CS 591 S2—Formal Language Theory: Integrating Experimentation and Proof—Fall 2018

Problem Set 6

Model Answers

Problem 1

Let pt_1 be the parse tree

And let pt_2 be the parse tree

To check that our answer is correct, we proceed as follows:

```
- val gram = Gram.input "";
@ {variables} A {start variable} A
@ {productions} A -> % | AOA1A
0.
val gram = - : gram
- val pt1 = PT.input "";
@ A(A(A(\%), 0, A(\%), 1, A(\%)), 0, A(\%), 1, A(\%))
@ .
val pt1 = - : pt
- val pt2 = PT.input "";
@ A(A(%), 0, A(%), 1, A(A(%), 0, A(%), 1, A(%)))
0.
val pt2 = - : pt
- PT.equal(pt1, pt2);
val it = false : bool
- Gram.validPT gram pt1;
val it = true : bool
```

```
- Sym.equal(Gram.startVariable gram, PT.rootLabel pt1);
val it = true : bool
- val x1 = PT.yield pt1;
val x1 = [-,-,-,-] : str
- Gram.validPT gram pt2;
val it = true : bool
- Sym.equal(Gram.startVariable gram, PT.rootLabel pt2);
val it = true : bool
- val x2 = PT.yield pt2;
val x2 = [-,-,-,-] : str
- Str.equal(x1, x2);
val it = true : bool
- SymSet.subset(Str.alphabet x1, Gram.alphabet gram);
val it = true : bool
```

Problem 2

(a) Suppose, toward a contradiction, that X is regular. Thus there is an $n \in \mathbb{N}$ with the property of the Pumping Lemma, where X has been substituted for L. Suppose $z = 1^n 3^n$. Because $n \leq n+0 \leq 2n$, we have that $z = 1^n 3^n = 1^n 2^0 3^n \in X$. Thus, since $|z| = 2n \geq n$, it follows that there are $u, v, w \in \mathbf{Str}$ such that z = uvw and properties (1)–(3) of the lemma hold. Since $uvw = z = 1^n 3^n$, (1) tells us that there are $i, j, k \in \mathbb{N}$ such that

 $u = 1^i, v = 1^j, w = 1^k 3^n, i + j + k = n.$

By (2), we have that $j \ge 1$, and thus that i + k = n - j < n. By (3), we have that $1^{i+k}2^03^n = 1^i1^k3^n = uw = uv^0w \in X$. Thus $n \le (i+k)+0 \le 2n$, so that $n \le i+k$. But i+k < n—contradiction. Thus X is not regular.

(b) G is the grammar

$$\begin{split} \mathsf{A} &\rightarrow \mathsf{B} \mid 12\mathsf{B3} \mid 1\mathsf{A3} \mid 11\mathsf{A3}, \\ \mathsf{B} &\rightarrow \% \mid 2\mathsf{B3} \mid 22\mathsf{B3}. \end{split}$$

(c) First we put the Forlan syntax

{variables} A, B {start variable} A
{productions}
A -> B | 12B3 | 1A3 | 11A3;
B -> % | 2B3 | 22B3

for G in the file ps6-p2-gram.txt. Next, we put the following testing code in the file ps6-p2-testing.sml:

(* the symbols 1, 2 and 3 *)
val one : sym = Sym.fromString "1"

```
val two : sym = Sym.fromString "2"
val three : sym = Sym.fromString "3"
(* the alphabet {1, 2, 3} *)
val syms123 = SymSet.fromString "1, 2, 3"
(* the language {1, 2, 3} *)
val strs123 = StrSet.map (fn a => [a]) syms123
(* numConseq(a, x) returns (n, y), where n is the length of the
   longest prefix of the str x all of whose elements are the symbol a,
   and the str y is the result of removing that prefix from x *)
fun numConseq(a, x) =
      let fun num(n, nil)
                              = (n, nil)
            | num(n, b :: bs) =
                if Sym.equal(b, a)
                then num(n + 1, bs)
                else (n, b :: bs)
      in num(0, x) end
(* in_X x tests whether the str x is in the language X *)
fun in_X x =
      let val (i, u) = numConseq(one, x)
          val (j, v) = numConseq(two, u)
          val (k, w) = numConseq(three, v)
      in null w andalso k <= i + j andalso i + j <= 2 * k end
(* if n >= 0, then upto n returns the set of all strs over the
   alphabet {1, 2, 3} of length <= n *)
fun upto 0 = StrSet.fromString "%"
  upto n = StrSet.union(StrSet.power(strs123, n), upto(n - 1))
(* if n >= 0, boundedTest n gram checks that the alphabet of gram is
   {1, 2, 3}, and assesses gram using all test data of length <= n *)</pre>
fun boundedTest n gram =
      let val alls
                    = upto n
          val goods = Set.filter in_X alls
          val bads = StrSet.minus(alls, goods)
          val gen
                     = Gram.generated gram
          val notGen = not o gen
      in SymSet.equal(Gram.alphabet gram, syms123) and also
         Set.all gen goods andalso Set.all notGen bads
```

```
(* test gram checks that the alphabet of gram is {1, 2, 3}, and
assesses gram using all test data of length <= 10 *)</pre>
```

