in the composition
of widgetsin eXene (cf., Section 4.5.3).

To illustrate this approach, consider the implementation of a simple drawing application
in eXene. The application presents the user with a window for drawing and a reset button
(see Figure 4.1). When the user depresses a mouse button in the drawing window, atriangle
is drawn at the cursor location, and when the user clicks on the reset button, the drawing
window iscleared. Thisapplication’simplementation consists of three components: atop-level
component with two subcomponents (one for the button, and one for the drawing window).
Each component has an associated X window. Figure 4.2 gives the thread network for these

10 An exposureevent notifies the application that a region of its windows has been damaged and requiresrepainting.
11 Note that we translate X eventsinto the appropriate types of eXene messages.
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(] Triangle

RESET

Figure4.1 A simpledrawing application

components; to simplify the picturewe have omitted the output streamsfor requesting services,
sincethey are not used by the application. The small unlabeled squaresin thispicturerepresent
message sinks (threadsthat just consume input forever). For example, thetop-level component
ignores mouse and keyboard messages and has no graphics to redraw, so it has sinks for al
three of itsinput streams. In addition to the sinks, the top-level component has arouter thread
associated withit. The router thread looksat the addresses of incoming messages and forwards
them to the appropriate destination.

The drawing component has three threads: a sink for keyboard messages, a mouse-stream
thread, and acommand-stream thread that al so maintai nsthe drawing state. The mouse-stream
thread looks for button-pressmessages, discarding all others. When abutton-pressmessage is
received, it sends a drawing command to the command-stream thread. The command-stream
thread is responsible for drawing the triangles on the drawing window, and for redrawing
the window if it is damaged; the code for this thread is given in Figure 4.3. The thread is
implemented as atail recursive function. It receives messages from three sources: command
messages from the top-level component’s router (cmdEvt ); draw messages from the mouse
thread (dr awEvt ); and reset messages from the button component (r eset Evt ). For each
source there is a corresponding handler function (handl eCd, dr aw, and r eset ). The
thread also maintains a state, consisting of alist of the points on the display where triangles
have been drawn. Thefunctiondr awTr i angl e (not shown) draws atriangleat the specified
point; it is used both to draw new triangles (in dr aw), and to redraw the screen to repair
damage (in handl eCnd).

Thebutton component a so consistsof threethreads: asink for keyboard messages, amouse-
stream thread, and acommand-stream thread. The mouse-stream thread looksfor button-press
messages; when it receivesone, it sendsareset messageto thedrawing component’scommand-
stream thread. The button’s command-stream thread is responsible for redrawing the button
when it is damaged.

When the user clicks the mouse on the button, the X server sends an X event to the
application; the eXene library code routes thisto the top-level component’s mouse stream as
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Top-level threads

Cmd Mouse . . Cmd Mouse

__________________________________________

Button threads Drawing threads

Figure4.2 The application’s communication network

a mouse message addressed to the button component. The router in the top-level component
then passes the message on to the button component, which then sends a reset message to the
drawing component.

The use of severa threads per component, typically one for each input stream as well as
one or more threads for managing state and coordinating the other threads, is standard in
eXene applications. By breaking the code up this way, each individual thread is quite simple.
This heavy use of threads is made possible by the lightweight nature of threadsin CML. A
thread typicaly incurs less than 100 bytes of space overhead [Rep914], which makes them
comparable in size to Smalltalk objects [Ung84].

45 EXENE INTRINSICS

The basic eXene features described above do not provide a general framework in which
pieces of an interface can be built by various people at various times and then modified and
integrated into a single user interface. Support for thisis provided by the widget®? layer in
eXene. Widgets are the basic building blocks for constructing interfaces. The widget layer

12 For want of abetter term, we borrow the X term for agraphical object composed of adrawingareaanditsinteraction
semantics.
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fun drawCrdLoop state = let
fun handl eCnd (Cl_Redraw _) = (
cl ear Drawabl e drawabl e;
app drawlriangl e state;
drawCndLoop st ate)
| handl eCrd C _OanDeath = ()
| handl eCrd _ = (drawCndLoop state)
fun draw pt = (drawTlriangl e pt; drawCndLoop(pt::state))
fun reset () = (clearDrawabl e drawabl e; drawCndLoop[])
in
select [
wap (crmdEvt, handl eCrd),
wap (drawkvt, draw),
wap (resetBEvt, reset)

