CS 591 S2—Formal Language Theory: Integrating Experimentation and Proof—Fall 2018

Problem Set 3

Due by 12:30pm on Thursday, October 18

You must submit your problem set solution as a hard copy, either: at the beginning of class; or, no later than 12:05pm, via the CS Department drop box labeled "CS 591 S2".

Problem 1 (20 Points)

Let $X = \{0,1\}^4 - \{0101, 1010\}$. Use Forlan to find and show the correctness of a regular expression α such that $L(\alpha) = X$. Try to make α as simple as possible (see **Reg.compareComplexity**), and use Forlan to display the closure complexity, size, number of concatenations, and number of symbols of α , as well as whether α is standardized. Try to do as much as possible of the work of finding and showing the correctness of α using Forlan. (Include a listing of your Forlan session.)

Problem 2 (35 Points)

Consider reduction rule (14) from Section 3.3.3 of the book:

If **not**(hasEmp α) and $\mathbf{cc} \alpha \cup \overline{\mathbf{cc} \beta} <_{cc} \overline{\mathbf{cc} \beta}$, then $(\alpha \beta^*)^* \to \% + \alpha (\alpha + \beta)^*$.

(a) What is the rationale for the rule only being applicable when $not(hasEmp \alpha)$? [5 points]

(b) Prove that, for all $\alpha, \beta \in \operatorname{Reg}$, if $\operatorname{cc} \alpha \cup \overline{\operatorname{cc} \beta} <_{cc} \overline{\overline{\operatorname{cc} \beta}}$, then $\operatorname{cc}(\% + \alpha(\alpha + \beta)^*) <_{cc} \operatorname{cc}((\alpha\beta^*)^*)$. [10 points]

(c) Prove that, for all languages A and B,

$$(AB^*)^* = \{\%\} \cup A(A \cup B)^*.$$

[15 points]

(d) Prove that, for all $\alpha, \beta \in \operatorname{Reg}, (\alpha \beta^*)^* \approx \% + \alpha (\alpha + \beta)^*$. [5 points]

Problem 3 (45 points)

Let $X = \{ w \in \{0,1\}^* \mid 010 \text{ is not a substring of } w \}.$

(a) Find a regular expression α such that L	$(\alpha$) = X.	[10]	points
--	-----------	--------	------	--------

(b) Prove that your answer to Part (a) is correct. [35 points]