CS 591 S2—Formal Language Theory: Integrating Experimentation and Proof—Fall 2019

Final Examination

Model Answers

Question 1

We can conclude that:

- if j = 0, then j' = 0 and i + k = i' + k'; and
- if $j \ge 1$, then i = i', j = j' and k = k'.

Question 2

$$\begin{split} A &\rightarrow A2 \mid B2 \mid D2, \\ B &\rightarrow 0B2 \mid 0C2, \\ C &\rightarrow 1C2 \mid \%, \\ D &\rightarrow 0D2 \mid E, \\ E &\rightarrow 1E2 \mid 12. \end{split}$$

Question 3

 ${\cal M}$ is

First, we show by induction on Λ that:

- (A) for all $w \in \Lambda_A$, $w \in X_{ee}$;
- (B) for all $w \in \Lambda_{\mathsf{B}}, w \in X_{\mathsf{oe}}$;
- (C) for all $w \in \Lambda_{\mathsf{C}}, w \in X_{\mathsf{eo}}$;

(D) for all $w \in \Lambda_{\mathsf{D}}, w \in X_{\mathsf{oo}}$.

There are nine (one plus the number of transitions) parts to show:

(empty string) We must show that $\% \in X_{ee}$, and this follows by fact (1).

- $(\mathsf{A}, \mathsf{0} \to \mathsf{B})$ Suppose $w \in \Lambda_{\mathsf{A}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{ee}}$. Then $w\mathsf{0} \in X_{\mathsf{ee}}\{\mathsf{0}\} \subseteq X_{\mathsf{oe}}$, by fact (2).
- $(\mathsf{A}, 1 \to \mathsf{C})$ Suppose $w \in \Lambda_{\mathsf{A}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{ee}}$. Then $w1 \in X_{\mathsf{ee}}\{1\} \subseteq X_{\mathsf{eo}}$, by fact (3).
- $(\mathsf{B}, \mathsf{0} \to \mathsf{A})$ Suppose $w \in \Lambda_{\mathsf{B}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{oe}}$. Then $w\mathsf{0} \in X_{\mathsf{oe}}\{\mathsf{0}\} \subseteq X_{\mathsf{ee}}$, by fact (6).
- $(\mathsf{B}, 1 \to \mathsf{D})$ Suppose $w \in \Lambda_{\mathsf{B}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{oe}}$. Then $w1 \in X_{\mathsf{oe}}\{1\} \subseteq X_{\mathsf{oo}}$, by fact (7).
- $(\mathsf{C}, \mathsf{0} \to \mathsf{D})$ Suppose $w \in \Lambda_{\mathsf{C}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{eo}}$. Then $w\mathsf{0} \in X_{\mathsf{eo}}\{\mathsf{0}\} \subseteq X_{\mathsf{oo}}$, by fact (4).
- $(\mathsf{C}, 1 \to \mathsf{A})$ Suppose $w \in \Lambda_{\mathsf{C}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{eo}}$. Then $w1 \in X_{\mathsf{eo}}\{1\} \subseteq X_{\mathsf{ee}}$, by fact (5).
- $(\mathsf{D}, \mathsf{0} \to \mathsf{C})$ Suppose $w \in \Lambda_{\mathsf{D}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{oo}}$. Then $w\mathsf{0} \in X_{\mathsf{oo}}\{\mathsf{0}\} \subseteq X_{\mathsf{eo}}$, by fact (8).
- $(\mathsf{D}, \mathsf{1} \to \mathsf{B})$ Suppose $w \in \Lambda_{\mathsf{D}}$, and assume the inductive hypothesis, $w \in X_{\mathsf{oo}}$. Then $w \mathsf{1} \in X_{\mathsf{oo}} \{\mathsf{1}\} \subseteq X_{\mathsf{oe}}$, by fact (9).

Now we use the result of our induction on Λ to show that $L(M) = X_{eo} \cup X_{oe}$. $(L(M) \subseteq X_{eo} \cup X_{oe})$ Suppose $w \in L(M)$. Because $A_M = \{B, C\}$, we have that $w \in L(M) = \Lambda_B \cup \Lambda_C$. Thus there are two cases to consider:

- Suppose $w \in \Lambda_{\mathsf{B}}$. By part (B) of our induction on Λ , we have $w \in X_{\mathsf{oe}} \subseteq X_{\mathsf{eo}} \cup X_{\mathsf{oe}}$.
- Suppose $w \in \Lambda_{\mathsf{C}}$. By part (C) of our induction on Λ , we have $w \in X_{\mathsf{eo}} \subseteq X_{\mathsf{eo}} \cup X_{\mathsf{oe}}$.

