
Porgi: a Proof-Or-Refutation Generator forIntuitionistic propositional logic�Allen StoughtonyDepartment of Computing and Information SciencesKansas State UniversityManhattan, KS 66506, USAallen@cis.ksu.eduhttp://www.cis.ksu.edu/~allen/home.htmlAbstract. Porgi is a Proof-Or-Refutation Generator for Intuitionistic propositional logic. Givena sequent, Porgi either �nds a minimally sized, normal natural deduction of the sequent, or it�nds a \small", tree-based Kripke countermodel of the sequent. Porgi is implemented in Stan-dard ML, and can be obtained via WWW URL http://www.cis.ksu.edu/~allen/porgi.html.1 IntroductionPorgi is a Proof-Or-Refutation Generator for Intuitionistic propositional logic. Given a sequent�) ', Porgi either �nds a minimally sized, normal natural deduction of ' from the assumptions in�, or it �nds a �nite, tree-based Kripke model whose root node forces all of the formulas in � butdoes not force '. (The size of a natural deduction (respectively, Kripke model) is the number ofnodes in the deduction (respectively, model).) Although an attempt is made to minimize the size ofthe Kripke countermodels, such countermodels are not always minimally sized. On the other hand:(a) Classical models are produced whenever possible. Thus, if a model with more than one nodeis produced, one can conclude that the sequent is provable classically.(b) In Porgi's countermodels, child nodes always force strictly more subformulas of the formulasof the sequent than do their parents.(c) In one of Porgi's countermodels, all nodes other than the root node force the formula '.Porgi can also handle minimal logic, is capable of generating typed lambda terms instead ofnatural deductions, and can display the subformulas of a sequent that are forced at each node of aKripke countermodel.Porgi is implemented in Standard ML (SML/NJ Version 0.93), but produces a UNIX command,porgi, which can be invoked from the shell. Porgi can be obtained|in both source and binary(SPARC/Solaris) forms|via WWW URL http://www.cis.ksu.edu/~allen/porgi.html.2 ApproachPorgi uses a depth-�rst procedure based on the contraction-free, multi-succedent calculus LJT*of [Dyc92] to answer questions about the multi-succedent deducibility relation, `. The search pro-cedure used exploits rule invertibility (semi-invertibility in one case) in order to reduce the amountof backtracking that is done. Duplicate formulas are removed from a subgoal sequent's antecedent�A slightly revised version of the paper that appears in the proceedings of the CADE-13 Workshop on Proof Searchin Type-Theoretic Languages, Rutgers University, pp. 109{116, 1996. The single non-trivial change is footnoted inthe text.yThis work was partially supported by NSF grant CCR-9302962.1



and succedent before the subgoal is processed. Initially, this proof procedure is used to determinewhether the formula ' is deducible from the set of assumptions �.When the answer to this question is \yes", Porgi must �nd a minimally sized, normal naturaldeduction of ' from �. It synthesizes such a deduction in a bottom-up manner (starting from theleaves, working toward the root), restricting its attention to normal deductions whose formulas aresubformulas of the formulas in �[ f'g (this is justi�ed by the subformula property of intuitionisticlogic (see, e.g., Theorem 10.3.6 of [TvD88])). For the purposes of this inductive process, a normaldeduction D1 is considered to be as good as a normal deduction D2 i�(i) D1's conclusion is the same as D2's conclusion; and(ii) every assumption of D1 is also an assumption of D2; and(iii) D1's size is less-than-or-equal-to D2's size; and(iv) if the conclusion of D1 ends a segment (see De�nition 10.1.8 of [TvD88]) that begins withan introduction-rule or false-elimination rule, then so does the conclusion of D2 (i.e., if D1 can't bethe major-premiss of an elimination rule, then neither can D2).When a new (normal) deduction is synthesized, it is only kept if there is no existing deductionthat is at least as good as it. And if the new deduction is better than some existing deductions,then those deductions are discarded. When the inductive process terminates, all deductions of 'whose assumptions are contained in � are collected together (some deductions of ' may have setsof assumptions that are proper subsets of �). A minimally sized element of this set of normaldeductions is then selected as the answer.When ' is not deducible from �, Porgi must �nd a �nite, tree-based Kripke model whose rootnode forces the formulas in � but does not force '. To do this, one could make use of one of thestandard tableau-based algorithms for constructing countermodels to sequents [Fit69, Und94]. Thesealgorithms involve loop-checking, which could be avoided by using an algorithm based on Pinto andDyckho�'s Calculus for Refutation of Intuitionistic Propositions (CRIP) [PD95]. Unfortunately, allof these algorithms sometimes generate needlessly large models, yielding non-classical models whenclassical models would do, and producing models with children that force no more subformulas of� [ f'g than do their parents.Instead of trying to develop a tableau-based approach to synthesizing smaller models, I designeda countermodel generation algorithm that manipulates prime (saturated) theories whose formulasare subformulas of � [ f'g, where a set � of subformulas of � [ f'g is a prime theory1 i� (i) �doesn't contain f (falsity), except in the case of minimal logic, and (ii) if 	 is a nonempty set ofsubformulas of �[f'g such that � ` 	, then there is a  2 	 such that  2 � (cf., De�nition 2.6.2of [TvD88]). The desired countermodel will be formed from a poset of prime theories T that isordered by inclusion and has the following properties:(a) T has a least element that contains all of the formulas in � but does not contain '.(b) If � is in T and  1! 2 is a subformula of �[ f'g that is not in �, then there is a �0 2 Tsuch that � [ f 1g � �0 but  2 62 �0.Porgi forms T in a demand-driven manner. If, as a subgoal, it needs to synthesize an element ofT that includes all of the formulas in �1 but none of the formulas in �2, it starts with the formulas in�1, and then adds additional formulas as described below, always subject to the constraint that �2not be deducible from the augmentations of �1. First, it handles as many implications as possible1Revised de�nition. Note that prime theories are deductively closed, and if  1 _  2 is in a prime theory �, theneither  1 or  2 is in �. 2



