
3.12: Closure Properties of Regular Languages

In this section, we show how to convert regular expressions to finite
automata, as well as how to convert finite automata to regular
expressions.
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3.12: Closure Properties of Regular Languages

In this section, we show how to convert regular expressions to finite
automata, as well as how to convert finite automata to regular
expressions.

As a result, we will be able to conclude that the following
statements about a language L are equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA; and

• L is accepted by a DFA.
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Introduction

Also, we will introduce:

• operations on FAs corresponding to union, concatenation and
closure;

• an operation on EFAs corresponding to intersection; and

• an operation on DFAs corresponding to set difference.
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is closed under union, concatenation, closure, intersection and set
difference. I.e., we will have that, if L, L1, L2 ∈ RegLan, then
L1 ∪ L2, L1L2, L

∗, L1 ∩ L2 and L1 − L2 are in RegLan.

The book shows several additional closure properties of regular
languages.
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Operations on FAs

We write emptyStr for the DFA

and emptySet for the DFA

Thus, we have that L(emptyStr) = {%} and L(emptySet) = ∅.
Of course emptyStr and emptySet are also NFAs, EFAs and FAs.
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Functions for Building Simple FAs

Next, we define a function strToFA ∈ Str→ FA by: strToFA x is
the FA

Thus, for all x ∈ Str, L(strToFA x) = {x}.
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Functions for Building Simple FAs

Next, we define a function strToFA ∈ Str→ FA by: strToFA x is
the FA

B
x

Start A

Thus, for all x ∈ Str, L(strToFA x) = {x}.

It is also convenient to define a function
symToNFA ∈ Sym→NFA by: symToNFA a = strToFA a. Of
course, symToNFA is also an element of Sym→ EFA and
Sym→FA. Furthermore, for all a ∈ Sym, L(symToNFA a) = {a}.
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Unions of FAs

Next, we define a function/algorithm union ∈ FA× FA→ FA such
that L(union(M1,M2)) = L(M1) ∪ L(M2), for all M1,M2 ∈ FA. If
M1,M2 ∈ FA, then union(M1,M2) is the FA N such that:

• QN =

• sN =

• AN =

• TN =
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} ∪ { 〈2, q〉 | q ∈ QM2

};

• sN = A;

• AN = { 〈1, q〉 | q ∈ AM1
} ∪ { 〈2, q〉 | q ∈ AM2

}; and

• TN =

{A,%→ 〈1, sM1
〉}

∪ {A,%→ 〈2, sM2
〉}

∪ { 〈1, q〉, a → 〈1, r〉 | q, a→ r ∈ TM1
}

∪ { 〈2, q〉, a → 〈2, r〉 | q, a→ r ∈ TM2
}.
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Union Example

For example, if M1 and M2 are the FAs

B
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then union(M1,M2) is the FA
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Union

Proposition 3.12.1

For all M1,M2 ∈ FA:

• L(union(M1,M2)) = L(M1) ∪ L(M2); and

• alphabet(union(M1,M2)) = alphabetM1 ∪ alphabetM2.

Proposition 3.12.2

For all M1,M2 ∈ EFA, union(M1,M2) ∈ EFA.
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Concatenations of FAs

Next, we define a function/algorithm concat ∈ FA× FA→ FA

such that L(concat(M1,M2)) = L(M1)L(M2), for all M1,M2 ∈ FA.
If M1,M2 ∈ FA, then concat(M1,M2) is the FA N such that:

• QN =

• sN =

• AN =

• TN =
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Concatenation

Proposition 3.12.3

For all M1,M2 ∈ FA:

• L(concat(M1,M2)) = L(M1)L(M2); and

• alphabet(concat(M1,M2)) = alphabetM1 ∪ alphabetM2.

Proposition 3.12.4

For all M1,M2 ∈ EFA, concat(M1,M2) ∈ EFA.
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Closures of FAs

Next, we define a function/algorithm closure ∈ FA→ FA such
that L(closureM) = L(M)∗, for all M ∈ FA. If M ∈ FA, then
closureM is the FA N such that:

• QN =

• sN =

• AN =

• TN =
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Closures of FAs

Next, we define a function/algorithm closure ∈ FA→ FA such
that L(closureM) = L(M)∗, for all M ∈ FA. If M ∈ FA, then
closureM is the FA N such that:

• QN = {A} ∪ { 〈q〉 | q ∈ QM };

• sN = A;

• AN = {A}; and

• TN =

{A,%→ 〈sM〉}

∪ { 〈q〉,%→ A | q ∈ AM }

∪ { 〈q〉, a → 〈r〉 | q, a→ r ∈ TM }.
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Closure Example

For example, if M is the FA
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0
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Closure

Proposition 3.12.5

For all M ∈ FA,

• L(closureM) = L(M)∗; and

• alphabet(closureM) = alphabetM.

Proposition 3.12.6

For all M ∈ EFA, closureM ∈ EFA.
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Conversion Algorithm

We define a function/algorithm regToFA ∈ Reg→ FA by
well-founded recursion on the height of regular expressions, as
follows. The goal is for L(regToFAα) to be equal to L(α), for all
regular expressions α.

