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ABSTRACT

This article describes eXene, a user interface toolkit implemented in a concurrent extension
of Standard ML. The design and use of eXene is inextricably woven with the presence
of multiple threads and a high-level language. These features replace the object-oriented
design of most toolkits, and provide a better basis for dealing with the complexities of user
interfaces, especially concerning such aspects as type safety, extensibility, component reuse
and the balance between the user interface and other parts of the program.

4.1 INTRODUCTION

In two previous papers [Rep86, Gan92], we have advocated an approach to the design of
a foundation for graphical user interfaces and interactive applications. In our view, such a
foundation includes support for concurrency, strong static typing, higher-order programming
(i.e., functions as values), support for modular program construction, and automatic memory
management. This article describes a multi-threaded X window system toolkit, called eXene,
built on such a foundation.

The base for eXene is Concurrent ML (CML) [Rep91a], a concurrent extension of Standard
ML (SML) [Mil90]. We employ CML as more than just the implementation language for
eXene: it provides the semantic framework for the toolkit and permeates its design and use. This
is particularly true concerning three aspects of eXene: concurrency, higher-level programming
and memory management. Taken together, these aspects induce greater simplicity and a high
degree of modularity in applications constructed using eXene.

The most significant characteristic of eXene is the fundamental role that concurrency plays
in its design and implementation. Concurrency is critical in allowing the programmer to cleanly
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structure an application and its interface to handle the asynchrony and multiple contexts of
interactive use. One need only consider a sample of common programming scenarios:

� A computationally intensive program that provides periodical updates to a graphical display
of its status. In addition to displaying new information, the user interface must also handle
external asynchronous events such as being resized by the user.

� A program for editing and analyzing multiple views of graphs, which must allow editing
on one view while applying a potentially expensive layout algorithm to another.

� A language-based editor that uses incremental attribute evaluation to give the user im-
mediate feedback about static semantic errors [Reps84]. Since a user’s editing operation
can result in an arbitrarily large number of attribute re-evaluations, we must structure the
evaluator so that those attributes affecting the user’s view will be evaluated first and those
remaining will be evaluated in the background.

The majority of user interface toolkits are based on sequential languages and must emulate
concurrency using event loops. While this allows features such as multiple views to be sup-
ported, it also biases the architecture of the application towards the user interface. Because
the application is driven by the user interface, the event loop must be built to manage system
events as well as graphics events, and computationally intensive code must be written in such
a way as to divide up the work into small pieces that can be interleaved between the handling
of external events. In effect, the event loop is a poor man’s concurrency.

In eXene, the system architecture is not hobbled by this user interface bias. Graphical com-
ponents are implemented as independent threads, separate from each other and the application
code. This increases the modularity of the components and allows them and the application
to be implemented more naturally, not as finite state machines. Obviously, the interleaving of
computation happens automatically. This makes it simple to import code without worrying
whether its execution will cripple the user interface.

The high-level language features of CML provide many of the mechanisms for creating and
tailoring graphical components in eXene. Higher-order functions, parametric polymorphism,
abstract event values and parameterized modules are powerful tools for building reusable,
modular components. EXene promotes an applicative style programming. This increases the
clarity and reliability of the code, and is especially important in a concurrent system where
the possibility of interference arises. We also note that programming using eXene is type
safe. Because of the complexity of building user interfaces, the safety afforded by strong
static typing is too valuable to be thrown away. Most of the advantages touted for weakly or
dynamically typed languages in building user interfaces are provided by the features such as
polymorphism and higher-order functions mentioned above.

In a typical user interface, graphical components and system resources are heavily distributed
and shared, making it difficult to determine when memory should be freed and resources
released. EXene provides garbage collection and object finalization1 to free the programmer
from these decisions. As components can freely refer to other components without worrying
about them disappearing, components become simpler and more modular.

It is possible to address the problems solved by eXene, or provide similar features, using
conventional languages, libraries and toolkits. This, however, typically involves making the
application code more complex, bending or breaking the type system, relying on programmer

1 In object finalization, a value can be associated with a finalization function to be called on the value before the
value’s memory is freed. With this mechanism, we can extend the model of automatic storage collection to system
objects such as bitmaps, fonts, etc.



MULTI-THREADED HIGHER-ORDER TOOLKIT

discipline, or ignoring the problem. The thrust of the work on eXene is that, by building a user
interface toolkit on top of a concurrent, high-level foundation, one achieves a system that is
simpler, safer, more uniform, and more modular.

4.1.1 Related Work

CML and eXene are actually second generation systems emerging from these ideas. They
follow from our earlier work with the Pegasus system [Rep86, Nor87, Rep88, Gan92], which
used the PML language for its foundation. The work most closely related to Pegasus and
eXene in spirit is Newsqueak [Pik89b, Pik89a] and Montage [Haa90]. EXene differs in
being a more fully developed system, with a higher-level model of concurrency (CML events
values), a richer graphics model, more support for programming at the component level, and,
in comparison with Newsqueak, a richer base language. The NeWS window system [Gos89]
also relies on concurrency in its design. NeWS requires that the user interface code be split
between the client (typically C code), and the display server (PostScript code). The PostScript
code running on the server can be multi-threaded. While this allows concurrency in interactive
applications, exploiting it increases the complexity of the client-server interaction.

