
Free Software/Open Source

Alley Stoughton

Kansas State University

Spring 2008

1



Proprietary Software

In the traditional approach to commercial software development and

distribution, software is:

2



Proprietary Software

In the traditional approach to commercial software development and

distribution, software is:

• written by centrally controlled, closed groups;

2-a



Proprietary Software

In the traditional approach to commercial software development and

distribution, software is:

• written by centrally controlled, closed groups;

• released in binary form;

2-b



Proprietary Software

In the traditional approach to commercial software development and

distribution, software is:

• written by centrally controlled, closed groups;

• released in binary form;

• not accompanied by warranties;

2-c



Proprietary Software

In the traditional approach to commercial software development and

distribution, software is:

• written by centrally controlled, closed groups;

• released in binary form;

• not accompanied by warranties;

• released under restrictive licenses.

2-d



Proprietary Software (Cont.)

For example, here are excepts from the license of the Adobe Reader

(http://www.adobe.com/products/acrobat/acrreula.html):

2.5.1 You may not modify, adapt, translate or create

derivative works based upon the Software. You may not

reverse engineer, decompile, disassemble or otherwise attempt

to discover the source code of the Software except to the

extent you may be expressly permitted to decompile under

applicable law, it is essential to do so in order to achieve

operability of the Software with another software program,

and you have first requested Adobe to provide the information

necessary to achieve such operability and Adobe has not made

such information available.

3



Proprietary Software (Cont.)

When a user of a proprietary program encounters a bug, he or she may

report it to the software developer, and hope that the developer will fix

it in the next release of the product or in a patch to the product.

Similarly, users who wish for increased or different functionality may

suggest product improvements to the developer.

4



Proprietary Software (Cont.)

When a user of a proprietary program encounters a bug, he or she may

report it to the software developer, and hope that the developer will fix

it in the next release of the product or in a patch to the product.

Similarly, users who wish for increased or different functionality may

suggest product improvements to the developer.

But the users are totally dependent on the developer to make needed

changes. If the developer declines to make the product support new

hardware, for instance, the product may become useless to some users,

but there will be nothing that the users can do about this.

4-a



Proprietary Software (Cont.)

When a user of a proprietary program encounters a bug, he or she may

report it to the software developer, and hope that the developer will fix

it in the next release of the product or in a patch to the product.

Similarly, users who wish for increased or different functionality may

suggest product improvements to the developer.

But the users are totally dependent on the developer to make needed

changes. If the developer declines to make the product support new

hardware, for instance, the product may become useless to some users,

but there will be nothing that the users can do about this.

For example, the Adobe Reader doesn’t track changes in PDF files.

Because of Adobe’s license and practices, there is nothing that can be

done about this. This is one of the main reasons that I switched to

using Skim (http://skim-app.sourceforge.net/), a PDF reader

and note-taker for Mac OS X, which is free software.

4-b



Free Software

An alternative approach to software development and distribution was

pioneered by the Free Software Foundation (http://www.fsf.org,

http://www.gnu.org) and its founder, Richard Stallman.

According to the FSF:

“Free software” is a matter of liberty, not price. To

understand the concept, you should think of “free” as in “free

speech,” not as in “free beer.”

5



Free Software (Cont.)

According to the FSF:

Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software. More

precisely, it refers to four kinds of freedom, for the users of

the software:

6



Free Software (Cont.)

According to the FSF:

Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software. More

precisely, it refers to four kinds of freedom, for the users of

the software:

• The freedom to run the program, for any purpose.

6-a



Free Software (Cont.)

According to the FSF:

Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software. More

precisely, it refers to four kinds of freedom, for the users of

the software:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt

it to your needs. Access to the source code is a

precondition for this.

6-b



Free Software (Cont.)

According to the FSF:

Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software. More

precisely, it refers to four kinds of freedom, for the users of

the software:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt

it to your needs. Access to the source code is a

precondition for this.

• The freedom to redistribute copies so you can help your

neighbor.

6-c



Free Software (Cont.)

According to the FSF:

Free software is a matter of the users’ freedom to run, copy,

distribute, study, change and improve the software. More

precisely, it refers to four kinds of freedom, for the users of

the software:

• The freedom to run the program, for any purpose.

• The freedom to study how the program works, and adapt

it to your needs. Access to the source code is a

precondition for this.

