
CIS 705 — Programming Languages — Spring 2010

Assignment 4

Model Answers

Exercise 1

See sum-range-untyped.txt.

Exercise 2

Let sumRange be the term from Exercise 1. It is easy to see that it is closed. We carry out the

definition of 15 closed values, in order:

(1) tru = λx. λy. x;

(2) fls = λx. λy. y;

(3) if = λb. λf1 . λf2 . b f1 f2 tru;

(4) fix = λf. λy. (λx. f(λy. x x y)) (λx. f(λy. x x y)) y = λf. λy.Nf Nf y, where (as in the lecture

notes) Nt = λx. t (λy. x x y), when t is a closed term or the variable f ;

(5) zero = λs. λz. z;

(6) one = λs. λz. s z;

(7) plus = λn. λm. λs. λz. n s (msz);

(8) isZero = λn. n (λx. fls) tru;

(9) pair = λf. λs. λb. b f s;

(10) fst = λp. p tru;

(11) snd = λp. p fls;

(12) pred = λn.

fst(n

(λp. pair (snd p) (plus one (snd p)))

(pair zero zero));

(13) minus = λn. λm.m pred n;

(14) lessThanOrEqualTo = λn. λm. isZero(minus nm);

(15) sumRangeBody = λsumRange. λn. λm.

if (lessThanOrEqualTonm)

(λx. plus n (sumRange (plus n one)m))

(λx. zero).
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Lemma 2.1

sumRange →∗ fix sumRangeBody.

Proof. Let’s write x1, . . . , x15 for the variables tru, fls, if , fix , zero, one, plus, isZero, pair ,

fst , snd , pred , minus, lessThanOrEqualTo and sumRangeBody , respectively (note that these are the

same names as the left sides of the above definitions), and let’s write v1, . . . , v15 for the closed values

tru, fls, if, fix, zero, one, plus, isZero, pair, fst, snd, pred, minus, lessThanOrEqualTo and sumRangeBody,

respectively.

We write sumRangei, for 0 ≤ i ≤ 15, for the term whose free variables are included in x1,

. . . , xi that is found by going 2i levels down the leftmost path in (the tree) sumRange (so that

sumRange0 = sumRange, and sumRange15 = fix sumRangeBody.)

For 0 ≤ i ≤ 15, define the closed term

sumRangeSubi = [x1 7→ v1] · · · [xi 7→ vi] sumRangei,

so that sumRange = sumRange0 = sumRangeSub0 and sumRangeSub15 = fix sumRangeBody. For

0 ≤ i < 15,

sumRangeSubi = (λxi+1. [x1 7→ v1] · · · [xi 7→ vi] sumRangei+1)vi+1,

and we have that sumRangeSubi → sumRangeSubi+1. Thus

sumRange = sumRangeSub0 →15 sumRangeSub15 = fix sumRangeBody,

so that sumRange →∗ fix sumRangeBody. 2

From the lectures notes, we know that tru, fls, zero and one are closed values representing true,

false, 0 and 1, respectively.

Given n,m ∈ N, we write +[n : m] ∈ N for the sum of

{ i ∈ N | n ≤ i and i ≤ m }.

Given n,m ∈ N, we define n −N m ∈ N by:

n −N m =

{

n − m, if m ≤ n,

0, if m > n.

Lemma 2.2

For all closed terms t and n ∈ N, if t converges to a closed value representing n, then:

• if n = 0, then isZero t converges to a closed value representing true;

• if n > 0, then isZero t converges to a closed value representing false.

Proof. Suppose t is a closed term, n ∈ N, and t converges to a closed value representing n. Because

isZero is a value, we have that

isZero t →∗ isZero t → t (λx. fls) tru.

To see that (λx. fls, tru) ∈ SZ, we use ordinary induction to prove that, for all n ∈ N, (λx. fls)n(tru)

converges.
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(Basis Step) We have that (λx. fls)0(tru) = tru converges.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis, (λx. fls)n(tru) con-

verges. Thus

(λx. fls)n+1(tru) = (λx. fls)((λx. fls)n(tru)) →∗ (λx. fls) (λx. fls)n(tru) → fls,

so that (λx. fls)n+1(tru) converges.

There are two parts to prove.

• Suppose n = 0. Since t represents 0, we have that t (λx. fls) tru →∗ (λx. fls)0(tru) = tru = tru.

Hence isZero t converges to a closed value representing true.

• Suppose n > 0. Since t represents n, Proposition F tells us that

t (λx. fls) tru →∗ (λx. fls)n(tru) = (λx. fls)((λx. fls)n−1(tru)) = (λx. fls) (λx. fls)n−1(tru)

= (λx. fls) (λx. fls)n−1(tru) = fls.