User interface design seems to be one area where an “object-oriented” approach has a
clear utility. As a result, most graphics toolkits use an object-oriented approach. Examples
include InterViews [Lin89], Xt [Nye90b], NeWS, Iris [Gan88], Trestle [Man91] and Garnet
[Mye90]. EXene eschews an explicit object-oriented approach for several reasons. Structural
polymorphism, first-class function values and a sophisticated module system provide similar
interface inheritance. Most importantly, our experience, and that of others [Pik89a, Haa90],
suggests that concurrency and delegation provide many of the same advantages as object-
oriented programming.2 Threads provide localization of state and clean well-defined interfaces.
Delegation and wrapper functions provide implementation inheritance.

In general, some form of concurrency is available or could be added to any of these toolkits.
Treating concurrency as an afterthought, however, prevents possibilities for simplification and
component sharing.3 We feel that concurrency should be a design principle, and be exploited
at all levels of an interactive system.

4.1.2 Summary of the Paper

In the next section, we briefly describe the important features of CML. This is followed by
Sections 4.3–4.5, which respectively describe drawing, user interaction and widgets in eXene.
Section 4.6 presents some examples of eXene applications. We conclude with some future
directions. Throughout the article, we assume that the reader has some familiarity with the X
window system and its terminology as can be found, for example, in [Sch92]. Although we
use a small amount of SML and CML notation, knowledge of these languages is not necessary
in understanding the important concepts in the paper.

2 This should not come as a surprise, since delegation was originally a concept of concurrent actor systems.
3 This is also true for garbage collection.
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4.2 AN OVERVIEW OF CML

Both the implementation and the user’s view of eXene rely heavily on the concurrency model
provided by CML.4 CML is based on the sequential language SML [Mil90] and inherits the
useful features of SML: functions as first-class values, strong static typing, polymorphism,
datatypes and pattern matching, lexical scoping, exception handling and a state-of-the-art
module facility. An introduction to SML can be found in [Pau91] or [Har86]. The sequential
performance of CML benefits from the quality of the SML/NJ compiler [App87]. In addition
CML has the following properties:

� CML provides a high-level model of concurrency with dynamic creation of threads and
typed channels, and rendezvous communication. This distributed-memory model fits well
with the mostly applicative style of SML.

� CML is a higher-order concurrent language. Just as SML supports functions as first-
class values, CML supports synchronous operations as first-class values [Rep88, Rep91a,
Rep92]. These values, called events, provide the tools for building new synchronization
abstractions. This is the most significant characteristic of CML.

� CML provides integrated I/O support. Potentially blocking I/O operations, such as reading
from an input stream, are full-fledged synchronous operations. Low-level support is also
provided, from which distributed communication abstractions can be constructed.

� CML provides automatic reclamation of threads and channels, once they become inaccessi-
ble. This permits a technique of speculative communication, which is not possible in other
threads packages.

� CML uses preemptive scheduling. To guarantee interactive responsiveness, a single thread
cannot be allowed to monopolize the processor. Preemption insures that a context switch
will occur at regular intervals, which allows “off-the-shelf” code to be incorporated in a
concurrent thread without destroying interactive responsiveness.

� CML is efficient. Thread creation, thread switching and message passing are very efficient
(benchmarks results are reported in [Rep92]). Experience with eXene has shown that CML
is a viable language for implementing interactive systems.

� CML is portable. It is written in SML and runs on essentially every system supported by
SML/NJ (currently seven different architectures and many different operating systems).

� CML has a formal foundation. Following the tradition of SML [Mil90, Mil91], a formal
semantics has been developed for the concurrency primitives of CML (see [Rep91b] or
[Rep92]).

4.3 BASIC EXENE FEATURES

Before we describe the more radical features of eXene, a discussion of some of the basic
features is in order. These features for the most part follow the Xlib model, but we have
attempted to provide an interface that is both cleaner, and more in keeping with the SML
programming style. For example, we use immutable objects where possible (such as immutable
tiles for specifying textures, instead of pixmaps), and we perform more client-side error
checking, instead of relying on the X server for error checking.

4 Conversely, the development of CML was strongly motivated by the desire to be able to support user interface
systems comparable to eXene.
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Following the X model, eXene supports the notions of a display (a connection to a server),
a screen (a monitor driven by the server), and a window on a screen. An application might
have multiple displays (e.g., a multi-player game), multiple screens for a given display, and
multiple windows per screen. In Xlib, programmers must specify the display as an argument
to most operations; in eXene, we avoid this by incorporating the display in the representation
of most graphical objects (e.g., screens and windows).

Internally, eXene uses a small collection of threads to implement each display connection.
These threads manage buffering and sequencing of communications with the X server. The
interface to these threads is a collection of CML channels that are bundled into an abstract
display value. A similar scheme is used for screens. Since these abstract values encapsulate
both the state and thread of control, supporting multiple displays and screens in an application
is trivial.5

EXene uses a cleaner, and slightly stripped-down, version of the X graphics model [Sch92].
In X, drawing operations are performed with respect to a graphics context, which is a server-
side object that specifies the color, font, texture, etc., of the drawing operation. There are a
number of drawbacks to the way that graphics contexts are supported: they are fairly heavy-
weight, requiring communication with the server to create and update; the number of contexts
supported by the server may be limited (e.g., if the server is an X terminal); and they are created
with respect to a particular visual, and can only be used with that visual. Furthermore, the Xlib
interface to graphics contexts is not uniform: the clipping mask is part of the context, but is
specified independently of the other attributes.6 Another wart is that fonts are specified both
as part of the graphics context, and as an argument to the XDrawText operation. Not only
does XDrawText take fonts in its argument list, it actually updates the graphics context that
it uses, which makes sharing of graphics contexts more difficult. In addition to these problems,
multi-threaded toolkits face the additional problem that graphics contexts are shared mutable
objects, thus some form of concurrency control is required.