• regToFA% =

• regToFA $ =

• for all α ∈ Reg, regToFA(α∗) =

• for all α, β ∈ Reg,
regToFA(α+ β) =
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Conversion Algorithm

• for all n ∈ N− {0} and a1, . . . , an ∈ Sym,
regToFA(a1 · · · an) =

• for all n ∈ N− {0}, a1, . . . , an ∈ Sym and α ∈ Reg, if α
doesn’t consist of a single symbol, and doesn’t have the form
b β for some b ∈ Sym and β ∈ Reg, then
regToFA(a1 · · · an α) =

• for all α, β ∈ Reg, if α doesn’t consist of a single symbol,
then regToFA(αβ) =

For example, we have that
regToFA(0101∗) =
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Conversion Algorithm
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• for all α, β ∈ Reg, if α doesn’t consist of a single symbol,
then regToFA(αβ) = concat(regToFAα, regToFAβ).

For example, we have that
regToFA(0101∗) = concat(strToFA(010), regToFA(1∗)).
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Specification of regToFA

Theorem 3.12.7

For all α ∈ Reg:

• L(regToFAα) = L(α); and

• alphabet(regToFAα) = alphabetα.

Proof. Because of the form of recursion used, the proof uses
well-founded induction on the height of α. ✷
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Example Conversion

For example, regToFA(0∗11 + 001∗) is isomorphic to the FA
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Building FAs in Forlan

The Forlan module FA includes these constants and functions for
building finite automata and converting regular expressions to
finite automata:

val emptyStr : fa

val emptySet : fa

val fromStr : str -> fa

val fromSym : sym -> fa

val union : fa * fa -> fa

val concat : fa * fa -> fa

val closure : fa -> fa

val fromReg : reg -> fa

The functions fromStr and fromSym correspond to strToFA and
symToNFA, and are also available in the top-level environment
with the names

val strToFA : str -> fa

val symToFA : sym -> fa
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Building FAs in Forlan

The function fromReg corresponds to regToFA and is available in
the top-level environment with that name:

val regToFA : reg -> fa

The constants emptyStr and emptySet are inherited by the
modules DFA, NFA and EFA.

The function fromSym is inherited by the modules NFA and EFA,
and is available in the top-level environment with the names

val symToNFA : sym -> nfa

val symToEFA : sym -> efa

The functions union, concat and closure are inherited by the
module EFA.
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Forlan Example

Here is how the regular expression 0∗11 + 001∗ can be converted
to an FA in Forlan:

- val reg = Reg.input "";

@ 0*11 + 001*

@ .

val reg = - : reg

- val fa = regToFA reg;

val fa = - : fa

- val fa’ = FA.renameStatesCanonically fa;

val fa’ = - : fa
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Forlan Example

- FA.output("", fa’);

{states} A, B, C, D, E, F, G, H, I, J, K

{start state} A {accepting states} D, G

{transitions}

A, % -> B | E; B, % -> C | H; C, 11 -> D; E, 00 -> F;

F, % -> G; G, % -> J; H, 0 -> I; I, % -> B; J, 1 -> K;

K, % -> G

val it = () : unit
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Forlan Example

Thus fa’ is the finite automaton
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C D

E F G
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Converting FAs to Regular Expressions

Our algorithm for converting FAs to regular expressions makes use
of a more general kind of finite automata that we call regular
expression finite automata.
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Regular Expression Finite Automata

A regular expression finite automaton (RFA) M consists of:

• a finite set QM of symbols;

• an element sM of QM ;

• a subset AM of QM ; and

• a finite subset TM of { (q, , r) | q, r ∈ QM and ∈ }

We write RFA for the set of all RFAs, which is a countably infinite
set.

RFAs are drawn analogously to FAs, and the Forlan syntax for
RFAs is analogous to that of FAs.
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such that, for all q, r ∈ QM , there is at most one α ∈ Reg

such that (q, α, r) ∈ TM .
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set.
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RFAs

For example, the RFA M whose states are A and B, start state is
A, only accepting state is B, and transitions are (A, 2,A),
(A, 00∗,B), (B, 3,B) and (B, 11∗,A) can be drawn as

2

B
00∗

11∗

3

Start A

and expressed in Forlan as

{states} A, B {start state} A {accepting states} B

{transitions}

A, 2 -> A; A, 00* -> B; B, 3 -> B; B, 11* -> A
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More on RFAs

The alphabet of an RFA M (alphabetM) is { a ∈ Sym | there are
q, α, r such that q, α→ r ∈ TM and a ∈ alphabetα }.

For example, the alphabet of our example FA M is {0, 1, 2, 3}.
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More on RFAs

The alphabet of an RFA M (alphabetM) is { a ∈ Sym | there are
q, α, r such that q, α→ r ∈ TM and a ∈ alphabetα }.

For example, the alphabet of our example FA M is {0, 1, 2, 3}.

The Forlan module RFA defines an abstract type rfa (in the
top-level environment) of regular expression finite automata, as
well as some functions for processing RFAs including:

val input : string -> rfa

val output : string * rfa -> unit

val alphabet : rfa -> sym set

val numStates : rfa -> int

val numTransitions : rfa -> int

val equal : rfa * rfa -> bool
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Graphical Editor for RFAs

The Java program JForlan, can be used to view and edit regular
expression finite automata. It can be invoked directly, or run via
Forlan. See the Forlan website for more information.
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Validity of Labeled Paths in RFAs

A labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

is valid for an RFA M iff, for all i ∈ [1 : n],

xi ∈ L(α), for some α ∈ Reg such that qi , α→ qi+1,

and qn+1 ∈ QM .
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Validity of Labeled Paths in RFAs

A labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

is valid for an RFA M iff, for all i ∈ [1 : n],

xi ∈ L(α), for some α ∈ Reg such that qi , α→ qi+1,

and qn+1 ∈ QM .