]

end

Figure4.3 The drawing command thread code

also provides the additional protocols necessary for cooperation among widgets, as well as
their reuse and extension.
Thewidget level reifies the underlying eXene approach to building graphical interfaces.

e Theinherent concurrency in the user interface is made explicit. The user interfaceis just
apart of an application: it does not dictate the architecture or control structure. Interfaces
are built as networks of simple components connected by streams and event values. Each
widget has its own threads, which separate it from other widgets and from the application
code. A programmer can al so use concurrency to simplify theinternal structure of widgets,
as described in the previous section.

e Few thingsare asfull of state as graphical objects. With threads, the function call structure
naturally encodes much stateinformation, without the programmer having to maintain state
explicitly. Additiona state is encapsulated in channels.

e Inputisdistributed hierarchically. Eventsare passed fromtheroot widget downthehierarchy
to the appropriate widget. This allows the programmer to interpose widgets at any level to
modify widget characteristics or alter the distribution of events.

e Higher-order functions, parametric polymorphism and parametric modules powerfully ex-
pand the programmer’ stools for tailoring and combining interface components safely and
simply.

As with most interface toolkits, a program using eXene creates at runtime a variety of
widgets, which are combined into one or more hierarchical structures. At some point in the
program, these structures are made visible and active. With most toolkits, after the widget
hierarchies have been instantiated, the program gives up control to an event loop supplied by
the toolkit. Alternatively, an application must be willing to provide its own event distribution
mechanism. In eXene, however, the program can continue to go about its business, whether
performing computations, reading input or interacting with the widgets. As an example,
Figure 4.4 contains the code for a simple program that uses widgets. This example creates
a button labeled “Goodbye, Cruel Worl d!”. If the user clicks on the button with any
mouse button, then the function qui t is called, terminating the program. The program will
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fun goodbye display = let
val root = nkRoot display
fun quit () = (del Root root; RunCM.. shut down())
val quitButton = nkCrdButton root {
| abel =" Goodbye, Cruel World!",
action=quit

val shell = nkShell root (
qui t Butt on,
NONE,

{wi n_name = NONE, icon_nane = NONE}
)

fun loop () =
if input_line std_in = "quit\n"
then quit ()
el se loop ()
in
init shell; (* make button visible *)
l'oop ()

end

Figure4.4 Goodbye

alsoquitif theuser enters“qui t ” onstandard input. Thisissimilar tothexgoodbye example
in Chapter 2 of [Nye90b], but differsin one major way. In the xgoodbye example, control
is passed off to the Xt event loop; in our version, the application retains control.

451 Widgetsin EXene

Asinmost toolkits, awidget isagraphical object that correspondsto some control or feedback
element of the user interface. But in eXene, widgets have avery “thin” interface. In addition,
information is mostly distributed, with little that is globa or centralized. This gives eXene
widgets a very distinctive flavor. A widget only knows about the window it was handed and
how it divided the window among itschildren. The parent widget'3 controlsthe external view
of achild. The parent providesthe child'swindow; it positionsthe window; it changesitssize;
it deletesit. If the child needs any of these actions performed, it asks the parent to perform the
action. A child does not directly alter the external configuration of itswindow; it should only
deal with what isinsideits window.

A widget in eXene has three important attributes: ar oot , aboundsOF function, and a
real i ze function. The r oot value corresponds to the screen on which a widget lives. A
widget uses the boundsOF function to specify its size constraints. This function is usually
used by the widget's parent when determining how much display space to alocate for the
widget. The bounds_t type provides a fairly genera mechanism for specifying geometry
requirements in terms of natural size, increments and upper and lower bounds.

At the time of instantiation, a widget is passed, throughitsr eal i ze function, a window

13 A parent widget isjust the widget that providesthe child’swindow and event streams. The parent widget need not
correspond to a parent window of the child widget's window. In particular, a parent and child widget may share
the same window.
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on which to draw, the size of the window, and an input environment. This environment was
described in Section 4.4. It is the widget’s only built-in connection to the outside world. In
addition to providing streams for the widget's mouse and keyboard events, it also supplies
control channels for service requests and status events between parent and child. From its
parent, achild receives notification that itswindow size has changed, that itswindow has been
damaged and needs repair, and that its window has been deleted, among others messages. In
turn, thechild can useacontrol channel to request that itsparent del eteitswindow or reallocate
space for it.