In eXene, we address these problems by providing a higher-level, but lighter-weight, client-
side value, called a pen, for specifying drawing attributes. Pens provide a cleaner, more
uniform interface to specifying the attributes of a drawing operation: they are immutable, they
are independent of any visual, and they collect together all the drawing attributes uniformly.
Pens include the clipping region, but not fonts, which are specified as an argument to the text
drawing operations. Internally, concurrency control is provided by graphics-context servers
(one per visual), which map pens to server-side graphics contexts. Since pens are lightweight,
immutable and independent of any visual, the user is freed from having to manage graphics
contexts to reduce server memory usage: the toolkit does it for her. The use of a behind-
the-scenes manager allows better modularity in the application code. While Xt also provides
management of graphics contexts to promote sharing, its mechanism is weaker: it only sup-
ports the read-only use of shared graphics contexts, and does not provide security against
interference.

To further improve modularity, eXene supports automatic reclamation of server objects
such as fonts, colors, and pixmaps. This is implemented by a finalization scheme built on top
of SML/NJ’s weak pointer mechanism. When the client-side version of the object becomes

5 This encapsulation property appears elsewhere in eXene (cf., Section 4.5), and can be exploited to easily support
multiple views in an application.

6 This is because the arguments to the graphics context operations are integers, while a clipping region is represented
as a list of rectangles.
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garbage, a finalization procedure is invoked, which sends a request to deallocate the server-side
object. This frees the user from explicit management of these resources.

The use of internal servers to multiplex server-side resources is exploited repeatedly in
eXene. Another example arises in the handling of fonts. There is a per-display font server
that maintains a table of open fonts, and checks requests for new fonts against the table. This
reduces the amount of client-server traffic (e.g., if ten independent button widgets all attempt
to open the same font). Although not part of Xlib, a similar optimization is frequently used in
toolkits built on the library.

Another place in which eXene provides a higher-level model is in the support for color.7

Colors are specified abstractly using color names or RGB values (we plan to extend this to the
X11R5 device independent color spaces [Sch92]). Color specifications are mapped to abstract
colors by a color server (one per screen), again reducing client-server traffic and improving
modularity. Although inappropriate for color-intensive applications,8 this model, used with
finalization, is adequate for most uses of color.

EXene provides an abstract drawable type that gives a common interface to windows and
off-screen pixmaps. Internally, a drawable is represented as a connection to a draw-master
server that buffers drawing operations and handles the interaction with the graphics-context
server. This representation allows filters to be interposed that modify the drawable’s behavior
(e.g., coordinate translations).

The client-server communication in X is asynchronous, and this often shows in the pro-
gramming model. Ideally, drawing operations should not require exposing the asynchrony of
the protocol, but there are a few places where this breaks down. In eXene, we have attempted
to hide this asynchrony wherever possible, and provide a higher-level interface in those cases
where, for performance reasons, the asynchrony must be exposed.

Because it requires a system call to send a message to the X server, Xlib buffers client
requests so that the system call overhead is reduced. One of the most common mistakes made
by the neophyte Xlib programmer is failing to flush the buffer after a sequence of drawing
operations; without this, the graphics never appear on the screen. In a program structured
around a central event loop (or one using the built-in event loop provided by many toolkits),
this is not as big of a problem, since the output buffer is flushed prior to reading the next X
event. As we noted in Section 4.1, however, structuring programs around a central event loop
is not always desirable. Our approach in eXene is to have the output-buffer thread periodically
flush itself out to the wire. This removes the need for the user to explicitly flush the buffer,
which leads to better modularity. Unfortunately, this periodic buffer flushing does not provide
fast enough turn around when real-time feedback is required (e.g., when using the mouse
to adjust a scrollbar). To handle this problem, we provide a function for creating a feedback
drawable from a drawable. The feedback drawable uses the same drawing surface, but is
unbuffered for immediate visual feedback. A better solution may be to tie the mouse stream
and drawable together in these situations, such that the output buffer is flushed whenever the
client requests input.9

Another feature of the X protocol that often bites users is a race condition between the
client’s first drawing operation and when the server actually maps the window [Gaj90]. To

7 We currently only provide access to the default read-only colormap of a screen.
8 Since we do not expose the notion of pixels, applications are prevented from exploiting color-plane tricks, which

may not be a bad thing.
9 This was suggested by one of the referees.
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avoid this race, an application must wait for the first exposure event10 on the window before
attempting to draw graphics. In eXene, we hide this required synchronization internally.