For example, the labeled path

A
000
⇒ B

3
⇒ B

is valid for our example FA M, because

• 000 ∈ L(00∗) and A, 00∗ → B ∈ T , and

• 3 ∈ L(3) and B, 3→ B ∈ T .
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The Meaning of RFAs

A string w is accepted by an RFA M iff there is a labeled path lp
such that

• the label of lp is w ;

• lp is valid for M;

• the start state of lp is the start state of M; and

• the end state of lp is an accepting state of M.

We have that, if w is accepted by M, then
alphabetw ⊆ alphabetM.

The language accepted by an RFA M (L(M)) is

{w ∈ Str | w is accepted by M }.
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RFA Meaning Example

Consider our example RFA M:

2

B
00∗

11∗

3

Start A

We have that 20 and 0000111103 are accepted by M, but that 23
and 122 are not accepted by M.
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A Function for Combining Transitions

We define a function combineTrans that takes in a pair (simp,U)
such that

• simp ∈ Reg→ Reg and

• U is a finite subset of { p, α→ q | p, q ∈ Sym and α ∈ Reg },

and returns a finite subset V of { p, α→ q | p, q ∈ Sym and
α ∈ Reg } with the property that, for all p, q ∈ Sym, there is at
most one β such that p, β → q ∈ V .
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A Function for Combining Transitions

We define a function combineTrans that takes in a pair (simp,U)
such that

• simp ∈ Reg→ Reg and

• U is a finite subset of { p, α→ q | p, q ∈ Sym and α ∈ Reg },

and returns a finite subset V of { p, α→ q | p, q ∈ Sym and
α ∈ Reg } with the property that, for all p, q ∈ Sym, there is at
most one β such that p, β → q ∈ V .

Given such a pair (simp,U), combineTrans returns the set of all
transitions p, α→ q such that {β | p, β → q ∈ U } is nonempty,
and α = simp(β1 + · · · + βn), where β1, . . . , βn are all of the
elements of this set, listed in increasing order and without
repetition.
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Converting FAs to RFAs

We define a function/algorithm

faToRFA ∈ (Reg→ Reg)→ FA→ RFA.

faToRFA takes in simp ∈ Reg→ Reg, and returns a function that
takes in M ∈ FA, and returns the RFA N such that:

• QN = QM ;

• sN = sM ;

• AN = AM ; and

• TN =

combineTrans(simp, { p, strToReg x → q | p, x → q ∈ TM }).
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FA to RFA Example

For example, if the FA M is

3, 34

B

0

1, 2
AStart

and the simplification function simp is
locallySimplify obviousSubset then faToRFA simpM is the RFA
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FA to RFA Example

For example, if the FA M is

3, 34

B

0

1, 2
AStart

and the simplification function simp is
locallySimplify obviousSubset then faToRFA simpM is the RFA

3(% + 4)

B

0

1 + 2
AStart
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Specification of faToRFA

Proposition 3.12.8

Suppose simp ∈ Reg→ Reg and M ∈ FA. If, for all α ∈ Reg,
L(simp α) = L(α) and alphabet(simp α) ⊆ alphabetα, then

(1) L(faToRFA simpM) = L(M), and

(2) alphabet(faToRFA simpM) = alphabetM.
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Converting FAs to RFAs in Forlan

The RFA module has a function

val fromRFA : (reg -> reg) -> fa -> rfa

that corresponds to faToRFA.
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Converting FAs to RFAs in Forlan

Here is how our conversion example can be carried out in Forlan:

- val simp =

= #2 o

= Reg.locallySimplify(NONE, Reg.obviousSubset);

val simp = fn : reg -> reg

- val fa = FA.input "";

@ {states} A, B {start state} A {accepting states} B

@ {transitions}

@ A, 0 -> A; A, 1 -> B; A, 2 -> B;

@ B, 3 -> B; B, 34 -> B

@ .

val fa = - : fa
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Converting FAs to RFAs in Forlan

- val rfa = RFA.fromFA simp fa;

val rfa = - : rfa

- RFA.output("", rfa);

{states} A, B {start state} A {accepting states} B

{transitions}

A, 0 -> A; A, 1 + 2 -> B; B, 3(% + 4) -> B

val it = () : unit
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Standard FAs and RFAs

We say that an RFA M is standard iff

• M’s start state is not an accepting state, and there are no
transitions into M’s start state (even from sM to itself); and

• M has a single accepting state, and there are no transitions
from that state (even from the accepting state to itself).

38 / 83



Standard FAs and RFAs

We say that an RFA M is standard iff

• M’s start state is not an accepting state, and there are no
transitions into M’s start state (even from sM to itself); and

• M has a single accepting state, and there are no transitions
from that state (even from the accepting state to itself).

Proposition 3.12.9

Suppose M is a standard RFA with only two states, and that q is
M ′s accepting state.