• The freedom to redistribute copies so you can help your

neighbor.

• The freedom to improve the program, and release your

improvements to the public, so that the whole community

benefits. Access to the source code is a precondition for

this.

6-d



Copyleft

Should someone be able to incorporate free software into a proprietary

product?

7



Copyleft

Should someone be able to incorporate free software into a proprietary

product?

In some sense, this is appropriate, since the software was released

without restrictions, and since it will lead to more users benefiting

from using the software.

7-a



Copyleft

Should someone be able to incorporate free software into a proprietary

product?

In some sense, this is appropriate, since the software was released

without restrictions, and since it will lead to more users benefiting

from using the software.

But another point of view is that this would violate the spirit of

openness and cooperation in which the original software was created

and distributed.

7-b



Copyleft

Should someone be able to incorporate free software into a proprietary

product?

In some sense, this is appropriate, since the software was released

without restrictions, and since it will lead to more users benefiting

from using the software.

But another point of view is that this would violate the spirit of

openness and cooperation in which the original software was created

and distributed.

The FSF proposed the notion of “copyleft” as a way to stop free

software from being used in proprietary products.

Copyleft is a general method for making a program free

software and requiring all modified and extended versions of

the program to be free software as well.

Software licensed under the FSF’s GNU General Public License (GPL)

is copylefted.

7-c



More on Copylefting

Copylefting software leads to more free software, since if an individual,

group or company produces a program that makes use of free software,

they must either:

8



More on Copylefting

Copylefting software leads to more free software, since if an individual,

group or company produces a program that makes use of free software,

they must either:

• distribute their program under the same terms as the original

software; or

8-a



More on Copylefting

Copylefting software leads to more free software, since if an individual,

group or company produces a program that makes use of free software,

they must either:

• distribute their program under the same terms as the original

software; or

• not distribute it at all.

8-b



More on Copylefting

Copylefting software leads to more free software, since if an individual,

group or company produces a program that makes use of free software,

they must either:

• distribute their program under the same terms as the original

software; or

• not distribute it at all.

For example, this lead to a free C++ compiler (developed as a

front-end to gcc by an industry consortium that normally makes its

work proprietary; now called GNU C++). (See

http://www.gnu.org/philosophy/pragmatic.html for details.)

8-c



Making Money out of Free Software

Individuals and companies can make money out of free software by:

9



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

9-a



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

• providing education and other support for users;

9-b



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

• providing education and other support for users;

• writing books about free software;

9-c



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

• providing education and other support for users;

• writing books about free software;

• developing custom free software for clients, who may later release

them;

9-d



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

• providing education and other support for users;

• writing books about free software;

• developing custom free software for clients, who may later release

them;

• selling advertising on free software-related WWW sites.

9-e



Making Money out of Free Software

Individuals and companies can make money out of free software by:

• selling distributions of free software;

• providing education and other support for users;

• writing books about free software;

• developing custom free software for clients, who may later release

them;

• selling advertising on free software-related WWW sites.

E.g., Red Hat Inc. (http://www.redhat.com) has built a large and

profitable business out of distributing and supporting Linux.

9-f



Free Software Development

Free Software leads to a less centralized way of producing software.

10



Free Software Development

Free Software leads to a less centralized way of producing software.

Sometimes this results in multiple versions of programs (e.g., different

versions of Emacs). This seems to rarely be confusing, in practice.

10-a



Free Software Development

Free Software leads to a less centralized way of producing software.

Sometimes this results in multiple versions of programs (e.g., different

versions of Emacs). This seems to rarely be confusing, in practice.

But much free software is produced using an approach in which there

are principal developers and a group of users/co-developers who find

bugs, make suggestions, provide code improvements. Sometimes this

leads to faster development of high quality software. It’s crucial that

the principal developers have high standards.

10-b



The Development of

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and

professional like gnu) for 386(486) AT clones. This has been brewing

since april, and is starting to get ready. I’d like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.

This implies that I’ll get something practical within a few months, and

I’d like to know what features most people would want. Any suggestions

are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

11



The Development of Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>

Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I’m doing a (free) operating system (just a hobby, won’t be big and

professional like gnu) for 386(486) AT clones. This has been brewing

since april, and is starting to get ready. I’d like any feedback on

things people like/dislike in minix, as my OS resembles it somewhat

(same physical layout of the file-system (due to practical reasons)

among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.