A third place in which the user is exposed to the asynchrony of the protocol in graphics
operations is the interface to the CopyArea operation. When CopyArea is used to copy a
rectangle of pixels from an on-screen window to some destination (e.g., when scrolling), it is
possible that a portion of the source rectangle will be unavailable (i.e., because it is obscured
by another window). In this case, the corresponding portion of the destination rectangle
will have to be repainted. Conceptually, this can be viewed as a client request followed by
a server reply, but if implemented this way, the round-trip delays cause noticeable screen
flicker. What is needed is an asynchronous remote procedure call (RPC), sometimes called a
promise [Lis88]. Providing an asynchronous RPC interface to the CopyArea operation is
not possible in a language like C, so this is implemented by using X events to deliver the
reply. The client receives either a GraphicsExposure event or a NoExpose event as an
acknowledgment of a CopyArea operation. In eXene, we exploit the first-class synchronous
operations provided by CML to provide a true asynchronous RPC interface to the CopyArea
operation. When a client executes a CopyArea operation, it receives a CML event value that
is the promise of a list of exposure rectangles (the empty list signifies NoExpose). The client
can proceed with drawing, and later synchronize on the event to check for any needed repairs
(see [Gan91] or [Rep92] for more details).

4.4 USER INTERACTION

The most significant departure in eXene from traditional user interface toolkits is in our
approach to handling user input. As we argued in [Gan92], the multiplexing required by
graphical applications maps naturally onto a concurrent programming model. Instead of a
centralized event loop for processing user input, eXene uses a distributed hierarchy of threads to
route user input to the appropriate place. The hierarchy basically mirrors the window hierarchy
of the application. Each component in the hierarchy has an environment, consisting of three
streams of input from the component’s parent (mouse, keyboard and control),11 and one output
stream for requesting services from the component’s parent. For each child of the component,
there are corresponding output streams and an input stream. A component is responsible for
routing messages to its children, but this can almost always be done using a generic router
function provided by eXene. This event-handling model, with its top-down decentralized
routing, is similar to those of [Pik89a] and [Haa90]. It is substantially different from the
bottom-up approach used by most toolkits. In particular, it allows parents to interpose filters
on the event streams of their children, which is an important mechanism in the composition
of widgets in eXene (cf., Section 4.5.3).

To illustrate this approach, consider the implementation of a simple drawing application
in eXene. The application presents the user with a window for drawing and a reset button
(see Figure 4.1). When the user depresses a mouse button in the drawing window, a triangle
is drawn at the cursor location, and when the user clicks on the reset button, the drawing
window is cleared. This application’s implementation consists of three components: a top-level
component with two subcomponents (one for the button, and one for the drawing window).
Each component has an associated X window. Figure 4.2 gives the thread network for these

10 An exposure event notifies the application that a region of its windows has been damaged and requires repainting.
11 Note that we translate X events into the appropriate types of eXene messages.
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Figure 4.1 A simple drawing application

components; to simplify the picture we have omitted the output streams for requesting services,
since they are not used by the application. The small unlabeled squares in this picture represent
message sinks (threads that just consume input forever). For example, the top-level component
ignores mouse and keyboard messages and has no graphics to redraw, so it has sinks for all
three of its input streams. In addition to the sinks, the top-level component has a router thread
associated with it. The router thread looks at the addresses of incoming messages and forwards
them to the appropriate destination.

The drawing component has three threads: a sink for keyboard messages, a mouse-stream
thread, and a command-stream thread that also maintains the drawing state. The mouse-stream
thread looks for button-press messages, discarding all others. When a button-press message is
received, it sends a drawing command to the command-stream thread. The command-stream
thread is responsible for drawing the triangles on the drawing window, and for redrawing
the window if it is damaged; the code for this thread is given in Figure 4.3. The thread is
implemented as a tail recursive function. It receives messages from three sources: command
messages from the top-level component’s router (cmdEvt); draw messages from the mouse
thread (drawEvt); and reset messages from the button component (resetEvt). For each
source there is a corresponding handler function (handleCmd, draw, and reset). The
thread also maintains a state, consisting of a list of the points on the display where triangles
have been drawn. The functiondrawTriangle (not shown) draws a triangle at the specified
point; it is used both to draw new triangles (in draw), and to redraw the screen to repair
damage (in handleCmd).

The button component also consists of three threads: a sink for keyboard messages, a mouse-
stream thread, and a command-stream thread. The mouse-stream thread looks for button-press
messages; when it receives one, it sends a reset message to the drawing component’s command-
stream thread. The button’s command-stream thread is responsible for redrawing the button
when it is damaged.

When the user clicks the mouse on the button, the X server sends an X event to the
application; the eXene library code routes this to the top-level component’s mouse stream as
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Figure 4.2 The application’s communication network

a mouse message addressed to the button component. The router in the top-level component
then passes the message on to the button component, which then sends a reset message to the
drawing component.

The use of several threads per component, typically one for each input stream as well as
one or more threads for managing state and coordinating the other threads, is standard in
eXene applications. By breaking the code up this way, each individual thread is quite simple.
This heavy use of threads is made possible by the lightweight nature of threads in CML. A
thread typically incurs less than 100 bytes of space overhead [Rep91a], which makes them
comparable in size to Smalltalk objects [Ung84].