in the theory that it's building: either the implication must be included in the theory, or its left-hand-side must be included in the theory. It then produces a prime theory � by adding as manyelements of �[ f'g as possible to the theory being built. If � has no unhandled implications, thenthe subgoal has been achieved. Otherwise, for each unhandled implication  1 !  2, there must bea prime theory �0 2 T such that � [ f 1g � �0 but  2 62 �0. In the worst case, a distinct subgoalwill have to be generated for each unhandled implication. However, Porgi minimizes the number ofsubgoals generated. E.g., if  1! 2 and  01! 02 are both unhandled and �[ f 1;  01g 6` f 2;  02g,then Porgi might generate a single subgoal to form a prime theory containing � [ f 1;  01g but notcontaining f 2;  02g. Many of the prime theories thus generated will fail to be immediate successorsof � in the �nal version of T . Note that a given element of T may be formed multiple times as Tis built.Finally, T must be turned into a tree-based Kripke model. T is made into a tree labeled by theelements of T in the obvious way: if a given node is labeled by the theory �, and �1; : : : ;�n arethe immediate successors of � in T , then this node will have n children with labels �1; : : : ;�n. Theresulting tree may have multiple nodes labeled with identical theories; but there will never be twosuch nodes where one is an ancestor of the other. Only the root node will lack '. Any redundantnon-root nodes of the tree are then removed, one by one, where such a node is redundant i� it canbe removed while preserving the following tree-oriented restatement of property (b):(b') If � is a node's label and  1! 2 is a subformula of �[ f'g that is not in �, then there isa descendant of the node whose label contains  1 but does not contain  2.(When a node is removed from the tree, its children become the children of its parent.) Theresulting tree is made into a Kripke model by stipulating that a given node of the tree forces exactlythose propositional variables that are contained in the prime theory that is the node's label. As aconsequence, a subformula of � [ f'g is forced by a node i� the subformula is an element of thetheory that is the node's label.3 ExamplesFigure 1 shows Porgi's response to the --help command line option.Figure 2 shows how Porgi can be used to �nd a countermodel A to the formula ' = (::P!P )_:P _::P . (The letters A{Z are propositional variables; the nodes of one of Porgi's countermodelsare numbered in the order that they would be reached in a preorder traversal of the countermodeltree; and all timings are on a SPARCstation 10.) The traditional presentation of A is given inFigure 3, and the output of Figure 4 lists the subformulas of ' that are forced at each of A's nodes.A has one less node than the countermodel for ' given on p. 79 of [TvD88].On the other hand, ' becomes provable when P _ :P is allowed as an assumption, as can beseen by examining Figure 5, whose output consists of a natural deduction of ' from P _ :P . Thisnatural deduction is displayed in the traditional manner in Figure 6, and the corresponding lambdaterm is the output of Figure 7.Figure 8 shows how Porgi can be used to check that the sequent ::A!::B ) ::(A! B)is provable (i.e., without going to the additional work of generating a minimally sized deduction of::(A!B) from ::A!::B). On the other hand, this sequent is not provable in minimal logic,and the result of Figure 9 consists of a minimal logic countermodel of the sequent.The interesting thing about the countermodel to  = (A!B)_ (B!C)_ (C!D)_ (D!E)_3



