
CS 591 S2—Formal Language Theory: Integrating Experimentation and

Proof—Fall 2019

Final Examination

Model Answers

Question 1

We can conclude that:

• if j = 0, then j′ = 0 and i+ k = i′ + k′; and

• if j ≥ 1, then i = i′, j = j′ and k = k′.

Question 2

A→ A2 | B2 | D2,

B→ 0B2 | 0C2,

C→ 1C2 | %,

D→ 0D2 | E,

E→ 1E2 | 12.

Question 3
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First, we show by induction on Λ that:

(A) for all w ∈ ΛA, w ∈ Xee;

(B) for all w ∈ ΛB, w ∈ Xoe;

(C) for all w ∈ ΛC, w ∈ Xeo;
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(D) for all w ∈ ΛD, w ∈ Xoo.

There are nine (one plus the number of transitions) parts to show:

(empty string) We must show that % ∈ Xee, and this follows by fact (1).

(A, 0 → B) Suppose w ∈ ΛA, and assume the inductive hypothesis, w ∈ Xee. Then

w0 ∈ Xee{0} ⊆ Xoe, by fact (2).

(A, 1 → C) Suppose w ∈ ΛA, and assume the inductive hypothesis, w ∈ Xee. Then

w1 ∈ Xee{1} ⊆ Xeo, by fact (3).

(B, 0 → A) Suppose w ∈ ΛB, and assume the inductive hypothesis, w ∈ Xoe. Then

w0 ∈ Xoe{0} ⊆ Xee, by fact (6).

(B, 1 → D) Suppose w ∈ ΛB, and assume the inductive hypothesis, w ∈ Xoe. Then

w1 ∈ Xoe{1} ⊆ Xoo, by fact (7).

(C, 0 → D) Suppose w ∈ ΛC, and assume the inductive hypothesis, w ∈ Xeo. Then

w0 ∈ Xeo{0} ⊆ Xoo, by fact (4).

(C, 1 → A) Suppose w ∈ ΛC, and assume the inductive hypothesis, w ∈ Xeo. Then

w1 ∈ Xeo{1} ⊆ Xee, by fact (5).

(D, 0 → C) Suppose w ∈ ΛD, and assume the inductive hypothesis, w ∈ Xoo. Then

w0 ∈ Xoo{0} ⊆ Xeo, by fact (8).

(D, 1 → B) Suppose w ∈ ΛD, and assume the inductive hypothesis, w ∈ Xoo. Then

w1 ∈ Xoo{1} ⊆ Xoe, by fact (9).

Now we use the result of our induction on Λ to show that L(M) = Xeo ∪Xoe.

(L(M) ⊆ Xeo ∪ Xoe) Suppose w ∈ L(M). Because AM = {B,C}, we have that

w ∈ L(M) = ΛB ∪ ΛC. Thus there are two cases to consider:

• Suppose w ∈ ΛB. By part (B) of our induction on Λ, we have w ∈ Xoe ⊆ Xeo ∪Xoe.

• Suppose w ∈ ΛC. By part (C) of our induction on Λ, we have w ∈ Xeo ⊆ Xeo ∪Xoe.

(Xeo ∪ Xoe ⊆ L(M)) Suppose w ∈ Xeo ∪ Xoe. Since Xeo ∪ Xoe ⊆ {0, 1}∗, we have

that w ∈ {0, 1}∗. Suppose, toward a contradiction, that w /∈ L(M). Because w /∈ L(M) =

ΛB∪ΛC, and w ∈ {0, 1}∗ = (alphabetM)∗ = ΛA∪ΛB∪ΛC∪ΛD, it follows that w ∈ ΛA∪ΛD.

Thus there are two cases to consider:

• Suppose w ∈ ΛA. By part (A) of our induction on Λ, we have w ∈ Xee. Thus zerosw

and onesw are both even. Since onesw is even, we have w /∈ Xeo. Since zerosw is

even, we have w /∈ Xoe. Thus w /∈ Xeo ∪Xoe—contradiction.
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• Suppose w ∈ ΛD. By part (D) of our induction on Λ, we have w ∈ Xoo. Thus zerosw

and onesw are both odd. Since zerosw is odd, we have w /∈ Xeo. Since onesw is

odd, we have w /∈ Xoe. Thus w /∈ Xeo ∪Xoe—contradiction.

Because we obtained a contradiction in both cases, we have an overall contradiction. Thus

w ∈ L(M).

Question 4

Suppose, toward a contradiction, that X is regular. Thus there is an n ∈ N− {0} with the

property of the Pumping Lemma for Regular Languages, where X has been substituted for

L. Let z = 02n1122n31. Because 2n+ 1 = 2n + 1, 2n is even, 1 is odd, 2n is even, and 1 is

odd, we have that z ∈ X. And |z| = 4n+2 ≥ n. Thus the property of the pumping lemma

tells us that there are u, v, w ∈ Str such that z = uvw and

(1) |uv| ≤ n; and

(2) v 6= %; and

(3) uviw ∈ X, for all i ∈ N.

Since 02n1122n31 = z = uvw, (1) tells us that uv consists of only 0’s. Thus (2) tells us that

v = 0p for some p ≥ 1. Consequently, uw has: 2n − p occurrences of 0; 1 occurrence of 1;

2n occurrences of 2; and 1 occurrence of 3. Thus the sum of the numbers of occurrences of

0 and 1 in uw is (2n−p)+1 = (2n+1)−p, whereas the sum of the numbers of occurrences

of 2 and 3 in uw is 2n + 1. But according to (3), uw = uv0w ∈ X, with the consequence

that (2n+ 1)− p = 2n+ 1. But then p = 0—contradiction. Thus X is not regular.

Question 5

First, we convert the regular expression (0 + 1)∗ generating {0, 1}∗ into a minimized DFA

allStrDFA. (We first convert it to an FA, then to an EFA, then to an NFA, and then to

a DFA, at which point we can minimize the DFA.) Then L(allStrDFA) = L((0 + 1)∗) =

{0, 1}∗. Next, we convert α into a minimized DFA isDFAα, and convert β into a minimized

DFA isDFAβ . Then we let the EFA compEFA be concat(isDFAα, isDFAβ). Let

Y = {w ∈ {0, 1}∗ | there are x, y ∈ {0, 1}∗ such that w = xy and x ∈ L(α) and y ∈ L(β) }.

It is easy to check that L(compEFA) = L(α)L(β) = Y . Let compDFA be

the result of converting compEFA to a minimized DFA. Next, let ansDFA =

minus(allStrDFA, compDFA). Then L(ansDFA) = {0, 1}∗ − Y = X. Finally, we con-

vert ansDFA into a regular expression, using our weak simplification function on regular

expressions, producing γ. Hence L(γ) = X.
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