4.5 EXENE INTRINSICS

The basic eXene features described above do not provide a general framework in which
pieces of an interface can be built by various people at various times and then modified and
integrated into a single user interface. Support for this is provided by the widget12 layer in
eXene. Widgets are the basic building blocks for constructing interfaces. The widget layer

12 For want of a better term, we borrow the X term for a graphical object composed of a drawing area and its interaction
semantics.
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fun drawCmdLoop state = let
fun handleCmd (CI_Redraw _) = (

clearDrawable drawable;
app drawTriangle state;
drawCmdLoop state)

| handleCmd CI_OwnDeath = ()
| handleCmd _ = (drawCmdLoop state)

fun draw pt = (drawTriangle pt; drawCmdLoop(pt::state))
fun reset () = (clearDrawable drawable; drawCmdLoop[])
in

select [
wrap (cmdEvt, handleCmd),
wrap (drawEvt, draw),
wrap (resetEvt, reset)

]
end

Figure 4.3 The drawing command thread code

also provides the additional protocols necessary for cooperation among widgets, as well as
their reuse and extension.

The widget level reifies the underlying eXene approach to building graphical interfaces.

� The inherent concurrency in the user interface is made explicit. The user interface is just
a part of an application: it does not dictate the architecture or control structure. Interfaces
are built as networks of simple components connected by streams and event values. Each
widget has its own threads, which separate it from other widgets and from the application
code. A programmer can also use concurrency to simplify the internal structure of widgets,
as described in the previous section.

� Few things are as full of state as graphical objects. With threads, the function call structure
naturally encodes much state information, without the programmer having to maintain state
explicitly. Additional state is encapsulated in channels.

� Input is distributed hierarchically. Events are passed from the root widget down the hierarchy
to the appropriate widget. This allows the programmer to interpose widgets at any level to
modify widget characteristics or alter the distribution of events.

� Higher-order functions, parametric polymorphism and parametric modules powerfully ex-
pand the programmer’s tools for tailoring and combining interface components safely and
simply.

As with most interface toolkits, a program using eXene creates at runtime a variety of
widgets, which are combined into one or more hierarchical structures. At some point in the
program, these structures are made visible and active. With most toolkits, after the widget
hierarchies have been instantiated, the program gives up control to an event loop supplied by
the toolkit. Alternatively, an application must be willing to provide its own event distribution
mechanism. In eXene, however, the program can continue to go about its business, whether
performing computations, reading input or interacting with the widgets. As an example,
Figure 4.4 contains the code for a simple program that uses widgets. This example creates
a button labeled “Goodbye, Cruel World!”. If the user clicks on the button with any
mouse button, then the function quit is called, terminating the program. The program will
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fun goodbye display = let
val root = mkRoot display
fun quit () = (delRoot root; RunCML.shutdown())
val quitButton = mkCmdButton root {

label="Goodbye, Cruel World!",
action=quit

}
val shell = mkShell root (

quitButton,
NONE,
{win_name = NONE, icon_name = NONE}

)
fun loop () =

if input_line std_in = "quit\n"
then quit ()
else loop ()

in
init shell; (* make button visible *)
loop ()

end

Figure 4.4 Goodbye

also quit if the user enters “quit” on standard input. This is similar to thexgoodbye example
in Chapter 2 of [Nye90b], but differs in one major way. In the xgoodbye example, control
is passed off to the Xt event loop; in our version, the application retains control.

4.5.1 Widgets in EXene

As in most toolkits, a widget is a graphical object that corresponds to some control or feedback
element of the user interface. But in eXene, widgets have a very “thin” interface. In addition,
information is mostly distributed, with little that is global or centralized. This gives eXene
widgets a very distinctive flavor. A widget only knows about the window it was handed and
how it divided the window among its children. The parent widget13 controls the external view
of a child. The parent provides the child’s window; it positions the window; it changes its size;
it deletes it. If the child needs any of these actions performed, it asks the parent to perform the
action. A child does not directly alter the external configuration of its window; it should only
deal with what is inside its window.

A widget in eXene has three important attributes: a root, a boundsOf function, and a
realize function. The root value corresponds to the screen on which a widget lives. A
widget uses the boundsOf function to specify its size constraints. This function is usually
used by the widget’s parent when determining how much display space to allocate for the
widget. The bounds t type provides a fairly general mechanism for specifying geometry
requirements in terms of natural size, increments and upper and lower bounds.

At the time of instantiation, a widget is passed, through its realize function, a window

13 A parent widget is just the widget that provides the child’s window and event streams. The parent widget need not
correspond to a parent window of the child widget’s window. In particular, a parent and child widget may share
the same window.
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on which to draw, the size of the window, and an input environment. This environment was
described in Section 4.4. It is the widget’s only built-in connection to the outside world. In
addition to providing streams for the widget’s mouse and keyboard events, it also supplies
control channels for service requests and status events between parent and child. From its
parent, a child receives notification that its window size has changed, that its window has been
damaged and needs repair, and that its window has been deleted, among others messages. In
turn, the child can use a control channel to request that its parent delete its window or reallocate
space for it.

When its realize function is called, the widget configures itself corresponding to the
given size and arranges to service events on its input environment. If the widget has any
children, it must also layout its children, provide their windows, and call their realize
functions. A parent widget is responsible for distributing the user events it receives to the
appropriate child widget, if any, and monitoring requests from its children.