• For all α ∈ Reg, if sM , α→ q, then L(M) =

• If there is no α ∈ Reg such that sM , α→ q, then L(M) =
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Standard FAs and RFAs

We say that an RFA M is standard iff

• M’s start state is not an accepting state, and there are no
transitions into M’s start state (even from sM to itself); and

• M has a single accepting state, and there are no transitions
from that state (even from the accepting state to itself).

Proposition 3.12.9

Suppose M is a standard RFA with only two states, and that q is
M ′s accepting state.

• For all α ∈ Reg, if sM , α→ q, then L(M) = L(α).

• If there is no α ∈ Reg such that sM , α→ q, then L(M) = ∅.
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Standardization

We define a function standardize ∈ RFA→RFA that standardizes
an RFA, as follows. Given an argument M, it returns the RFA N
such that:

• QN = { 〈q〉 | q ∈ QM } ∪ {A,B};

• sN = A;

• AN = {B}; and

• TN

= {A,%→ 〈sM〉}

∪ { 〈q〉,%→ B | q ∈ AM }

∪ { 〈q〉, α→ 〈r〉 | q, α→ r ∈ TM }.
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Standardization

For example, if M is the RFA
3(% + 4)

B

0

1 + 2
AStart

then standardizeM is the RFA

%

3(% + 4)0

B
%

A 〈B〉
1 + 2

〈A〉Start

Proposition 3.12.10

Suppose M is an RFA. Then:
• standardizeM is standard;
• L(standardizeM) = L(M); and
• alphabet(standardizeM) = alphabetM.
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Eliminating a State of an RFA

Next, we define a function eliminateState that takes in a function
simp ∈ Reg→ Reg, and returns a function that takes in a pair
(M, q), where M is an RFA and q ∈ QM − ({sM} ∪ AM), and then
returns an RFA. When called with such a simp and (M, q),
eliminateState returns the RFA N such that:

• QN = QM − {q};

• sN = sM ;

• AN = AM ; and
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eliminateState returns the RFA N such that:

• QN = QM − {q};

• sN = sM ;

• AN = AM ; and

• TN = combineTrans(simp,U ∪ V ), where
• U = { p, α→ r ∈ TM | p 6= q and r 6= q },
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Eliminating a State of an RFA

Next, we define a function eliminateState that takes in a function
simp ∈ Reg→ Reg, and returns a function that takes in a pair
(M, q), where M is an RFA and q ∈ QM − ({sM} ∪ AM), and then
returns an RFA. When called with such a simp and (M, q),
eliminateState returns the RFA N such that:

• QN = QM − {q};

• sN = sM ;

• AN = AM ; and

• TN = combineTrans(simp,U ∪ V ), where
• U = { p, α→ r ∈ TM | p 6= q and r 6= q },
• V = { p, simp(αβ∗γ)→ r | p 6= q, r 6= q, p, α→ q ∈ TM and

q, γ → r ∈ TM }, and
• β is the unique α ∈ Reg such that q, α→ q ∈ TM , if such an

α exists, and is %, otherwise.
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Eliminating a State Example

Suppose simp is locallySimplify obviousSubset

4
C

0
D

1

2

3

BAStart

Then eliminateState simp (M,B) is
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C D

01

3 + 21

AStart

And, we can eliminate C from this RFA, yielding
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Eliminating a State Example

Suppose simp is locallySimplify obviousSubset

4
C

0
D

1

2

3

BAStart

Then eliminateState simp (M,B) is

4
C D

01

3 + 21

AStart

And, we can eliminate C from this RFA, yielding

D
01(3 + 21)∗4

Start A
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Eliminating a State Example

Alternatively, we could eliminate C from

4
C

0
D

1

2

3

BAStart

yielding

43 / 83



Eliminating a State Example

Alternatively, we could eliminate C from

4
C

0
D

1

2

3

BAStart

yielding

13∗4
B D

0

13∗2

AStart

And could then eliminate B from this RFA, yielding
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Eliminating a State Example

Alternatively, we could eliminate C from

4
C

0
D

1

2

3

BAStart

yielding

13∗4
B D

0

13∗2

AStart

And could then eliminate B from this RFA, yielding

D
01(3 + 21)∗4

Start A

(simp(0(13∗2)∗(13∗4)) = 01(3 + 21)∗4.)
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Eliminating a State Example

Instead of eliminating first C and then B, we could have renamed
M’s states using the bijection

{(A,A), (B,C), (C,B), (D,D)}

and then have eliminated states in ascending order, according to
our usual ordering on symbols: first B and then C.

This is the approach we’ll use when looking for alternative answers.
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Properties of eliminateState

Proposition 3.12.11

Suppose simp ∈ Reg→ Reg, M is an RFA and
q ∈ QM − ({sM} ∪ AM).
Then:

(1) eliminateState simp (M, q) has one less state than M.

(2) If M is standard, then eliminateState simp (M, q) is
standard.

(3) If, for all α ∈ Reg, L(simp α) = L(α), then
L(eliminateState simp (M, q)) = L(M).