When itsr eal i ze function is caled, the widget configures itself corresponding to the
given size and arranges to service events on its input environment. If the widget has any
children, it must also layout its children, provide their windows, and call their real i ze
functions. A parent widget is responsible for distributing the user events it receives to the
appropriate child widget, if any, and monitoring requests from its children.

In addition to specifying how widgetsinteract and communicate, the widget layer provides
mechanisms for writing and tailoring widgets. In eXene, we have taken the approach that
one should construct small, lightweight components, with well-defined functions, and use
a collection of powerful techniques to combine them to create a widget with the desired
properties. These techniques can be roughly divided into two categories, as discussed in the
following two sections.

452 Parameterization

The principa mechanism for specializing valuesin any library is parameterization. Thelibrary
designer provides various hooks by which the programmer or user can tailor the library
components to a particular use or appearance. Inthisregard, eXeneisno different, though its
design provides some atypical approaches to parameterization.

When created, a widget accesses a style database to determine various values affecting its
display or itsactions. These valuestypically involve fonts, background and foreground colors,
layout parameters, and event actions, and are set to reflect the needs of the application or the
preference of the user. EXene use a naming scheme for widgets and widget resources based
on alogical hierarchy. As noted by Gettys[Get91] and others, there are problems with the
standard naming system based on the physical widget hierarchy because it exposes too much
of the underlying structure. To protect against changes to the widget structure, users would
end up relying on loose bindingsin resource specifications amost to the exclusion of strict
bindings. Logical naming is more robust, supporting major changes to the widget hierarchy
with no effect on resource naming, and more flexible, all owing resource namesto diverge from
the physical hierarchy. The logical naming scheme is also necessary in eXene as the widget
hierarchy is created bottom up. When necessary, the application program can arrange that its
choices override any user settings.

Functionvaluesform one of the most important classes of parameters used to tailor widgets.
They are typically used by the programmer to specify action or calback functions that are
invoked by the widget in response to some event or condition. Frequently, the application
requires these functions to be executed in the context of certain values outside the purview
of thewidget. In addition, different widgets invoke callback functionswith different types of
arguments. With first-class function values available, the eXene programmer can use callback
functions without subverting the type system or introducing an onerous multiplicity of types
whose sole purposeis to mimic function closures.
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There are other problems typically associated with callback functions as they occur in
standard libraries. A client must explicitly register callback functions with widgets; it must
explicitly unregister the functions when it no longer wishes the services performed. The code
for managing a collection of calback functions is built into the widget. From the client’s
standpoint, its callback functionsare invoked asynchronously. The client code must be ableto
accept the effects of a callback at any time. In addition, the callback function cannot involve
time-consuming operations, lest it block thewidget from handling other clientsand potentially
lock up the entire application.

IneXene, we use CML eventsto providethe means of communi cation between widgets'4. A
widget’sinterface can contain an abstract event value. There isno registering or unregistering
of callback functions; the client just synchronizes on the event value. When the appropriate
conditionsoccur, the widget synchronizes on the event value. The client then has the opportu-
nity of continuing other activitiesuntil it reaches a state at which an action associated with the
event is appropriate. The action executes in the context of the client’s data and, thanks to the
ability to spawn threads, can involve extensive computation. These semantics scale nicely to
multipleclients by theinterposition of a multicast channel between the widget and its clients.
No change to the widget is necessary.

Widgets in eXene are often built out of even lighter weight components, offering another
opportunity for parameterization. A common form of decomposition reflects a separation of
the view and control aspects of awidget, somewhat in ana ogy to the Modd -\View-Controller
idea [Kra88]. As an example, the eXene widget library suppliesankLabel Vi ewfunction
that, given a font, a string and an alignment, returns the size required to display the string
plus a draw function. The draw function takes a drawable, a rectangle and a pen, and draws
the text with the specified alignment within the rectangle in the drawable. This higher-order
function isemployed many places wherethe display of atext string isrequired. Another place
where this technique arises is in the construction of button-like objects. The library defines
a protocol for button views, corresponding to various possible button states, such as being
active and set. There is a collection of button views following this protocol, such as check
boxes, text buttons, and rocker switches. EXene aso supplies various controller functions
that implement some form of user interaction and, given a button view, use the view for
visual feedback of the control state. A programmer creates a button-like object in eXene by
composing a button behavior with a button view. For example, Figure 4.5 shows functions
providing two of the standard button behaviors, one delivering a continuous stream of events
while the button is “pressed” (mkButton) and one maintaining an on/off state for the button
(mkToggle). The figure also shows functions implementing two of the standard button views,
along with exampl es of the views. The linesindicate the four possible ways of composing the
functions to get four different types of buttons. Views and controllers can either be supplied
by the programmer, or taken from the eXene library.