In addition to specifying how widgets interact and communicate, the widget layer provides
mechanisms for writing and tailoring widgets. In eXene, we have taken the approach that
one should construct small, lightweight components, with well-defined functions, and use
a collection of powerful techniques to combine them to create a widget with the desired
properties. These techniques can be roughly divided into two categories, as discussed in the
following two sections.

4.5.2 Parameterization

The principal mechanism for specializing values in any library is parameterization. The library
designer provides various hooks by which the programmer or user can tailor the library
components to a particular use or appearance. In this regard, eXene is no different, though its
design provides some atypical approaches to parameterization.

When created, a widget accesses a style database to determine various values affecting its
display or its actions. These values typically involve fonts, background and foreground colors,
layout parameters, and event actions, and are set to reflect the needs of the application or the
preference of the user. EXene use a naming scheme for widgets and widget resources based
on a logical hierarchy. As noted by Gettys [Get91] and others, there are problems with the
standard naming system based on the physical widget hierarchy because it exposes too much
of the underlying structure. To protect against changes to the widget structure, users would
end up relying on loose bindings in resource specifications almost to the exclusion of strict
bindings. Logical naming is more robust, supporting major changes to the widget hierarchy
with no effect on resource naming, and more flexible, allowing resource names to diverge from
the physical hierarchy. The logical naming scheme is also necessary in eXene as the widget
hierarchy is created bottom up. When necessary, the application program can arrange that its
choices override any user settings.

Function values form one of the most important classes of parameters used to tailor widgets.
They are typically used by the programmer to specify action or callback functions that are
invoked by the widget in response to some event or condition. Frequently, the application
requires these functions to be executed in the context of certain values outside the purview
of the widget. In addition, different widgets invoke callback functions with different types of
arguments. With first-class function values available, the eXene programmer can use callback
functions without subverting the type system or introducing an onerous multiplicity of types
whose sole purpose is to mimic function closures.
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There are other problems typically associated with callback functions as they occur in
standard libraries. A client must explicitly register callback functions with widgets; it must
explicitly unregister the functions when it no longer wishes the services performed. The code
for managing a collection of callback functions is built into the widget. From the client’s
standpoint, its callback functions are invoked asynchronously. The client code must be able to
accept the effects of a callback at any time. In addition, the callback function cannot involve
time-consuming operations, lest it block the widget from handling other clients and potentially
lock up the entire application.

In eXene, we use CML events to provide the means of communication between widgets14. A
widget’s interface can contain an abstract event value. There is no registering or unregistering
of callback functions; the client just synchronizes on the event value. When the appropriate
conditions occur, the widget synchronizes on the event value. The client then has the opportu-
nity of continuing other activities until it reaches a state at which an action associated with the
event is appropriate. The action executes in the context of the client’s data and, thanks to the
ability to spawn threads, can involve extensive computation. These semantics scale nicely to
multiple clients by the interposition of a multicast channel between the widget and its clients.
No change to the widget is necessary.

Widgets in eXene are often built out of even lighter weight components, offering another
opportunity for parameterization. A common form of decomposition reflects a separation of
the view and control aspects of a widget, somewhat in analogy to the Model-View-Controller
idea [Kra88]. As an example, the eXene widget library supplies a mkLabelView function
that, given a font, a string and an alignment, returns the size required to display the string
plus a draw function. The draw function takes a drawable, a rectangle and a pen, and draws
the text with the specified alignment within the rectangle in the drawable. This higher-order
function is employed many places where the display of a text string is required. Another place
where this technique arises is in the construction of button-like objects. The library defines
a protocol for button views, corresponding to various possible button states, such as being
active and set. There is a collection of button views following this protocol, such as check
boxes, text buttons, and rocker switches. EXene also supplies various controller functions
that implement some form of user interaction and, given a button view, use the view for
visual feedback of the control state. A programmer creates a button-like object in eXene by
composing a button behavior with a button view. For example, Figure 4.5 shows functions
providing two of the standard button behaviors, one delivering a continuous stream of events
while the button is “pressed” (mkButton) and one maintaining an on/off state for the button
(mkToggle). The figure also shows functions implementing two of the standard button views,
along with examples of the views. The lines indicate the four possible ways of composing the
functions to get four different types of buttons. Views and controllers can either be supplied
by the programmer, or taken from the eXene library.

Certain widgets are most generally parameterized over multiple types and values, more
than can be easily accommodated by using SML’s parametric polymorphism and function
values. In these cases, the eXene programmer can use SML’s parameterized modules, called
functors. In the SML module system, functors are written as functions that create new modules
when applied to a collection of modules compatible with certain specified signatures. This is
precisely what is needed to factor out the dependencies of a widget over a complex structure of
interrelated types and values. For example, the eXene text widget is written as a functor taking

14 With the availability of threads and synchronization primitives, the concurrencyproblems with callbacks disappear.
One simply writes a callback function to spawn a new thread or to synchronize on a CML event.
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Figure 4.5 Composing buttons

a text buffer module as an argument. Such a module provides an abstraction for creating a
two-dimensional layout of text. This abstraction includes a submodule that defines a typeball
type, which is used to specify how (font face and size, color, spacing) a text string should be
drawn. The role of the text widget is to provide controlled access to creating and modifying a
text buffer while maintaining a projection of the buffer layout on the screen.

