
4.6: Ambiguity of Grammars

In this section, we say what it means for a grammar to be
ambiguous. We also give a straightforward method for
disambiguating grammars for languages with operators of various
precedences and associativities, and consider an efficient parsing
algorithm for such disambiguated grammars.

1 / 16

Motivating Example

Suppose G is our grammar of arithmetic expressions:

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Question: are there multiple ways of parsing the string
〈id〉〈times〉〈id〉〈plus〉〈id〉 according to this grammar?

Answer: Yes:

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

E

E 〈times〉 E

E 〈plus〉 E

〈id〉 〈id〉

〈id〉

(pt1) (pt2)

2 / 16

Definition

In pt1, multiplication has higher precedence than addition; in pt2,
the situation is reversed. Because there are multiple ways of
parsing this string, we say that our grammar is “ambiguous”.

A grammar G is ambiguous iff there is a w ∈ (alphabetG)∗ such
that w is the yield of multiple valid parse trees for G whose root
labels are sG ; otherwise, G is unambiguous.

3 / 16

Examples

The grammar

A→% | 0A1A | 1A0A

is a grammar generating all elements of {0, 1}∗ with a diff of 0, for
the diff function such that diff 0 = −1 and diff 1 = 1.

It is ambiguous as, e.g., 0101 can be parsed as 0%1(01) or
0(10)1%.

In Section 4.5, we saw another grammar for this language:

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC,

which turns out to be unambiguous.
The reason is that ΠB is all elements of {0, 1}∗ with a diff of 1,
but with no proper prefixes with positive diff’s, and ΠC has the
corresponding property for 0/negative.

4 / 16

Disambiguating Grammars of Operators

Not every ambiguous grammar can be turned into an equivalent
unambiguous one. However, we can use a simple technique to
disambiguate our grammar of arithmetic expressions, and this
technique works for many commonly occurring grammars involving
operators of various precedences and associativities.

Since there are two binary operators in our language of arithmetic
expressions, we have to decide:

• whether multiplication has higher or lower precedence than
addition; and

• whether multiplication and addition are left or right
associative.

As usual, we’ll make multiplication have higher precedence than
addition, and let addition and multiplication be left associative.

5 / 16

Example Disambiguation

As a first step towards disambiguating our grammar, we can form
a new grammar with the three variables: E (expressions), T
(terms) and F (factors), start variable E and productions:

E→ T | E〈plus〉E,

T→ F | T〈times〉T,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

The idea is that the lowest precedence operator “lives” at the
highest level of the grammar, that the highest precedence operator
lives at the middle level of the grammar, and that the basic
expressions, including the parenthesized expressions, live at the
lowest level of the grammar.

6 / 16

Example Disambiguation

Now, there is only one way to parse the string
〈id〉〈times〉〈id〉〈plus〉〈id〉, since, if we begin by using the production
E→ T, our yield will only include a 〈plus〉 if this symbol occurs
within parentheses.

If we had more levels of precedence in our language, we would
simply add more levels to our grammar.

7 / 16

Example Disambiguation

On the other hand, there are still two ways of parsing the string
〈id〉〈plus〉〈id〉〈plus〉〈id〉: with left associativity or right associativity.
To finish disambiguating our grammar, we must break the
symmetry of the right-sides of the productions

E→ E〈plus〉E,

T→ T〈times〉T,

turning one of the E’s into T, and one of the T’s into F. To make
our operators be left associative, we must use left recursion,
changing the second E to T, and the second T to F; right
associativity would result from making the opposite choices, i.e.,
using right recursion.

8 / 16

Example Disambiguation

Thus, our unambiguous grammar of arithmetic expressions is

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

It can be proved that this grammar is indeed unambiguous, and
that it is equivalent to the original grammar.

9 / 16

Example Disambiguation

Now, the only parse of 〈id〉〈times〉〈id〉〈plus〉〈id〉 is

T

F

〈id〉

E

〈plus〉E

T

〈id〉

〈times〉T F

F 〈id〉

10 / 16

Example Disambiguation

And, the only parse of 〈id〉〈plus〉〈id〉〈plus〉〈id〉 is

E

〈plus〉E

〈plus〉 T

T

F

〈id〉F

〈id〉

E

T

F

〈id〉

11 / 16

Top-down Parsing for Grammars of Operators

Top-down parsing is a simple and efficient parsing method for
unambiguous grammars of operators like

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

12 / 16

Parsing

Let E , T and F be all of the parse trees that are valid for our
grammar, have yields containing no variables, and whose root
labels are E, T and F, respectively.

Because this grammar has three mutually recursive variables, we
will need three mutually recursive parsing functions,

parE ∈ Str→Option(E × Str),

parT ∈ Str→Option(T × Str),

parF ∈ Str→Option(F × Str),

which attempt to parse an element pt of E , T or F out of a string
w , returning none to indicate failure, and some(pt, y), where y is
the remainder of w , otherwise.

13 / 16

Parsing

Given a string w , parE operates as follows. Because all elements
of E have yields beginning with the yield of an element of T , it
starts by evaluating parTw . If this results in none, it returns
none. Otherwise, it results in some(pt, x), for some pt ∈ T and
x ∈ Str, in which case parE returns parELoop(E (pt), x), where
parELoop ∈ E × Str→Option(E × Str) is defined recursively, as
follows.

Given (pt, x) ∈ E × Str, parELoop proceeds as follows.

• If x = 〈plus〉y for some y , then parELoop evaluates parT y .
• If this results in none, then parELoop returns none.
• Otherwise, it results in some(pt ′, z) for some pt′ ∈ T and

z ∈ Str, and parELoop returns
parELoop(E (pt, 〈plus〉, pt ′), z).

• Otherwise, parELoop returns some(pt, x).

The function parT operates analogously.

14 / 16

Parsing

Given a string w , parF proceeds as follows.

• If w = 〈id〉x for some x , then it returns some(F (〈id〉), x).

• Otherwise, if w = 〈openPar〉x , then parF evaluates parE x .
• If this results in none, it returns none.
• Otherwise, this results in some(pt, y) for some pt ∈ E and

y ∈ Str.

• If y = 〈closPar〉z for some z , then parF returns
some(F (〈openPar〉, pt, 〈closPar〉), z).

• Otherwise, parF returns none.

• Otherwise parF returns none.

15 / 16

Parsing

Given a string w to parse, the algorithm evaluates parEw . If the
result of this evaluation is:

• none, then the algorithm reports failure;

• some(pt,%), then the algorithm returns pt;

• some(pt, y), where y 6= %, then the algorithm reports failure,
because not all of the input could be parsed.

16 / 16