Hence isZero t converges to a closed value representing false.

2

Lemma 2.3

For all closed terms t and n ∈ N, if t converges to a closed value representing n, then pred t converges

to a closed value representing n −N 1.

Proof. Suppose t is a closed term, n ∈ N and t converges to a closed value representing n. Define

closed terms ss and zz by:

ss = λp. pair (snd p) (plus one (snd p)),

zz = pair zero zero.

Because pred is a value, we have that pred t →∗ pred t → fst(t ss zz).

We say that a closed value v represents a pair (n,m) of natural numbers iff there are closed values

v1 and v2 such that v represents (v1, v2), v1 represents n, and v2 represents m. By Proposition H,

we have that zz converges to a closed value representing (0, 0). Since fst is a value, fst(t ss zz) →∗

fst(t ss zz). Thus pred t →∗ fst(t ss zz).

We use ordinary induction to prove that, for all m ∈ N, ssm(zz) converges to a closed value

representing (m −N 1,m) (so that (ss, zz) ∈ SZ).

Basis Step We have that ss0(zz) = zz, which represents (0, 0) = (0 −N 1, 0). Thus ss0(zz)

converges to a closed value representing (0 −N 1, 0).

Inductive Step Suppose m ∈ N, and assume the inductive hypothesis, ssm(zz) converges to a

closed value representing (m −N 1,m). We must show that ssm+1(zz) converges to a closed

value representing ((m + 1) −N 1,m + 1). Let u be the closed value such that ssm(zz) →∗ u,
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fstu converges to a closed value representing m −N 1, and sndu converges to a closed value

representing m. Since ss is a value,

ssm+1(zz) = ss(ssm(zz))

→∗ ss u

→ pair (snd u) (plus one (snd u)).

Since one is a closed value representing 1, and snd u converges to a closed value representing

m, Proposition J tells us that plus one (snd u) converges to a closed value representing m + 1.

Thus, by Proposition H, pair (snd u) (plus one (snd u)) converges to a closed value representing

(m,m+1). Thus ssm+1(zz) converges to a closed value representing (m,m+1). So it remains

to show that (m + 1) −N 1 = m, and this follows since 1 ≤ m + 1, and thus (m + 1) −N 1 =

(m + 1) − 1 = m.

Thus t ss zz converges to ssn(zz), which is a closed value representing (n−N 1, n). Hence fst ssn(zz)

converges to a closed value representing n−N1. Since fst is a value, it follows that fst(t ss zz) converges

to a closed value representing n−N 1, so that pred t converges to a closed value representing n−N 1.

2

Lemma 2.4

For all closed terms t and t′ and n,m ∈ N, if t converges to a closed value representing n, and t′

converges to a closed value representing m, then minus t t′ converges to a closed value representing

n −N m.

Proof. Since minus is a value, by Proposition G, it will suffice to show that, for all closed values

v and v′, and n,m ∈ N, if v represents n, and v′ represents m, then minus v v′ converges to a

closed value representing n −N m. (To see this, suppose t and t′ are closed terms, n,m ∈ N, t

converges to a closed value representing n, and t′ converges to a closed value representing m. Thus

minus t t′ = minus t t′ converges to a closed value representing n −N m. Hence, by Proposition G,

minus t t′ converges and

minus t t′ = minus t t′,

and thus minus t t′ converges to a closed value representing n −N m.) Suppose v and v′ are closed

values, n,m ∈ N, v represents n, and v′ represents m. We have that minus v v′ →∗ v′ pred v.

We use ordinary induction to prove that, for all l ∈ N, predl(v) converges to a closed value

representing n −N l (so that (pred, v) ∈ SZ).

(Basis Step) We have that pred0(v) = v represents n = n −N 0, so that pred0(v) converges to a

closed value representing n −N 0.

(Inductive Step) Suppose l ∈ N, and assume the inductive hypothesis, predl(v) converges to

a closed value representing n −N l. We must show that predl+1(v) converges to a closed

value representing n −N (l + 1). By the inductive hypothesis and Lemma 2.3, we have that

predl+1(v) = pred(predl(v)) converges to a closed value representing (n−N l)−N 1. So it remains

to show that (n −N l) −N 1 = n −N (l + 1). There are two cases to consider.