EXene also uses functors to parameterize viewport widgets, which allow the programmer
to create a changeable “window” on a (potentially) much larger drawing area. The functor
parameters are used to specify the constraints on the viewport window, how the drawing area
coordinates project onto the viewport window, and how a view is implemented. For a pixel-
based drawing canvas, a viewport may be an unconstrained projection of the drawing. For a
text-based widget, the viewport is probably constrained by line or character boundaries. A
simple view can be created by having the drawing area implemented as a subwindow of the
viewport window. The programmer can construct more efficient views by using direct calls to
the canvas drawing routines, circumventing the window system, and by maintaining drawing
caches such as backing store, text buffers, or display lists.

4.5.3 Widget Wrappers

The hierarchical routing of events in eXene allows the programmer to wrap one widget within
another, thereby allowing the wrapping widget to interpose its behavior between the wrapped
widget and a prospective parent, essentially producing a derived widget. The wrapping widget
subverts the wrapped widget’s interface, providing a new boundsOf or realize function
or intercepting the event stream. In a simple case, the wrapping function might do nothing
more than translate keystrokes. This technique is also used to fix the size of a widget, widgets
typically being written to adjust to whatever size they are given. The programmer wraps a
widget in another widget, whose boundsOf function returns a fixed size, with equal lower
and upper bounds. The text widget described above is an output-only widget: it does not
respond to any mouse or keyboard events, but it handles redisplay correctly. To make a text
editor or a virtual terminal, a programmer would wrap the text widget with code to handle user
input, using the text widget as a simple output device. As another example of this approach,
reconsider the application described in Section 4.4. If the programmer decides to attach a pop-
up menu to program, she can wrap the top-level component with a function that responds to
mouse button presses by putting up the menu but forwards all other events down the hierarchy.

Graphical composition occurs when a widget’s window is a subwindow of that of its parent
widget. This technique, standard in all interface toolkits, is also handled by widget wrapping.
Thus, in eXene, a single mechanism is used to support subwindowing and derived widgets.
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Because of the desire that basic components should be as simple as possible, eXene, like
InterViews, relies on composition for features that might ordinarily be built into a widget. For
example, to get a border for a widget, one inserts a widget into a frame widget, whose role is
to create a border about its child widget.

The design of eXene induces an elegance in the use of composition. For example, one can
create a new widget giving textual feedback on a slider widget15 by composing the slider with
a text label widget in a box layout widget, and spawning a thread that monitors changes to the
slider’s value, as captured by a CML event, and resets the label widget’s text accordingly.

4.6 APPLICATIONS

EXene has served as the basis for a variety of applications, several of significant size and
sophistication. We describe some of these uses below.

As a basic “proof of concept,” we have ported a number of standard sample graphics
applications, such as a hand calculator (Chapter 12 of [Nye90a]) and a bitmap editor (Chapter 4
of [Nye90b]), to eXene. Typically, the eXene versions require a third to a quarter of the code
needed for the Xt versions, largely because of the expressiveness, concurrency and memory
management provided by the underlying language.

Video game-like programs make good test cases for graphics toolkits. We mention three
that show the utility and efficiency of threads in eXene. In bounce, the user uses the left mouse
button to send a new ball bouncing around within a window. If the user clicks the middle
mouse button on a ball, it disappears. The right mouse button brings up a pop-up menu that
allows the user to start over, or to quit. Because of the distributed user input handling, the
balls continue to move while the menu is being displayed. In the implementation, each ball
has its own thread, which calculates the next position and passes this information to a display
manager thread. Another application using animation-like graphics is an arithmetic teacher.
The game has buttons for picking the operation (addition, subtraction, etc.) and the level of
difficulty, and a window for displaying the problem and the tentative answer. Another window
displays a scene in which a small figure climbs some distance up a pole on each correct answer.
With enough correct answers, the figure makes it to the top and waves a flag; a wrong answer
sends the figure into a pool of water with a big splash. With concurrency, the figure can still
be climbing while the user is working on the next problem. We have also ported Cardelli’s
badbricks game to eXene.16 The notable point here is that a typical game involves on the order
of 1600 threads.

Other sample eXene applications include an implementation of a Graphical Fisheye Viewer
[Sar92], and an implementation of the DeltaBlue incremental constraint solving algorithm
[Fre90]. The latter is an interesting experiment because of the importance of incremental
constraint solving in high-level user interface management systems. This experiment suggests
that constraints may provide a high-level mechanism for specifying the interconnection of
widgets [Yan92].

EXene has been used to provide the user interfaces for two interactive theorem proving
systems. PAM [Lin91] is a general proof tool for process algebras. Its interface consists of
a main window, which is used to compile process algebra calculi and create proofs, plus a
window for each proof. At the same time, the user can work on several problems in the same

15 A slider widget provides a valuator by which the user can set a scalar value in some range.
16 Badbricks is a demo included in the Trestle distribution.
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calculus, or the same problem in different calculi. Proofs complete in one proof window can
be bound as a named theorem and then used in other proofs. The system developed by Griffin
and Moten [Gri92] provides as a library a logic-independent implementation of tactic trees.
It is designed to be incorporated into any SML-based interactive theorem prover. It provides
a structure editor for tactic trees, in which the user can move the focus to any subtree, alter
the view of the tree to global, local or elided views, and modify a subtree by deletion or the
application of a tactic.