 $(X_{eo} \cup X_{oe} \subseteq L(M))$ Suppose $w \in X_{eo} \cup X_{oe}$. Since $X_{eo} \cup X_{oe} \subseteq \{0,1\}^*$, we have that $w \in \{0,1\}^*$. Suppose, toward a contradiction, that $w \notin L(M)$. Because $w \notin L(M) = \Lambda_{\mathsf{B}} \cup \Lambda_{\mathsf{C}}$, and $w \in \{0,1\}^* = (\operatorname{alphabet} M)^* = \Lambda_{\mathsf{A}} \cup \Lambda_{\mathsf{B}} \cup \Lambda_{\mathsf{C}} \cup \Lambda_{\mathsf{D}}$, it follows that $w \in \Lambda_{\mathsf{A}} \cup \Lambda_{\mathsf{D}}$. Thus there are two cases to consider:

• Suppose $w \in \Lambda_A$. By part (A) of our induction on Λ , we have $w \in X_{ee}$. Thus zeros w and **ones** w are both even. Since **ones** w is even, we have $w \notin X_{eo}$. Since zeros w is even, we have $w \notin X_{oe}$. Thus $w \notin X_{eo} \cup X_{oe}$ —contradiction.

• Suppose $w \in \Lambda_{\mathsf{D}}$. By part (D) of our induction on Λ , we have $w \in X_{\mathsf{oo}}$. Thus **zeros** w and **ones** w are both odd. Since **zeros** w is odd, we have $w \notin X_{\mathsf{eo}}$. Since **ones** w is odd, we have $w \notin X_{\mathsf{oo}}$. Thus $w \notin X_{\mathsf{eo}} \cup X_{\mathsf{oe}}$ —contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus $w \in L(M)$.

Question 4

Suppose, toward a contradiction, that X is regular. Thus there is an $n \in \mathbb{N} - \{0\}$ with the property of the Pumping Lemma for Regular Languages, where X has been substituted for L. Let $z = 0^{2n}1^{1}2^{2n}3^{1}$. Because 2n + 1 = 2n + 1, 2n is even, 1 is odd, 2n is even, and 1 is odd, we have that $z \in X$. And $|z| = 4n + 2 \ge n$. Thus the property of the pumping lemma tells us that there are $u, v, w \in \mathbf{Str}$ such that z = uvw and

- (1) $|uv| \leq n$; and
- (2) $v \neq \%$; and
- (3) $uv^i w \in X$, for all $i \in \mathbb{N}$.

Since $0^{2n}1^12^{2n}3^1 = z = uvw$, (1) tells us that uv consists of only 0's. Thus (2) tells us that $v = 0^p$ for some $p \ge 1$. Consequently, uw has: 2n - p occurrences of 0; 1 occurrence of 1; 2n occurrences of 2; and 1 occurrence of 3. Thus the sum of the numbers of occurrences of 0 and 1 in uw is (2n - p) + 1 = (2n + 1) - p, whereas the sum of the numbers of occurrences of 2 and 3 in uw is 2n + 1. But according to (3), $uw = uv^0w \in X$, with the consequence that (2n + 1) - p = 2n + 1. But then p = 0—contradiction. Thus X is not regular.

Question 5

First, we convert the regular expression $(0 + 1)^*$ generating $\{0, 1\}^*$ into a minimized DFA **allStrDFA**. (We first convert it to an FA, then to an EFA, then to an NFA, and then to a DFA, at which point we can minimize the DFA.) Then $L(allStrDFA) = L((0 + 1)^*) = \{0, 1\}^*$. Next, we convert α into a minimized DFA **isDFA** $_{\alpha}$, and convert β into a minimized DFA **isDFA** $_{\alpha}$, and convert β into a minimized DFA **isDFA** $_{\alpha}$, **isDFA** $_{\beta}$). Let

 $Y = \{ w \in \{0,1\}^* \mid \text{there are } x, y \in \{0,1\}^* \text{ such that } w = xy \text{ and } x \in L(\alpha) \text{ and } y \in L(\beta) \}.$

It is easy to check that $L(\text{compEFA}) = L(\alpha)L(\beta) = Y$. Let **compDFA** be the result of converting **compEFA** to a minimized DFA. Next, let **ansDFA** = **minus**(allStrDFA, compDFA). Then $L(\text{ansDFA}) = \{0, 1\}^* - Y = X$. Finally, we convert **ansDFA** into a regular expression, using our weak simplification function on regular expressions, producing γ . Hence $L(\gamma) = X$.