• Suppose l + 1 ≤ n. Then l ≤ n and 1 ≤ n − l, so that (n −N l) −N 1 = (n − l) −N 1 =

(n − l) − 1 = n − (l + 1) = n −N (l + 1).
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• Suppose l+1 > n. Thus n−N (l+1) = 0, so it will suffice to show that (n−N l)−N1 = 0. If

l > n, then (n−N l)−N1 = 0−N1 = 0. Otherwise, l = n, so that (n−N l)−N1 = 0−N1 = 0.

Thus we have that v′ pred v converges to predm(v), which is a closed value representing n −N m.

Hence minus v v′ converges to a closed value representing n −N m. 2

Lemma 2.5

For all closed terms t and t′ and n,m ∈ N, if t converges to a closed value representing n, and t′

converges to a closed value representing m, then:

• if n ≤ m, then lessThanOrEqualTo t t′ converges to a closed value representing true;

• if n > m, then lessThanOrEqualTo t t′ converges to a closed value representing false.

Proof. By Proposition G, it will suffice to show that, for all closed values v and v′, and n,m ∈ N,

if v represents n, and v′ represents m, then:

• if n ≤ m, then lessThanOrEqualTo v v′ converges to a closed value representing true;

• if n > m, then lessThanOrEqualTo v v′ converges to a closed value representing false.

Suppose v and v′ are closed values, n,m ∈ N, v represents n, and v′ represents m. We have that

lessThanOrEqualTo v v′ →∗ isZero(minus v v′).

By Lemma 2.4, we have that minus v v′ converges to a closed value representing n −N m. There are

two parts to prove.

• Suppose n ≤ m. Thus m ≥ n, so that n −N m = 0. Since minus v v′ converges to a closed

value representing 0, Lemma 2.2 tells us that isZero(minus v v′) converges to a closed value

representing true. Thus lessThanOrEqualTo v v′ converges to a closed value representing true.

• Suppose n > m. Thus m < n, so that n −N m = n − m > 0. Since minus v v′ converges to a

closed value representing a non-zero natural number, Lemma 2.2 tells us that isZero(minus v v′)

converges to a closed value representing false. Thus lessThanOrEqualTo v v′ converges to a

closed value representing false.

2

Let sumRangeBodyFix be the closed value

λy.NsumRangeBody NsumRangeBody y.

Lemma 2.6

(1) sumRange →∗ sumRangeBodyFix.

(2) For all closed values v, sumRangeBodyFix v →∗ sumRangeBody sumRangeBodyFix v.

Proof.
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(1) By Lemma 2.1, we have that

sumRange →∗ fix sumRangeBody

→ λy.NsumRangeBody NsumRangeBody y

= sumRangeBodyFix.

(2) Suppose v is a closed value. Then

sumRangeBodyFix v → NsumRangeBody NsumRangeBody v

= (λx. sumRangeBody (λy. x x y))NsumRangeBody v

→ sumRangeBody (λy.NsumRangeBody NsumRangeBody y) v

= sumRangeBody sumRangeBodyFix v.

2

Lemma 2.7

For all closed values v and v′, and n,m ∈ N, if v represents n, and v′ represents m, then:

• if n ≤ m, then

sumRangeBodyFix v v′ →∗ plus v (sumRangeBodyFix (plus v one) v′);

• if n > m, then

sumRangeBodyFix v v′ →∗ zero.

Proof. Suppose v and v′ are closed values, n,m ∈ N, v represents n, and v′ represents m. By

Lemma 2.6(2), we have that sumRangeBodyFix v v′ →∗ sumRangeBody sumRangeBodyFix v v′, which

is related by →∗ to

if (lessThanOrEqualTo v v′)

(λx. plus v (sumRangeBodyFix (plus v one) v′))

(λx. zero).

There are two parts to prove.

• Suppose n ≤ m. By Lemma 2.5, we have that lessThanOrEqualTo v v′ →∗ u, where u is a

closed value representing true. Thus

if (lessThanOrEqualTo v v′)

(λx. plus v (sumRangeBodyFix (plus v one) v′))

(λx. zero)

is related by →∗ to

if u

(λx. plus v (sumRangeBodyFix (plus v one) v′))

(λx. zero),
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which is related by →∗ to

u (λx. plus v (sumRangeBodyFix (plus v one) v′)) (λx. zero) tru,

which (because u represents true) is related by →∗ to

(λx. plus v (sumRangeBodyFix (plus v one) v′)) tru,

which evaluates to

plus v (sumRangeBodyFix (plus v one) v′).

Thus

sumRangeBodyFix v v′ →∗ plus v (sumRangeBodyFix (plus v one) v′).