4.6.1 Graph-o-matica

In order to discuss in more detail how the various features of eXene come together in an
application, we focus on a single application, called Graph-o-matica, in the remainder of this
section. Graph-o-matica is an interactive tool for analyzing and viewing graphs, which has
been implemented on top of eXene.

There are two main types of windows used in Graph-o-matica: command windows, which
provide a terminal-style, textual interface for manipulating graphs and their views, and view
windows, which provide a view on a 2D layout of a graph. There can be multiple command
windows, a given abstract graph can have more than one layout, and a given layout can have
more than one view. A layout allows the user to modify the 2D embedding of the graph,
including elision of subgraphs. A view allows the user to pan and zoom (using menus and the
scrollbars) on a given embedding of the graph. Dialogue boxes and other standard graphics
paraphernalia are employed in the interface. Except for the graph drawing component, Graph-
o-matica uses standard eXene widgets.

Figure 4.6 illustrates a sample session using Graph-o-matica. The bottom window is a
command window. Future versions might include more graphically oriented mechanisms for
some of the main types of operations; however, the command window will probably always
be available to the user. As a general rule, a program should have an underlying text language
interface, even when the principal user interactions are graphical. Lying on top of the command
window is a view of the graph of modules in the SML/NJ compiler. The top two windows
provide two views of a different graph but each view uses the same layout. If a graph is
edited, either using a graphical view or from a command window, this information needs to
be propagated to the layouts and views of the graph. The system uses a multicast channel
abstraction to manage the propagation of update notifications between graphs and layouts and
between layouts and views. This simplifies the implementation of the graph object, since it
does not need to know anything about multiple layouts. The layout objects, if they decide a
given change affects them, can query the graph object for more detailed information. Similar
simplification occurs in the layout objects. The modular style supported in eXene, based
particularly on explicit, abstract concurrency and high-level memory management, facilitates
this type of layering and multiplication of objects.

The need for both communication abstraction and selective communication also arises in
the virtual terminal used in the command window. At any time, the virtual terminal must be
able to handle both input from the user and output from its client (the command shell). EXene
provides an abstract interface to the input stream, but since it is event-valued, it can still be
used in selective communication.

Because the pieces are written to operate independently, using their own threads, the user
interface need not block. For example, when Graph-o-matica presents a dialogue box to the
user it may continue computation, including drawing graphics and handling user input, while
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Figure 4.6 Graph-o-matica

the dialogue box is displayed. Internally, selective communication is used by components to
multiplex waiting for the result of the dialogue box with other interactions. Similarly, Graph-
o-matica avoids having intensive computation, such as running the graph layout algorithm,
lock up the system. These computations are run in separate threads, with completion marked
by a CML event.

It should be emphasized again that similar asynchronous behavior can be achieved in many
standard toolkits. Typically, an event loop plays the role of a scheduler, and the application can
register and unregister functions to be called in response to user events, file system events, timer
events or when no events need processing. This introduces the user interface bias discussed
above. It becomes necessary to structure the application, including non-interface code, as a
state machine. This approach is cumbersome and introduces distortions in the structure of the
software. Imagine being required to write a potentially time-consuming algorithm that can
only run in quanta of “small fraction[s] of a second” ( [Nye90b], p. 239) before returning. As a
result, applications written using standard toolkits tend not to provide the level of concurrency
users expect.

The approach we have taken in eXene is to make the presence of concurrency explicit, and
to build the interface toolkit to take advantage of this concurrency. This allows the pieces of
the application to be written in whatever style is appropriate, provides better separation of the
components of the application, and makes it simple and inexpensive to use concurrency when
required.
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4.7 FUTURE WORK

Although eXene is quite usable in its current state, it is still very much a work in progress.
We are already planning various changes, some at the implementation level, others providing
enhancements to the user’s view.

The hierarchical routing used in eXene provides the basis for the programmer’s ability to
wrap an old component in a function providing new behavior. Most of the time, though, events
are routed through most paths unchanged. We would like to explore means of maintaining the
semantics of hierarchical routing while providing more efficient direct routing when possible.

At present, eXene provides no facility by which a widget can specify interesting mouse
events. It is possible that something akin to cages in Trestle [Man91] may provide an elegant
solution to this problem. Essentially, a cage is a region surrounding the cursor position; the
system generates an event when the cursor leaves the cage. This mechanism generalizes the X
notions of mouse motion (a one pixel square cage) and window enter and leave events (a cage
corresponding to a window or its screen complement).

In its current state, eXene relies heavily on X for its rendering model, and for the imple-
mentation of windows and user event routing. Using the X rendering model has the benefit
that the full generality of X drawing primitives is available to the programmer. We feel this
advantage is more than offset by the complexity and low-level detail of this model. In addition,
having the X model visible inhibits implementing eXene on any other graphics base. Tying
a widget drawing context to an X window is a mistake: it is almost a truism that X windows
are too heavyweight to be used extensively. This is particularly annoying in eXene, where the
flavor is that of lightweight objects, as exemplified by function closures and CML threads and
channels.

We hope to overlay the present library with one that supports a higher-level rendering model
and a lighter-weight window model. We also wish to explore how well a constraint system
can be integrated within eXene. These goals will require that eXene provides its own window
management. The library will use the underlying graphics system, such as X, solely to provide
primitive graphics services and a raw stream of user input.
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