(4) If, for all α ∈ Reg, alphabet(simp α) ⊆ alphabetα, then
alphabet(eliminateState simp (M, q)) ⊆ alphabetM.
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Eliminating States in Forlan

The RFA module has a function

val eliminateState : (reg -> reg) -> rfa * sym -> rfa

that corresponds to eliminateState.
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Eliminating States in Forlan

Here is how our state-elimination examples can be carried out in
Forlan:

- val rfa = RFA.input "";

@ {states} A, B, C, D {start state} A

@ {accepting states} D

@ {transitions}

@ A, 0 -> B; B, 1 -> C; C, 2 -> B; C, 3 -> C;

@ C, 4 -> D

@ .

val rfa = - : rfa

- val simp =

= #2 o

= Reg.locallySimplify(NONE, Reg.obviousSubset);

val simp = fn : reg -> reg

- val eliminateState = RFA.eliminateState simp;

val eliminateState = fn : rfa * sym -> rfa
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Eliminating States in Forlan

- val rfa’ = eliminateState(rfa, Sym.fromString "B");

val rfa’ = - : rfa

- RFA.output("", rfa’);

{states} A, C, D {start state} A {accepting states} D

{transitions} A, 01 -> C; C, 4 -> D; C, 3 + 21 -> C

val it = () : unit

- val rfa’’ =

= eliminateState(rfa’, Sym.fromString "C");

val rfa’’ = - : rfa

- RFA.output("", rfa’’);

{states} A, D {start state} A {accepting states} D

{transitions} A, 01(3 + 21)*4 -> D

val it = () : unit

48 / 83



Eliminating States in Forlan

- val rfa’’’ =

= eliminateState(rfa, Sym.fromString "C");

val rfa’’’ = - : rfa

- RFA.output("", rfa’’’);

{states} A, B, D {start state} A {accepting states} D

{transitions} A, 0 -> B; B, 13*2 -> B; B, 13*4 -> D

val it = () : unit

- val rfa’’’’ =

= eliminateState(rfa’’’, Sym.fromString "B");

val rfa’’’’ = - : rfa

- RFA.output("", rfa’’’’);

{states} A, D {start state} A {accepting states} D

{transitions} A, 01(3 + 21)*4 -> D

val it = () : unit
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Eliminating States in Forlan

And eliminateState stops us from eliminating a start state or an
accepting state:

- eliminateState(rfa, Sym.fromString "A");

cannot eliminate start state: "A"

uncaught exception Error

- eliminateState(rfa, Sym.fromString "D");

cannot eliminate accepting state: "D"

uncaught exception Error
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Conversion Algorithm

Now, we use eliminateState to define a function/algorithm

rfaToReg ∈ (Reg→ Reg)→ RFA→ Reg.

It takes elements simp ∈ Reg→ Reg and M ∈ RFA, and returns

f (standardizeM),

where f is the function from standard RFAs to regular expressions
that is defined by well-founded recursion on the number of states
of its input, M, as follows:

• If M has only two states, then f returns the label of the
transition from sM to M’s accepting state, if such a transition
exists, and returns $, otherwise.

• Otherwise, f calls itself recursively on
eliminateState simp (M, q), where q is the least element (in
the standard ordering on symbols) of QM − ({sM} ∪ AM).
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Conversion Algorithm

Proposition 3.12.12

Suppose M is an RFA and simp ∈ Reg→ Reg has the property
that, for all α ∈ Reg, L(simp α) = L(α) and
alphabet(simp α) ⊆ alphabetα. Then:

(1) L(rfaToReg simpM) = L(M); and

(2) alphabet(rfaToReg simpM) ⊆ alphabetM.
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Conversion Algorithm

Finally, we define our RFA to regular expression conversion
algorithm/function:

faToReg ∈ (Reg→ Reg)→ FA→ Reg.

faToReg takes in simp ∈ Reg→ Reg, and returns

rfaToReg simp ◦ faToRFA simp.

Proposition 3.12.13

Suppose M is an FA and simp ∈ Reg→ Reg has the property
that, for all α ∈ Reg, L(simp α) = L(α) and
alphabet(simp α) ⊆ alphabetα. Then:

(1) L(faToReg simpM) = L(M); and

(2) alphabet(faToReg simpM) ⊆ alphabetM.
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Converting FAs to Regular Expressions in Forlan

The Forlan module RFA includes functions

val faToReg : (reg -> reg) -> fa -> reg

val faToRegPerms :

int option * (reg -> reg) -> fa -> reg

val faToRegPermsTrace :

int option * (reg -> reg) -> fa -> reg

which are available in the top-level environment as

val faToReg : (reg -> reg) -> fa -> reg

val faToRegPerms :

int option * (reg -> reg) -> fa -> reg

val faToRegPermsTrace :

int option * (reg -> reg) -> fa -> reg

faToRegPerms tries faToReg on a specified number of
permutations of the states of an FA, picking the simplest result.
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Converting FAs to Regular Expressions in Forlan

Suppose fa is the FA

1

0

0

0

0

1 1 1

B

C D

Start A

which accepts
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Converting FAs to Regular Expressions in Forlan

Suppose fa is the FA

1

0

0

0

0

1 1 1

B

C D

Start A

which accepts {w ∈ {0, 1}∗ | w has an even number of 0 and 1’s }.