Certain widgets are most generally parameterized over multiple types and values, more
than can be easily accommodated by using SML's parametric polymorphism and function
values. In these cases, the eXene programmer can use SML's parameterized modules, called
functors. Inthe SML module system, functorsare written as functionsthat create new modul es
when applied to a collection of modules compatible with certain specified signatures. Thisis
precisely what isneeded to factor out the dependencies of awidget over acomplex structure of
interrel ated typesand values. For example, the eXenetext widget iswritten as afunctor taking

14 With the availability of threads and synchronization primitives, the concurrency problemswith callbacksdisappear.
One simply writes a callback function to spawn a new thread or to synchronizeon aCML event.
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Behavior View
mkButton _________ mkText
mkToggle =——— mkSwitch

Figure4.5 Composing buttons

a text buffer module as an argument. Such a module provides an abstraction for creating a
two-dimensional layout of text. This abstraction includes a submodul e that defines a typeball
type, which is used to specify how (font face and size, color, spacing) atext string should be
drawn. Therole of the text widget is to provide controlled access to creating and modifying a
text buffer while maintaining a projection of the buffer layout on the screen.

EXene aso uses functors to parameterize viewport widgets, which alow the programmer
to create a changeable “window” on a (potentialy) much larger drawing area. The functor
parameters are used to specify the constraints on the viewport window, how the drawing area
coordinates project onto the viewport window, and how a view is implemented. For a pixel-
based drawing canvas, a viewport may be an unconstrained projection of the drawing. For a
text-based widget, the viewport is probably constrained by line or character boundaries. A
simple view can be created by having the drawing area implemented as a subwindow of the
viewport window. The programmer can construct more efficient views by using direct callsto
the canvas drawing routines, circumventing the window system, and by maintaining drawing
caches such as backing store, text buffers, or display lists.

453 Widget Wrappers

The hierarchical routing of eventsin eXene alows the programmer to wrap one widget within
another, thereby allowing the wrapping widget to interposeits behavior between the wrapped
widget and a prospective parent, essentially producing aderived widget. The wrapping widget
subverts the wrapped widget’s interface, providing anew boundsOf or r eal i ze function
or intercepting the event stream. In a simple case, the wrapping function might do nothing
more than trandlate keystrokes. Thistechniqueis also used to fix the size of awidget, widgets
typically being written to adjust to whatever size they are given. The programmer wraps a
widget in another widget, whose boundsOFf function returns a fixed size, with equal lower
and upper bounds. The text widget described above is an output-only widget: it does not
respond to any mouse or keyboard events, but it handles redisplay correctly. To make a text
editor or avirtual terminal, aprogrammer would wrap the text widget with code to handle user
input, using the text widget as a simple output device. As another example of this approach,
reconsider the application described in Section 4.4. If the programmer decidesto attach a pop-
up menu to program, she can wrap the top-level component with a function that respondsto
mouse button presses by putting up the menu but forwardsall other events down the hierarchy.
Graphica composition occurs when awidget’swindow isasubwindow of that of itsparent
widget. Thistechnique, standard in all interfacetoolkits, is aso handled by widget wrapping.
Thus, in eXene, a single mechanism is used to support subwindowing and derived widgets.



MULTI-THREADED HIGHER-ORDER TOOLKIT

Because of the desire that basic components should be as simple as possible, eXene, like
InterViews, relies on composition for features that might ordinarily be built into awidget. For
example, to get aborder for awidget, one inserts awidget into a frame widget, whoseroleis
to create a border about its child widget.