This implies that I’ll get something practical within a few months, and

I’d like to know what features most people would want. Any suggestions

are welcome, but I won’t promise I’ll implement them :-)

Linus (torvalds@kruuna.helsinki.fi)

11-a



The Development of Linux (Cont.)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks, as that’s all I have :-(.

12



The Development of Linux (Cont.)

PS. Yes - it’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never

will support anything other than AT-harddisks, as that’s all I have :-(.

Seventeen years later, (GNU/)Linux has become a mature operating

system:

• Linux market share in new server sales is about 20%, as compared

to 70% for Windows and 10% for Unix, although the Linux

community disputes these numbers, saying that many Linux

servers weren’t shipped as such.

• Linux desktop market share is about 1%, with Mac OS X at about

7%, and Windows at 92%, although the same caveat applies here.

One hopeful sign for Linux is that Dell is now offering the Ubuntu

Linux distribution on desktops.

12-a



The Cathedral and the Bazaar

In a draft of his book The Cathedral and the Bazaar (O’Reilly &

Associates, 2001, ISBN 0596001088), Eric S. Raymond wrote about

the success of Linux and other free software projects:

Linux overturned much of what I thought I knew. I had been

preaching the Unix gospel of small tools, rapid prototyping

and evolutionary programming for years. But I also believed

there was a certain critical complexity above which a more

centralized, a priori approach was required. I believed that the

most important software (operating systems and really large

tools like the Emacs programming editor) needed to be built

like cathedrals, carefully crafted by individual wizards or small

bands of mages working in splendid isolation, with no beta to

be released before its time.

13



The Cathedral and the Bazaar

Raymond continued:

Linus Torvalds’s style of development - release early and

often, delegate everything you can, be open to the point of

promiscuity - came as a surprise. No quiet, reverent

cathedral-building here – rather, the Linux community seemed

to resemble a great babbling bazaar of differing agendas and

approaches (aptly symbolized by the Linux archive sites,

who’d take submissions from anyone) out of which a coherent

and stable system could seemingly emerge only by a

succession of miracles.

Raymond notes that Torvalds’s people and organizational skills were

key to the success of Linux.

Raymond wrote about the circumstances in which this style of

software development can succeed, focusing on a case study

(Fetchmail (http://fetchmail.berlios.de/)) in which he was the

lead developer.

14



Open Source

Here is how the term “open source” was coined, according to the

WWW page of the Open Source Initiative

(http://www.opensource.org):

• The “open source” label itself came out of a strategy session held

on February 3rd 1998 in Palo Alto, California. The people present

included Todd Anderson, Chris Peterson (of the Foresight

Institute), John “maddog” Hall and Larry Augustin (both of Linux

International), Sam Ockman (of the Silicon Valley Linux User’s

Group), and Eric Raymond.

15



Open Source

Here is how the term “open source” was coined, according to the

WWW page of the Open Source Initiative

(http://www.opensource.org):

• The “open source” label itself came out of a strategy session held

on February 3rd 1998 in Palo Alto, California. The people present

included Todd Anderson, Chris Peterson (of the Foresight

Institute), John “maddog” Hall and Larry Augustin (both of Linux

International), Sam Ockman (of the Silicon Valley Linux User’s

Group), and Eric Raymond.

• We were reacting to Netscape’s announcement that it planned to

give away the source of its browser. One of us (Raymond) had

been invited out by Netscape to help them plan the release and

followon actions. We realized that the Netscape announcement

had created a precious window of time within which we might

finally be able to get the corporate world to listen to what we have

to teach about the superiority of an open development process.

15-a



Open Source (Cont.)

• We realized it was time to dump the confrontational attitude that

has been associated with “free software” in the past and sell the

idea strictly on the same pragmatic, business-case grounds that

motivated Netscape. We brainstormed about tactics and a new

label. “Open source,” contributed by Chris Peterson, was the best

thing we came up with.

16



Open Source (Cont.)

• We realized it was time to dump the confrontational attitude that

has been associated with “free software” in the past and sell the

idea strictly on the same pragmatic, business-case grounds that

motivated Netscape. We brainstormed about tactics and a new

label. “Open source,” contributed by Chris Peterson, was the best

thing we came up with.