Figure 1: porgi's response to the --help option% porgi --helpPorgi Version 1.0Usage: porgi [OPTION]... sequent-m, --minimal use minimal logic-c, --check just check deducibility-l, --lambda output lambda term instead of deduction-v, --verbose output verbose results-t, --trace output tracing information-h, --help output this information and exitNote: "sequent" must be a single argument, and should have the formform, ..., form => formwhere each "form" is a propositional formula built up using parentheses,whitespace and the following symbols:f (falsity)A-Z (propositional variables)~ (negation) highest precedence& (conjunction) . right associative| (disjunction) . right associative-> (implication) . right associative<-> (biimplication) lowest precedence right associativeFigure 2: a countermodel of ) (::P !P ) _ :P _ ::P% porgi "=> (~~P -> P) | ~P | ~~P"unprovable: => (~~P -> P) | ~P | ~~P2: { P }1: { }3: { }0: { }[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]Figure 3: the traditional presentation of the Kripke model of Figure 221 P 304



Figure 4: the subformulas forced by the nodes of Figure 2's model% porgi --verbose "=> (~~P -> P) | ~P | ~~P"unprovable: => (~~P -> P) | ~P | ~~P2: { P,~~P,~P | ~~P,(~~P -> P) | ~P | ~~P,~~P -> P }1: { ~~P,~P | ~~P,(~~P -> P) | ~P | ~~P }3: { ~P,~P | ~~P,(~~P -> P) | ~P | ~~P,~~P -> P }0: { }[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]Figure 5: a natural deduction of P _ :P ) (::P ! P ) _ :P _ ::P% porgi "P | ~P => (~~P -> P) | ~P | ~~P"provable: P | ~P => (~~P -> P) | ~P | ~~PAss: P | ~P(1) P->I (0): ~~P -> P|I1: (~~P -> P) | ~P | ~~P(1) ~P|I1: ~P | ~~P|I2: (~~P -> P) | ~P | ~~P|E (1): (~~P -> P) | ~P | ~~P[0.410 sec user cpu time (0.410 sec non-gc, 0.000 sec gc)]Figure 6: the traditional presentation of the natural deduction of Figure 5P _ :P P (1)::P ! P !I (0)(::P ! P ) _:P _ ::P _I1 :P (1):P _ ::P _I1(::P ! P ) _ :P _ ::P _I2(::P ! P ) _ :P _ ::P _E (1)5



Figure 7: the lambda term corresponding to Figure 5's deduction% porgi --lambda "P | ~P => (~~P -> P) | ~P | ~~P"provable: x0: P | ~P => (~~P -> P) | ~P | ~~Pcase y1: P, ~Px0in1 ~P | ~~Plambda y0: ~~Py1in2 ~~P -> Pin1 ~~Py1[0.350 sec user cpu time (0.350 sec non-gc, 0.000 sec gc)]Figure 8: checking that ::A!::B ) ::(A!B) is provable% porgi --check "~~A -> ~~B => ~~(A -> B)"provable: ~~A -> ~~B => ~~(A -> B)[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]Figure 9: a minimal logic countermodel to the sequent of Figure 8% porgi --minimal "~~A -> ~~B => ~~(A -> B)"unprovable: ~~A -> ~~B => ~~(A -> B)1: { f, A }0: { }[0.160 sec user cpu time (0.160 sec non-gc, 0.000 sec gc)](E ! F ) _ (F ! A) of Figure 10 is that nodes 1 and 2 both have three roles: node 2 forces A butnot B, forces C but not D, and forces E but not F ; and node 1 forces B but not C, forces D butnot E, and forces F but not A. The more obvious countermodel of  has six nodes in addition toits root.The output of Figure 11 consists of a countermodel to an example suggested by Roy Dyckho�.This model has four fewer nodes than the countermodel generated by his and Pinto's CRIP-basedsystem [Dyc95].It is easy to �nd sequents that take Porgi unacceptably long to prove or refute. For example,it takes Porgi 104 seconds to generate a minimal deduction of the sequent ::A _ ::B _ ::C )::(A_B _C). A countermodel generation problem that is hard for Porgi to solve can be found inFigure 12. The reader will have no trouble coming up with sequents that Porgi will have even moretrouble with.Finally, Figure 13 shows that Porgi can fail to produce countermodels that are minimally sized.6