val test = boundedTest 10

end

Then we invoke Forlan and proceed as follows:

```
- val gram = Gram.input "ps6-p2-gram.txt";
val gram = - : gram
- use "ps6-p2-testing.sml";
[opening ps6-p2-testing.sml]
val one = - : sym
val two = -: sym
val three = - : sym
val syms123 = - : sym set
val strs123 = - : str set
val numConseq = fn : sym * sym list -> int * sym list
val in_X = fn : sym list -> bool
val upto = fn : int -> str set
val boundedTest = fn : int -> gram -> bool
val test = fn : gram -> bool
val it = () : unit
- test gram;
val it = true : bool
```

(d) Clearly, alphabet $G = \{1, 2, 3\}$. Let $Y = \{2^j 3^k \mid j, k \in \mathbb{N} \text{ and } k \leq j \leq 2k\}$.

Lemma PS6.2.1

- (A) For all $w \in \Pi_A$, $w \in X$.
- (B) For all $w \in \Pi_{\mathsf{B}}, w \in Y$.

Proof. By induction on Π . There are seven productions to consider.

- $(\mathsf{A} \to \mathsf{B})$ Suppose $w \in \Pi_{\mathsf{B}}$, and assume the inductive hypothesis: $w \in Y$. We must show that $w \in X$. Because $w \in Y$, we have that $w = 2^j 3^k$ for some $j, k \in \mathbb{N}$ such that $k \leq j \leq 2k$. Thus $w = 1^0 2^j 3^k$ and $k \leq 0 + j \leq 2k$, showing that $w \in X$.
- (A \rightarrow 12B3) Suppose $w \in \Pi_B$, and assume the inductive hypothesis: $w \in Y$. We must show that $12w3 \in X$. Because $w \in Y$, we have that $w = 2^j 3^k$ for some $j, k \in \mathbb{N}$ such that $k \leq j \leq 2k$. Thus $12w3 = 122^j 3^k 3 = 1^{1}2^{j+1}3^{k+1}$. Because $k \leq j$, we have that $k+1 \leq j+1 \leq 1+(j+1)$. Because $j \leq 2k$, we have that $1+(j+1) = j+2 \leq 2k+2 = 2(k+1)$. Thus $k+1 \leq 1+(j+1) \leq 2(k+1)$, completing the proof that $12w3 \in X$.
- $(A \to 1A3)$ Suppose $w \in \Pi_A$, and assume the inductive hypothesis: $w \in X$. We must show that $1w3 \in X$. Because $w \in X$, we have that $w = 1^i 2^j 3^k$ for some $i, j, k \in \mathbb{N}$ such that $k \leq i+j \leq 2k$. Thus $1w3 = 11^i 2^j 3^k 3 = 1^{i+1} 2^j 3^{k+1}$. Because $k \leq i+j$, we have that

 $k+1 \le (i+1)+j$. Because $i+j \le 2k$, we have that $(i+1)+j \le 2k+1 \le 2k+2 = 2(k+1)$. Thus $k+1 \le (i+1)+j \le 2(k+1)$, completing the proof that $1w3 \in X$.