Converting fa into a regular expression using faToReg and
weaklySimplify yields a fairly complicated answer:
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Converting FAs to Regular Expressions in Forlan

- val reg = faToReg Reg.weaklySimplify fa;

val reg = - : reg

- Reg.output("", reg);

% + 00(00)* +

(1 + 00(00)*1)(11 + 100(00)*1)*(1 + 100(00)*) +

(0(00)*1 +

(1 + 00(00)*1)(11 + 100(00)*1)*(0 + 10(00)*1))

(1(00)*1 +

(0 + 10(00)*1)(11 + 100(00)*1)*(0 + 10(00)*1))*

(10(00)* +

(0 + 10(00)*1)(11 + 100(00)*1)*(1 + 100(00)*))

val it = () : unit
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Converting FAs to Regular Expressions in Forlan

But by using faToRegPerms, we can do much better:

- val reg’ =

= faToRegPerms (NONE, Reg.weaklySimplify) fa;

val reg’ = - : reg

- Reg.output("", reg’);

(00 + 11 + (01 + 10)(00 + 11)*(01 + 10))*

val it = () : unit
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Converting FAs to Regular Expressions in Forlan

But by using faToRegPerms, we can do much better:

- val reg’ =

= faToRegPerms (NONE, Reg.weaklySimplify) fa;

val reg’ = - : reg

- Reg.output("", reg’);

(00 + 11 + (01 + 10)(00 + 11)*(01 + 10))*

val it = () : unit

By using faToRegPermsTrace, we can learn that this answer was
found using the renaming

(A,D), (B,A), (C,B), (D,C)

of M’s states.

That is, it was found by making M into a standard RFA, with new
start and accepting states, and then eliminating the states
corresponding to B, C, D and A, in that order.
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Regular Languages

Since we have algorithms for converting back and forth between
regular expressions and finite automata, as well as algorithms for
converting FAs to EFAs, EFAs to NFAs, and NFAs to DFAs, we
have the following theorem:

Theorem 3.12.14

Suppose L is a language. The following statements are equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA; and

• L is accepted by a DFA.
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Intersections of EFAs

Consider the EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

How can we construct an EFA N such that
L(N) = L(M1) ∩ L(M2)?
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Intersections of EFAs

Consider the EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

How can we construct an EFA N such that
L(N) = L(M1) ∩ L(M2)?

The idea is to make the states of N represent pairs of the form
(q, r), where q ∈ QM1

and r ∈ QM2
.
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Auxiliary Functions for Intersection

In order to define our intersection operation on EFAs, we first need
to define two auxiliary functions. Suppose M1 and M2 are EFAs.
We define a function

nextSymM1,M2
∈ (QM1

× QM2
)× Sym→P(QM1

× QM2
)

by nextSymM1,M2
((q, r), a) =

{ (q′, r ′) | q, a→ q′ ∈ TM1
and r , a→ r ′ ∈ TM2

}.
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In order to define our intersection operation on EFAs, we first need
to define two auxiliary functions. Suppose M1 and M2 are EFAs.
We define a function

nextSymM1,M2
∈ (QM1

× QM2
)× Sym→P(QM1

× QM2
)

by nextSymM1,M2
((q, r), a) =

{ (q′, r ′) | q, a→ q′ ∈ TM1
and r , a→ r ′ ∈ TM2

}.

If M1 and M2 are our example EFAs, then

• nextSym((A,A), 0) = ∅; and

• nextSym((A,B), 0) = {(A,B)}.
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Auxiliary Functions

Suppose M1 and M2 are EFAs. We define a function

nextEmpM1,M2
∈ (QM1

× QM2
)→P(QM1

× QM2
)

by nextEmpM1,M2
(q, r) =

{ (q′, r) | q,%→ q′ ∈ TM1
} ∪ { (q, r ′) | r ,%→ r ′ ∈ TM2

}.
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by nextEmpM1,M2
(q, r) =

{ (q′, r) | q,%→ q′ ∈ TM1
} ∪ { (q, r ′) | r ,%→ r ′ ∈ TM2

}.

If M1 and M2 are our example EFAs, then

• nextEmp(A,A) = {(B,A), (A,B)};

• nextEmp(A,B) = {(B,B)};

• nextEmp(B,A) = {(B,B)}; and

• nextEmp(B,B) = ∅.
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Intersection Algorithm

Now, we define a function/algorithm inter ∈ EFA× EFA→ EFA

such that L(inter(M1,M2)) = L(M1) ∩ L(M2), for all
M1,M2 ∈ EFA. Given EFAs M1 and M2, inter(M1,M2) is the EFA
N that is constructed as follows.
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Intersection Algorithm

Now, we define a function/algorithm inter ∈ EFA× EFA→ EFA

such that L(inter(M1,M2)) = L(M1) ∩ L(M2), for all
M1,M2 ∈ EFA. Given EFAs M1 and M2, inter(M1,M2) is the EFA
N that is constructed as follows.
First, we let Σ = alphabetM1 ∩ alphabetM2.
Next, we generate the least subset X of QM1

× QM2
such that

• (sM1
, sM2

) ∈ X ;

• for all q ∈ QM1
, r ∈ QM2

and a ∈ Σ, if (q, r) ∈ X , then
nextSym((q, r), a) ⊆ X ; and

• for all q ∈ QM1
and r ∈ QM2

, if (q, r) ∈ X , then
nextEmp(q, r) ⊆ X .
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Intersection Algorithm

Then, the EFA N is defined by:

• QN =

• sN =

• AN =

• TN =

63 / 83



Intersection Algorithm

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN =

• AN =

• TN =

63 / 83



Intersection Algorithm

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN = 〈sM1
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Intersection Algorithm