Figure 10: a countermodel to (A!B) _ (B!C) _ (C!D) _ (D!E) _ (E!F ) _ (F !A)% porgi "=> (A -> B) | (B -> C) | (C -> D) | (D -> E) | (E -> F) | (F -> A)"unprovable: => (A -> B) | (B -> C) | (C -> D) | (D -> E) | (E -> F) | (F -> A)1: { B, D, F }2: { A, C, E }0: { }[0.050 sec user cpu time (0.050 sec non-gc, 0.000 sec gc)]Figure 11: a countermodel to (((::P ! P )!P _ :P )!:P _ ::P )!::P _ (::P ! P )% porgi "=> (((~~P -> P) -> P | ~P) -> ~P | ~~P) -> ~~P | (~~P -> P)"unprovable: => (((~~P -> P) -> P | ~P) -> ~P | ~~P) -> ~~P | (~~P -> P)2: { }3: { P }1: { }5: { P }4: { }0: { }[0.110 sec user cpu time (0.110 sec non-gc, 0.000 sec gc)]Figure 12: \hard" countermodel generation example% porgi "=> ~~A | (A -> ~~B | (B -> ~~C | (C -> (~~D -> D) | ~D | ~~D)))"unprovable: => ~~A | (A -> ~~B | (B -> ~~C | (C -> (~~D -> D) | ~D | ~~D)))5: { A, B, C, D }4: { A, B, C }6: { A, B, C }3: { A, B, C }7: { A, B }2: { A, B }8: { A }1: { A }9: { }0: { }[68.430 sec user cpu time (67.310 sec non-gc, 1.120 sec gc)]7



Figure 13: failure to generate a minimally sized countermodel% porgi "=> (~~P -> P) | ~P | ~~P | (~~Q -> Q) | ~Q | ~~Q"unprovable: => (~~P -> P) | ~P | ~~P | (~~Q -> Q) | ~Q | ~~Q2: { P, Q }1: { P }3: { }5: { P, Q }4: { Q }0: { }[0.240 sec user cpu time (0.240 sec non-gc, 0.000 sec gc)]A smaller countermodel of this �gure's sequent can be constructed from the model of Figure 3 bystipulating that Q as well as P is forced by node 2.4 Directions for further researchThe ine�ciency of Porgi's algorithm for generating minimally sized, normal natural deductions limitsits utility. And, Porgi's algorithm for generating Kripke countermodels has two drawbacks: (i) itdoesn't always generate minimally sized countermodels, and (ii) it is much less e�cient than theexisting tableau-based algorithms for countermodel generation.Ideally, one would like to have a system that could e�ciently generate minimally sized deduc-tions and countermodels. But, given the choice between e�ciency and minimality, I would chooseminimality. My current priority is the development of a usable algorithm for generating minimallysized Kripke countermodels.AcknowledgmentsIt is a pleasure to acknowledge helpful conversations and/or e-mail exchanges with Roy Dyckho�,Brian Howard, Andy Pitts, David Schmidt, Colin Stirling and Lincoln Wallen.References[Dyc92] R. Dyckho�. Contraction-free sequent calculi for intuitionistic logic. Journal of SymbolicLogic, 57(3):795{807, 1992.[Dyc95] R. Dyckho�. Private communication via e-mail, 1995.[Fit69] M. C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, 1969.[PD95] L. Pinto and R. Dyckho�. Loop-free construction of counter-models for intuitionistic propo-sitional logic. In Behara, Fritsch, and Lintz, editors, Symposia Gaussiana, pages 225{232.Walter de Gruyter, 1995. 8



[TvD88] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume 121 of Studiesin Logic and the Foundations of Mathematics. North-Holland, 1988.[Und94] J. Underwood. Aspects of the Computational Content of Proofs. PhD thesis, CornellUniversity, 1994.

9