• Over the next week we worked on spreading the word. Linus

Torvalds gave us an all-important imprimatur :-) the following day.

Bruce Perens got involved early, offering to trademark “open

source” and host this web site. Phil Hughes offered us a pulpit in

Linux Journal. Richard Stallman flirted with adopting the term,

then changed his mind.

16-a



Open Source (Cont.)

Here is some of what the Open Source Initiative’s says about the

benefits of Open Source:

• The basic idea behind open source is very simple. When

programmers on the Internet can read, redistribute, and modify

the source for a piece of software, it evolves. People improve it,

people adapt it, people fix bugs. And this can happen at a speed

that, if one is used to the slow pace of conventional software

development, seems astonishing.

17



Open Source (Cont.)

Here is some of what the Open Source Initiative’s says about the

benefits of Open Source:

• The basic idea behind open source is very simple. When

programmers on the Internet can read, redistribute, and modify

the source for a piece of software, it evolves. People improve it,

people adapt it, people fix bugs. And this can happen at a speed

that, if one is used to the slow pace of conventional software

development, seems astonishing.

• We in the open-source community have learned that this rapid

evolutionary process produces better software than the traditional

closed model, in which only a very few programmers can see source

and everybody else must blindly use an opaque block of bits.

17-a



Open Source (Cont.)

• The open-source model has a lot to offer the business world. It’s a

way to build open standards as actual software, rather than paper

documents. It’s a way that many companies and individuals can

collaborate on a product that none of them could achieve alone.

It’s the rapid bug-fixes and the changes that the user asks for,

done to the user’s own schedule.

18



Open Source (Cont.)

• The open-source model has a lot to offer the business world. It’s a

way to build open standards as actual software, rather than paper

documents. It’s a way that many companies and individuals can

collaborate on a product that none of them could achieve alone.

It’s the rapid bug-fixes and the changes that the user asks for,

done to the user’s own schedule.

• The open-source model also means increased security; because

code is in the public view it will be exposed to extreme scrutiny,

with problems being found and fixed instead of being kept secret

until the wrong person discovers them. And last but not least, it’s

a way that the little guys can get together and have a good

chance at beating a monopoly.

18-a



The FSF’s Views on Free Software/Open Source

The FSF offers its views on the relationship between free software and

open source (http://www.gnu.org/philosophy/

free-software-for-freedom.html):

• The fundamental difference between the two movements is in their

values, their ways of looking at the world. For the Open Source

movement, the issue of whether software should be open source is

a practical question, not an ethical one. As one person put it,

“Open source is a development methodology; free software is a

social movement.” For the Open Source movement, non-free

software is a suboptimal solution. For the Free Software

movement, non-free software is a social problem and free software

is the solution.

19



The FSF’s Views on Free Software/Open Source

The FSF offers its views on the relationship between free software and

open source (http://www.gnu.org/philosophy/

free-software-for-freedom.html):

• The fundamental difference between the two movements is in their

values, their ways of looking at the world. For the Open Source

movement, the issue of whether software should be open source is

a practical question, not an ethical one. As one person put it,

“Open source is a development methodology; free software is a

social movement.” For the Open Source movement, non-free

software is a suboptimal solution. For the Free Software

movement, non-free software is a social problem and free software

is the solution.

• We disagree on the basic principles, but agree more or less on the

practical recommendations. So we can and do work together on

many specific projects. We don’t think of the Open Source

movement as an enemy. The enemy is proprietary software.

19-a



SourceForge

A good place to look for information about free software/open source

is SourceForge (http://web.sourceforge.com/):

• SourceForge’s media and e-commerce web sites connect millions

of influential technology professionals and enthusiasts each day.

Combining user-developed content, online marketplaces and

e-commerce, SourceForge is the global technology community’s

nexus for information exchange, goods for geeks, and open source

software distribution and services. The network of web sites

enables advertisers to efficiently reach a large, highly qualified

audience of buyers. SourceForge’s network serves more than 33

million unique visitors each month from around the world.

20



SourceForge (Cont.)

• It includes top web sites, like SourceForge.net, the world’s largest

open source software development and distribution environment;

Slashdot, the web destination that pioneered community

generated content; and ThinkGeek, the online bazaar that features

cool stuff for techno-enthusiasts. Other sites in the network,

include: Linux.com, freshmeat.net, ITManagersJournal and

NewsForge. SourceForge’s unique combination of user-developed

content, clever e-commerce and online marketplaces make it the

most trusted, credible venue for dialogue and exchange with the

global technology community.