• Suppose n > m. By Lemma 2.5, we have that lessThanOrEqualTo v v′ →∗ u, where u is a

closed value representing false. Thus

if (lessThanOrEqualTo v v′)

(λx. plus v (sumRangeBodyFix (plus v one) v′))

(λx. zero)

is related by →∗ to

if u

(λx. plus v (sumRangeBodyFix (plus v one) v′))

(λx. zero),

which is related by →∗ to

u (λx. plus v (sumRangeBodyFix (plus v one) v′)) (λx. zero) tru,

which (because u represents false) is related by →∗ to

(λx. zero) tru,

which evaluates to zero. Thus

sumRangeBodyFix v v′ →∗ zero.

2

Lemma 2.8

For all closed values v and v′, and n,m ∈ N, if v represents n, and v′ represents m, then

sumRangeBodyFix v v′

converges to a closed value representing +[n : m].
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Proof. Define a predicate P (l) on N by: for all closed values v and v′, and n,m ∈ N, if m−N n = l,

v represents n, and v′ represents m, then

sumRangeBodyFix v v′

converges to a closed value representing +[n : m]. It will suffice to show using ordinary induction

that, for all l ∈ N, P (l). (To see this, suppose v and v′ are closed values, n,m ∈ N, v represents n,

and v′ represents m. Then P (m −N n), so that

sumRangeBodyFix v v′

converges to a closed value representing +[n : m].)

(Basis Step) We must show P (0). Suppose v and v′ are closed values, n,m ∈ N, m −N n = 0,

v represents n, and v′ represents m. We must show that

sumRangeBodyFix v v′

converges to a closed value representing +[n : m]. Since m −N n = 0, there are two cases to

consider.

• Suppose n = m. Then +[n : m] = n. Since n ≤ m, Lemma 2.7 tells us that

sumRangeBodyFix v v′ →∗ plus v (sumRangeBodyFix (plus v one) v′). By Proposition J, we

have that plus v one →∗ u, for a closed value u representing n + 1. Because u and v′ are

closed values representing n + 1 and m, respectively, and n + 1 > m, Lemma 2.7 tells

us that sumRangeBodyFix u v′ →∗ zero. Thus sumRangeBodyFix (plus v one) v′ →∗ zero,

by Proposition G. Since v and zero are closed values representing n and 0, respectively,

Proposition J tells us that plus v (sumRangeBodyFix (plus v one) v′) converges to a closed

value representing n + 0 = n = +[n : m]. Thus sumRangeBodyFix v v′ converges to a

closed value representing +[n : m].

• Suppose n > m. Then +[n : m] = 0. By Lemma 2.7, we have that

sumRangeBodyFix v v′ →∗ zero, and zero represents 0 = +[n : m].

(Inductive Step) Suppose l ∈ N, and assume the inductive hypothesis, P (l). We must show

P (l + 1). Suppose v and v′ are closed values, n,m ∈ N, m−N n = l + 1, v represents n, and v′

represents m. We must show that

sumRangeBodyFix v v′

converges to a closed value representing +[n : m]. Since m −N n = l + 1 > 0, we have

that n < m and m − n = l + 1. Hence n + 1 ≤ m, +[n : m] = n + +[n + 1 : m], and

m −N (n + 1) = m − (n + 1) = m − n − 1 = l. Since n < m, Lemma 2.7 tells us that

sumRangeBodyFix v v′ →∗ plus v (sumRangeBodyFix (plus v one) v′). By Proposition J, we have

that plus v one →∗ u, for a closed value u representing n + 1. Since u and v′ are closed

values representing n + 1 and m, respectively, and m−N (n + 1) = l, the inductive hypothesis,

P (l), tells us that sumRangeBodyFix u v′ →∗ u′ for a closed value u′ representing +[n + 1 :

m]. By Proposition G, it follows that sumRangeBodyFix (plus v one) v′ →∗ u′. Since v and u′

are closed values representing n and +[n + 1 : m], respectively, Proposition J tells us that

plus v (sumRangeBodyFix (plus v one) v′) converges to a closed value representing n + +[n + 1 :

m] = +[n : m]. Thus sumRangeBodyFix v v′ converges to a closed value representing +[n : m].
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Now, to prove the result of the exercise, suppose t and t′ are closed terms, n,m ∈ N, t converges

to a closed value representing n, and t′ converges to a closed value representing m. We must show

that sumRange t t′ converges to a closed value representing +[n : m]. By Lemmas 2.6(1) and 2.8, we

have that

sumRange t t′ →∗ sumRangeBodyFix t t′

→∗ v,

where v is a closed value representing +[n : m]. By Proposition G, it follows that sumRange t t′

converges to v.
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