- $(\mathsf{A} \to 11\mathsf{A3})$ Suppose $w \in \Pi_\mathsf{A}$, and assume the inductive hypothesis: $w \in X$. We must show that $11w3 \in X$. Because $w \in X$, we have that $w = 1^{i}2^{j}3^{k}$ for some $i, j, k \in \mathbb{N}$ such that $k \leq i+j \leq 2k$. Thus $11w3 = 111^{i}2^{j}3^{k}3 = 1^{i+2}2^{j}3^{k+1}$. Because $k \leq i+j$, we have that $k+1 \leq (i+j)+1 \leq (i+2)+j$. Because $i+j \leq 2k$, we have that $(i+2)+j \leq 2k+2 = 2(k+1)$. Thus $k+1 \leq (i+2)+j \leq 2(k+1)$, completing the proof that $11w3 \in X$.
- $(B \to \%)$ We must show that $\% \in Y$. And this follows since $\% = 2^0 3^0$ and $0 \le 0 \le 2 * 0$.
- (B \rightarrow 2B3) Suppose $w \in \Pi_B$, and assume the inductive hypothesis: $w \in Y$. We must show that $2w3 \in Y$. Because $w \in Y$, we have that $w = 2^j 3^k$ for some $j, k \in \mathbb{N}$ such that $k \leq j \leq 2k$. Thus $2w3 = 22^j 3^k 3 = 2^{j+1} 3^{k+1}$ and $k+1 \leq j+1 \leq 2k+1 \leq 2k+2 = 2(k+1)$, completing the proof that $2w3 \in Y$.
- (B \rightarrow 22B3) Suppose $w \in \Pi_B$, and assume the inductive hypothesis: $w \in Y$. We must show that $22w3 \in Y$. Because $w \in Y$, we have that $w = 2^j 3^k$ for some $j, k \in \mathbb{N}$ such that $k \leq j \leq 2k$. Thus $22w3 = 222^j 3^k 3 = 2^{j+2} 3^{k+1}$ and $k+1 \leq j+2 \leq 2k+2 = 2(k+1)$, completing the proof that $22w3 \in Y$.

Lemma PS6.2.2

 $Y \subseteq \Pi_{\mathsf{B}}.$

Proof. It will suffice to show that, for all $k \in \mathbb{N}$, for all $j \in \mathbb{N}$, if $k \leq j \leq 2k$, then $2^j 3^k \in \Pi_B$. We proceed by mathematical induction.

- (basis step) We must show that, for all $j \in \mathbb{N}$, if $0 \le j \le 2 * 0$, then $2^j 3^0 \in \Pi_B$. Suppose $j \in \mathbb{N}$ and $0 \le j \le 2 * 0$. Thus j = 0, so that $2^j 3^0 = 2^0 3^0 = \% \in \Pi_B$, because of the production $B \to \%$.
- (inductive step) Suppose $k \in \mathbb{N}$, and assume the inductive hypothesis: for all $j \in \mathbb{N}$, if $k \leq j \leq 2k$, then $2^j 3^k \in \Pi_B$. We must show that, for all $j \in \mathbb{N}$, if $k + 1 \leq j \leq 2(k + 1)$, then $2^j 3^{k+1} \in \Pi_B$. Suppose $j \in \mathbb{N}$ and $k + 1 \leq j \leq 2(k + 1)$. We must show that $2^j 3^{k+1} \in \Pi_B$. Because $j \leq 2(k + 1) = 2k + 2$, we have that $j 1 \leq 2k + 1$. There are two cases to consider.
 - Suppose $j-1 \leq 2k$. Since $k+1 \leq j$, we have that $k \leq j-1 \leq 2k$. Hence the inductive hypothesis tells us that $2^{j-1}3^k \in \Pi_B$. Thus $2^j3^{k+1} = 22^{j-1}3^k3 \in \Pi_B$, because of the production $B \to 2B3$.
 - Suppose j-1 = 2k+1. Then j-2 = 2k. And $k \le 2k = j-2$, so that $k \le j-2 \le 2k$. Hence the inductive hypothesis tells us that $2^{j-2}3^k \in \Pi_B$. Thus $2^j3^{k+1} = 222^{j-2}3^k3 \in \Pi_B$, because of the production $B \to 22B3$.

Lemma PS6.2.3 $X \subseteq \Pi_A$.

Proof. It will suffice to show that, for all $k \in \mathbb{N}$, for all $i, j \in \mathbb{N}$, if $k \leq i+j \leq 2k$, then $1^i 2^j 3^k \in \Pi_A$. We proceed by mathematical induction.