The design of eXene induces an elegance in the use of composition. For example, one can
create anew widget giving textual feedback on a slider widget'® by composing the slider with
atext label widget in abox layout widget, and spawning athread that monitors changes to the
dider’svaue, as captured by a CML event, and resets the label widget’stext accordingly.

4.6 APPLICATIONS

EXene has served as the basis for a variety of applications, several of significant size and
sophistication. We describe some of these uses below.

As a basic “proof of concept,” we have ported a number of standard sample graphics
applications, such asahand cal culator (Chapter 12 of [Nye90a]) and abitmap editor (Chapter 4
of [Nye90h]), to eXene. Typically, the eXene versions require athird to a quarter of the code
needed for the Xt versions, largely because of the expressiveness, concurrency and memory
management provided by the underlying language.

Video game-like programs make good test cases for graphics toolkits. We mention three
that show the utility and efficiency of threadsin eXene. In bounce, the user usesthe left mouse
button to send a new ball bouncing around within a window. If the user clicks the middle
mouse button on a ball, it disappears. The right mouse button brings up a pop-up menu that
allows the user to start over, or to quit. Because of the distributed user input handling, the
balls continue to move while the menu is being displayed. In the implementation, each ball
hasits own thread, which cal cul ates the next position and passes thisinformation to a display
manager thread. Another application using animation-like graphics is an arithmetic teacher.
The game has buttons for picking the operation (addition, subtraction, etc.) and the level of
difficulty, and awindow for displaying the problem and the tentative answer. Another window
displaysascenein which asmall figure climbs some distance up apoleon each correct answer.
With enough correct answers, the figure makes it to the top and waves a flag; awrong answer
sends the figure into a pool of water with a big splash. With concurrency, the figure can still
be climbing while the user is working on the next problem. We have also ported Cardelli’s
badbricks game to eX ene.® The notable point hereisthat atypical game involves on the order
of 1600 threads.

Other sample eXene applicationsinclude an implementation of a Graphical Fisheye Viewer
[Sar92], and an implementation of the DeltaBlue incremental constraint solving agorithm
[FreQQ]. The latter is an interesting experiment because of the importance of incremental
congtraint solvingin high-level user interface management systems. This experiment suggests
that constraints may provide a high-level mechanism for specifying the interconnection of
widgets [Yan92].

EXene has been used to provide the user interfaces for two interactive theorem proving
systems. PAM [Lin91] is a genera proof tool for process algebras. Its interface consists of
a main window, which is used to compile process agebra calculi and create proofs, plus a
window for each proof. At the same time, the user can work on several problemsin the same

15 A dlider widget provides a valuator by which the user can set a scalar valuein some range.
16 Badbricksis a demo included in the Trestle distribution.
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calculus, or the same problem in different calculi. Proofs complete in one proof window can
be bound as a named theorem and then used in other proofs. The system devel oped by Griffin
and Moten [Gri92] provides as alibrary a logic-independent implementation of tactic trees.
It is designed to be incorporated into any SML-based interactive theorem prover. It provides
a structure editor for tactic trees, in which the user can move the focus to any subtree, alter
the view of the tree to global, local or elided views, and modify a subtree by deletion or the
application of atactic.

46.1 Graph-o-matica

In order to discuss in more detail how the various features of eXene come together in an
application, we focus on a single application, called Graph-o-matica, in the remainder of this
section. Graph-o-matica is an interactive tool for analyzing and viewing graphs, which has
been implemented on top of eXene.

There are two main types of windows used in Graph-o-matica: command windows, which
provide a terminal-style, textua interface for manipulating graphs and their views, and view
windows, which provide aview on a 2D layout of a graph. There can be multiple command
windows, a given abstract graph can have more than one layout, and a given layout can have
more than one view. A layout alows the user to modify the 2D embedding of the graph,
including elision of subgraphs. A view allowsthe user to pan and zoom (using menus and the
scrollbars) on a given embedding of the graph. Diaogue boxes and other standard graphics
paraphernaliaare employed in theinterface. Except for the graph drawing component, Graph-
0-matica uses standard eXene widgets.