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN = 〈sM1
, sM2

〉;

• AN = { 〈q, r〉 | (q, r) ∈ X and q ∈ AM1
and r ∈ AM2

}; and

• TN =
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Intersection Algorithm

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN = 〈sM1
, sM2

〉;

• AN = { 〈q, r〉 | (q, r) ∈ X and q ∈ AM1
and r ∈ AM2

}; and

• TN =

{ 〈q, r〉, a→ 〈q′, r ′〉 | (q, r) ∈ X and a ∈ Σ and

(q′, r ′) ∈ nextSym((q, r), a) }

∪ { 〈q, r〉,%→ 〈q′, r ′〉 | (q, r) ∈ X and

(q′, r ′) ∈ nextEmp(q, r) }.
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Intersection Example

Suppose M1 and M2 are our example EFAs. Then inter(M1,M2) is

%

% %

%

1

0

Start 〈A,A〉

〈B,A〉

〈A,B〉

〈B,B〉
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Intersection Algorithm

Theorem 3.12.15

For all M1,M2 ∈ EFA:

• L(inter(M1,M2)) = L(M1) ∩ L(M2); and

• alphabet(inter(M1,M2)) ⊆ alphabetM1 ∩ alphabetM2.
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Intersection Algorithm

Theorem 3.12.15

For all M1,M2 ∈ EFA:

• L(inter(M1,M2)) = L(M1) ∩ L(M2); and

• alphabet(inter(M1,M2)) ⊆ alphabetM1 ∩ alphabetM2.

Proposition 3.12.16

For all M1,M2 ∈ NFA, inter(M1,M2) ∈ NFA.
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Intersection Algorithm

Theorem 3.12.15

For all M1,M2 ∈ EFA:

• L(inter(M1,M2)) = L(M1) ∩ L(M2); and

• alphabet(inter(M1,M2)) ⊆ alphabetM1 ∩ alphabetM2.

Proposition 3.12.16

For all M1,M2 ∈ NFA, inter(M1,M2) ∈ NFA.

Proposition 3.12.17

For all M1,M2 ∈ DFA:

(1) inter(M1,M2) ∈ DFA; and

(2) alphabet(inter(M1,M2)) = alphabetM1 ∩ alphabetM2.
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Complementation of DFAs

Next, we define a function complement ∈ DFA× Alp→DFA

such that, for all M ∈ DFA and Σ ∈ Alp,

L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M).
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Complementation of DFAs

Next, we define a function complement ∈ DFA× Alp→DFA

such that, for all M ∈ DFA and Σ ∈ Alp,

L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M).

In the common case when L(M) ⊆ Σ∗, we will have that
alphabet(L(M)) ⊆ Σ, and thus that
(alphabet(L(M)) ∪ Σ)∗ = Σ∗. Hence, it will be the case that

L(complement(M,Σ)) = Σ∗ − L(M).
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Complementation of DFAs

Given a DFA M and an alphabet Σ, complement(M,Σ) is the
DFA N that is produced as follows. First, we let the DFA
M ′ = determSimplify(M,Σ). Thus:

• M ′ is equivalent to M; and

• alphabetM ′ = alphabet(L(M)) ∪ Σ.

Then, we define N by:

• QN =

• sN =

• AN =

• TN =
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Complementation of DFAs

Given a DFA M and an alphabet Σ, complement(M,Σ) is the
DFA N that is produced as follows. First, we let the DFA
M ′ = determSimplify(M,Σ). Thus:

• M ′ is equivalent to M; and

• alphabetM ′ = alphabet(L(M)) ∪ Σ.

Then, we define N by:

• QN = QM′ ;

• sN = sM′ ;

• AN = QM′ − AM′ ; and

• TN = TM′ .
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Complementation of DFAs

Then, for all
w ∈ (alphabetM ′)∗ = (alphabetN)∗ = (alphabet(L(M)) ∪ Σ)∗,

w ∈ L(N) iff δN(sN ,w) ∈ AN

iff δN(sN ,w) ∈ QM′ − AM′

iff δM′(sM′ ,w) 6∈ AM′

iff w 6∈ L(M ′)

iff w 6∈ L(M).
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Complementation of DFAs

Then, for all
w ∈ (alphabetM ′)∗ = (alphabetN)∗ = (alphabet(L(M)) ∪ Σ)∗,

w ∈ L(N) iff δN(sN ,w) ∈ AN

iff δN(sN ,w) ∈ QM′ − AM′

iff δM′(sM′ ,w) 6∈ AM′

iff w 6∈ L(M ′)

iff w 6∈ L(M).