21



Freshmeat

According to http://freshmeat.net:

freshmeat maintains the Web’s largest index of Unix and

cross-platform software, themes and related ”eye-candy”, and

Palm OS software. Thousands of applications, which are

preferably released under an open source license, are

meticulously cataloged in the freshmeat database, and links to

new applications are added daily. Each entry provides a

description of the software, links to download it and to obtain

more information, and a history of the project’s releases, so

readers can keep up-to-date on the latest developments.

Freshmeat.net lists over 40,000 projects. 63.19% of the software

listed at freshmeat is released under the GPL (6.6% is under a less

restictive version of GPL, the LGPL).

22



SourceForge

According to http://sourceforge.net:

SourceForge.net is the world’s largest Open Source

software development web site, hosting more than 100,000

projects and over 1,000,000 registered users with a centralized

resource for managing projects, issues, communications, and

code. SourceForge.net has the largest repository of Open

Source code and applications available on the Internet, and

hosts more Open Source development products than any

other site or network worldwide. SourceForge.net provides a

wide variety of services to projects we host, and to the Open

Source community.

SourceForge.net hosts over 170,000 projects.

23



Key Free Software/Open Source Successes

In addition to Linux, here are two free software/open source success

stories:

• As of August, 2007, 48.4% of all web sites used the Apache web

server open source software; Apache’s closest competitor was

Microsoft-IIS at 36.2%. Trends show Microsoft closing the gap,

and perhaps surpassing Apache soon, however.

24



Key Free Software/Open Source Successes

In addition to Linux, here are two free software/open source success

stories:

• As of August, 2007, 48.4% of all web sites used the Apache web

server open source software; Apache’s closest competitor was

Microsoft-IIS at 36.2%. Trends show Microsoft closing the gap,

and perhaps surpassing Apache soon, however.

• As of January, 2008, the Mozilla Foundation’s Firefox browser

(which is descended from the Netscape browser) had a 15% share

of browser usage, with Microsoft’s Internet Explorer at 75% and

Mac OS X’s Safari at 6%. Firefox’s usage share looks likely to

continue growing.

24-a



Threats to Free Software/Open Source

The threats to free software/open source seem to be mainly

non-technical:

• Hardware manufacturers (like Intel) are often slow to make

specifications for chips available to open source developers, while

promptly making those specifications available to Microsoft. But

in 2004, Intel announced that, in the future, proprietary Linux

drivers (but not complete specifications) for their hardware will

arrive during the same release cycle as Windows drivers, though

not necessarily the same day.

25



Threats to Free Software/Open Source

The threats to free software/open source seem to be mainly

non-technical:

• Hardware manufacturers (like Intel) are often slow to make

specifications for chips available to open source developers, while

promptly making those specifications available to Microsoft. But

in 2004, Intel announced that, in the future, proprietary Linux

drivers (but not complete specifications) for their hardware will

arrive during the same release cycle as Windows drivers, though

not necessarily the same day.

• Software patents and copyrights are being used by companies to

threaten Linux and other open source efforts. According to Linus

Torvalds, “The things that tend to worry me are software patents.

When nontechnical issues can be used to stop software

development—that for me is the scariest part.”

25-a



Threats to Free Software/Open Source

• A February 22, 2008, New York Times article writes:

Seeking to satisfy European antitrust officials, Microsoft

said on Thursday that it would open up and share many

more of its technical secrets with the rest of the software

industry and competitors.

Microsoft executives, in a conference call, characterized the

announcement as a “strategic shift” in the company’s

business practices and its handling of technical information.

They also portrayed the moves as only partly a nod to the

continuing challenge Microsoft faces from Europe’s

antitrust regulators.

26



Free Software/Open Source Resources

On the WWW page

http://people.cis.ksu.edu/~stough/free/

I’ve collected together links to various resources on free software/open

source. You can also find the slides for this talk there.

27



Possible Discussion Questions

• Should critical software applications, like heart pacemaker

software, be developed using the open source model?

• What is stopping Linux from capturing a significant share of the

desktop market? Could this change?

• Should CIS encourage student involvement in open source

projects?

28