- (basis step) We must show that, for all $i, j \in \mathbb{N}$, if $0 \le i + j \le 2 * 0$, then $1^i 2^j 3^0 \in \Pi_A$. Suppose $i, j \in \mathbb{N}$ and $0 \le i + j \le 2 * 0$. Because $i, j \in \mathbb{N}$, it follows that i = 0 and j = 0, so that $0 \le j \le 2 * 0$, and thus $2^j 3^0 \in Y$. By Lemma PS6.2.2, it follows that $2^j 3^0 \in \Pi_B$. Thus $1^i 2^j 3^0 = 1^0 2^j 3^0 = 2^j 3^0 \in \Pi_A$, because of the production $A \to B$.
- (inductive step) Suppose $k \in \mathbb{N}$, and assume the inductive hypothesis: for all $i, j \in \mathbb{N}$, if $k \leq i+j \leq 2k$, then $1^i 2^j 3^k \in \Pi_A$. We must show that, for all $i, j \in \mathbb{N}$, if $k+1 \leq i+j \leq 2(k+1)$, then $1^i 2^j 3^{k+1} \in \Pi_A$. Suppose $i, j \in \mathbb{N}$ and $k+1 \leq i+j \leq 2(k+1)$. We must show that $1^i 2^j 3^{k+1} \in \Pi_A$. There are three cases to consider.
 - Suppose i = 0. Since $k + 1 \le i + j \le 2(k + 1)$, we have that $k + 1 \le j \le 2(k + 1)$, and thus $2^j 3^{k+1} \in Y$. Hence Lemma PS6.2.2 tells us that $2^j 3^{k+1} \in \Pi_B$. Thus $1^i 2^j 3^{k+1} = 1^0 2^j 3^{k+1} = 2^j 3^{k+1} \in \Pi_A$, because of the production $A \to B$.
 - Suppose i = 1. Because $k + 1 \le 1 + j \le 2(k + 1) = 2k + 2$, we have that $k \le j \le 2k + 1$. There are two subcases to consider.
 - Suppose $j \leq 2k$. Then $k \leq j \leq 2k$, so that $2^j 3^k \in Y$. Hence Lemma PS6.2.2 tells us that $2^j 3^k \in \Pi_B$. Because of production $A \to B$, we have $2^j 3^k \in \Pi_A$. Thus $1^i 2^j 3^{k+1} = 12^j 3^k 3 \in \Pi_A$, because of the production $A \to 1A3$.
 - Suppose j = 2k + 1. Thus j 1 = 2k. Since $k \leq 2k = j 1$, it follows that $k \leq j 1 \leq 2k$, and thus $2^{j-1}3^k \in Y$. Hence Lemma PS6.2.2 tells us that $2^{j-1}3^k \in \Pi_B$. Thus $1^i 2^j 3^{k+1} = 122^{j-1} 3^k 3 \in \Pi_A$, because of the production $A \to 12B3$.
 - Suppose $i \ge 2$. Thus $i 2 \in \mathbb{N}$. Since $k + 1 \le i + j \le 2(k + 1) = 2k + 2$, we have that $k + 1 \le (i 2) + 2 + j \le 2k + 2$. Thus $k \le (i 2) + 1 + j$ and $(i 2) + j \le 2k$. Because $k \le (i 2) + 1 + j$, there are two subcases to consider.
 - Suppose $k \leq (i-2) + j$. Since $k \leq (i-2) + j \leq 2k$, the inductive hypothesis tells us that $1^{i-2}2^j3^k \in \Pi_A$. Thus $1^i2^j3^{k+1} = 111^{i-2}2^j3^k3 \in \Pi_A$, because of the production $A \to 11A3$.
 - Suppose k = (i-2)+1+j. Thus k = (i-1)+j. Since $(i-1)+j = k \leq 2k$, we have that $k \leq (i-1)+j \leq 2k$. Hence the inductive hypothesis tells us that $1^{i-1}2^j3^k \in \Pi_A$. Thus $1^i2^j3^{k+1} = 11^{i-1}2^j3^k3 \in \Pi_A$, because of the production $A \to 1A3$.

By Lemmas PS6.2.1(A) and PS6.2.3, we have $\Pi_A \subseteq X$ and $X \subseteq \Pi_A$, showing that $\Pi_A = X$. Thus $L(G) = \Pi_A = X$.