Hence:

Theorem 3.12.18

For all M ∈ DFA and Σ ∈ Alp:

• L(complement(M,Σ)) = (alphabet(L(M)) ∪Σ)∗ − L(M);
and

• alphabet(complement(M,Σ)) = alphabet(L(M)) ∪ Σ.
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Complementation Example

For example, suppose the DFA M is

DC
00

1

0, 1Start A B

1

0

1

Then determSimplify(M, {2}) is the DFA

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1
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Complementation Example

Thus complement(M, {2}) is

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1
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Complementation Example

Let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. Then
L(complement(M, {2})) is

(alphabet(L(M)) ∪ {2})∗ − L(M)

= ({0, 1} ∪ {2})∗ − X

= {w ∈ {0, 1, 2}∗ | w 6∈ X }

= {w ∈ {0, 1, 2}∗ |
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Complementation Example

Let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. Then
L(complement(M, {2})) is

(alphabet(L(M)) ∪ {2})∗ − L(M)

= ({0, 1} ∪ {2})∗ − X

= {w ∈ {0, 1, 2}∗ | w 6∈ X }

= {w ∈ {0, 1, 2}∗ | 2 ∈ alphabetw or 000 is a substring of w }.
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Set Difference of DFAs

We define a function/algorithm minus ∈ DFA×DFA→DFA by:

minus(M1,M2) =
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Set Difference of DFAs

We define a function/algorithm minus ∈ DFA×DFA→DFA by:

minus(M1,M2) = inter(M1, complement(M2, )).
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Set Difference of DFAs

We define a function/algorithm minus ∈ DFA×DFA→DFA by:

minus(M1,M2) = inter(M1, complement(M2, alphabetM1)).
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Set Difference of DFAs

Theorem 3.12.19

For all M1,M2 ∈ DFA:
• L(minus(M1,M2)) = L(M1)− L(M2); and
• alphabet(minus(M1,M2)) = alphabetM1.
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Set Difference of DFAs

Theorem 3.12.19

For all M1,M2 ∈ DFA:
• L(minus(M1,M2)) = L(M1)− L(M2); and
• alphabet(minus(M1,M2)) = alphabetM1.

Proof.

w ∈ L(minus(M1,M2))

iff w ∈ L(inter(M1, complement(M2, alphabetM1)))

iff w ∈ L(M1) and w ∈ L(complement(M2, alphabetM1))

iff w ∈ L(M1) and w ∈ (alphabet(L(M2)) ∪ alphabetM1)
∗ and

w 6∈ L(M2)

iff w ∈ L(M1) and w 6∈ L(M2)

iff w ∈ L(M1)− L(M2).

✷
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Summary of Closure Properties

Theorem 3.12.28

Suppose L, L1, L2 ∈ RegLan. Then:

• L1 ∪ L2 ∈ RegLan (because of the operation union on FAs);

• L1L2 ∈ RegLan (because of the operation concat on FAs);

• L∗ ∈ RegLan (because of the operation closure on FAs);

• L1 ∩ L2 ∈ RegLan (because of the operation inter on EFAs);
and

• L1−L2 ∈ RegLan (because of the operation minus on DFAs).

The book shows several additional closure properties of regular
languages.
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Intersections, Complementations and Differences in

Forlan

The Forlan module EFA defines the function/algorithm

val inter : efa * efa -> efa

which corresponds to inter. It is also inherited by the modules DFA
and NFA.

The Forlan module DFA defines the functions

val complement : dfa * sym set -> dfa

val minus : dfa * dfa -> dfa

which correspond to complement and minus.

The book shows how several other operations on automata and
regular expressions can be used in Forlan.
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Forlan Examples

Suppose the identifiers efa1 and efa2 of type efa are bound to
our example EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A
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Forlan Examples

Then, we can construct inter(M1,M2) as follows:

- val efa = EFA.inter(efa1, efa2);

val efa = - : efa

- EFA.output("", efa);

{states} <A,A>, <A,B>, <B,A>, <B,B>

{start state} <A,A> {accepting states} <B,B>

{transitions}

<A,A>, % -> <A,B> | <B,A>; <A,B>, % -> <B,B>;

<A,B>, 0 -> <A,B>; <B,A>, % -> <B,B>;

<B,A>, 1 -> <B,A>

val it = () : unit
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Forlan Examples

Thus efa is bound to the EFA

%

% %

%

1

0

Start 〈A,A〉

〈B,A〉

〈A,B〉

〈B,B〉
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Forlan Examples

Suppose dfa is bound to our example DFA M

DC
00

1

0, 1Start A B

1

0

1

Then we can construct the DFA complement(M, {2}) as follows:

- val dfa’ = DFA.complement(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa
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Forlan Examples

- DFA.output("", dfa’);

{states} A, B, C, <dead> {start state} A

{accepting states} <dead>

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C;

B, 1 -> A; B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A;

C, 2 -> <dead>; <dead>, 0 -> <dead>;

<dead>, 1 -> <dead>; <dead>, 2 -> <dead>

val it = () : unit
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Forlan Examples

Thus dfa’ is bound to the DFA

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1
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Forlan Examples

Suppose the identifiers efa1 and efa2 of type efa are bound to
our example EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

We can construct an EFA that accepts L(M1)− L(M2) as follows:
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Forlan Examples

Suppose the identifiers efa1 and efa2 of type efa are bound to
our example EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

We can construct an EFA that accepts L(M1)− L(M2) as follows:

- val dfa1 = nfaToDFA(efaToNFA efa1);

val dfa1 = - : dfa

- val dfa2 = nfaToDFA(efaToNFA efa2);

val dfa2 = - : dfa

- val dfa = DFA.minus(dfa1, dfa2);

val dfa = - : dfa
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Forlan Examples

- val efa = injDFAToEFA dfa;

val efa = - : efa

- EFA.accepted efa (Str.input "");

@ 01

@ .

val it = true : bool

- EFA.accepted efa (Str.input "");

@ 0

@ .

val it = false : bool
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