Figure 4.6 illustrates a sample session using Graph-o-matica. The bottom window is a
command window. Future versions might include more graphically oriented mechanisms for
some of the main types of operations; however, the command window will probably always
be available to the user. Asageneral rule, a program should have an underlying text language
interface, even when the principal user interactionsare graphical. Lying on top of the command
window is a view of the graph of modules in the SML/NJ compiler. The top two windows
provide two views of a different graph but each view uses the same layout. If a graph is
edited, either using a graphical view or from a command window, this information needs to
be propagated to the layouts and views of the graph. The system uses a multicast channel
abstraction to manage the propagation of update notifications between graphs and layoutsand
between layouts and views. This simplifies the implementation of the graph object, since it
does not need to know anything about multiple layouts. The layout abjects, if they decide a
given change affects them, can query the graph object for more detailed information. Similar
simplification occurs in the layout objects. The modular style supported in eXene, based
particularly on explicit, abstract concurrency and high-level memory management, facilitates
thistype of layering and multiplication of objects.

The need for both communication abstraction and selective communication also arises in
the virtual terminal used in the command window. At any time, the virtual terminal must be
able to handle both input from the user and output from its client (the command shell). EXene
provides an abstract interface to the input stream, but since it is event-valued, it can still be
used in sl ective communication.

Because the pieces are written to operate independently, using their own threads, the user
interface need not block. For example, when Graph-o-matica presents a dial ogue box to the
user it may continue computation, including drawing graphics and handling user input, while
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Figure4.6 Graph-o-matica

the dialogue box is displayed. Internally, selective communication is used by components to
multiplex waiting for the result of the dial ogue box with other interactions. Similarly, Graph-
0-matica avoids having intensive computation, such as running the graph layout algorithm,
lock up the system. These computations are run in separate threads, with compl etion marked
by aCML event.

It should be emphasized again that similar asynchronous behavior can be achieved in many
standard toolkits. Typically, an event loop playstherole of a schedul er, and the application can
register and unregister functionstobecalled in responseto user events, file system events, timer
events or when no events need processing. This introduces the user interface bias discussed
above. It becomes necessary to structure the application, including non-interface code, as a
state machine. This approach is cumbersome and introduces distortionsin the structure of the
software. Imagine being required to write a potentially time-consuming agorithm that can
only runinquantaof “small fraction[s] of asecond” ([NyeQ0b], p. 239) beforereturning. Asa
result, applicationswritten using standard toolkitstend not to provide thelevel of concurrency
users expect.

The approach we have taken in eXene isto make the presence of concurrency explicit, and
to build the interface toolkit to take advantage of this concurrency. This alows the pieces of
the application to be written in whatever styleisappropriate, provides better separation of the
components of the application, and makes it simple and inexpensive to use concurrency when
required.
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4.7 FUTURE WORK

Although eXene is quite usable in its current state, it is still very much a work in progress.
We are aready planning various changes, some at the implementation level, others providing
enhancements to the user’s view.

The hierarchical routing used in eXene provides the basis for the programmer’s ability to
wrap an old component in afunction providing new behavior. Most of the time, though, events
are routed through most paths unchanged. We would liketo explore means of maintainingthe
semantics of hierarchical routing while providing more efficient direct routing when possible.

At present, eXene provides no facility by which a widget can specify interesting mouse
events. It is possiblethat something akin to cagesin Trestle [Man91] may provide an el egant
solution to this problem. Essentially, a cage is a region surrounding the cursor position; the
system generates an event when the cursor leaves the cage. This mechanism generalizesthe X
notions of mouse motion (aone pixel square cage) and window enter and leave events (a cage
corresponding to awindow or its screen complement).

Inits current state, eXene relies heavily on X for its rendering model, and for the imple-
mentation of windows and user event routing. Using the X rendering model has the benefit
that the full generality of X drawing primitives is available to the programmer. We fed this
advantage is morethan offset by the complexity and low-level detail of thismodel. In addition,
having the X model visible inhibitsimplementing eXene on any other graphics base. Tying
awidget drawing context to an X window isa mistake: it isamost a truism that X windows
are too heavyweight to be used extensively. Thisis particularly annoying in eXene, wherethe
flavor isthat of lightweight objects, as exemplified by function closuresand CML threads and
channels.

We hopeto overlay the present library with one that supportsahigher-level rendering model
and a lighter-weight window model. We also wish to explore how well a constraint system
can be integrated within eXene. These goalswill require that eXene providesits own window
management. Thelibrary will use the underlying graphics system, such as X, solely to provide
primitive graphics services and araw stream of user input.
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