CIS 705 — Programming Languages — Spring 2010

Assignment 4

Model Answers

Exercise 1

See sum-range-untyped.txt.

Exercise 2

Let sumRange be the term from Exercise 1. It is easy to see that it is closed. We carry out the
definition of 15 closed values, in order:

notes) Ny = Az.t (Ay.zxzy), when t is a closed term or the variable f;

(5) zero = As. Az. z;
(6) one = As. Az.sz;
(7) plus = An. Am. As. Az.ns(msz);
(8) isZero = An.n (Ax.fls) tru;
(9) pair = Af.As. Ab.D [ s;
(10) fst = Ap. ptru;
(11) snd = Ap. pfls;
(12) pred = An.
fst(n

(Ap. pair (snd p) (plusone (snd p)))
(pair zero zero));

(13) minus = An. Am.m pred n;
(14) lessThanOrEqualTo = An. Am. isZero(minusnm);

(15) sumRangeBody = AsumRange. An. Am.
if (lessThanOrEqualTon m)
(Az. plusn (sumRange (plusn one) m))
(Ax. zero).



Lemma 2.1
sumRange —* fixsumRangeBody.

Proof. Let’s write x1, ..., x15 for the variables tru, fls, if, fix, zero, one, plus, isZero, pair,
fst, snd, pred, minus, lessThanOrEqualTo and sumRangeBody, respectively (note that these are the
same names as the left sides of the above definitions), and let’s write vy, ..., v15 for the closed values
tru, fls, if, fix, zero, one, plus, isZero, pair, fst, snd, pred, minus, lessThanOrEqualTo and sumRangeBody,
respectively.

We write sumRange;, for 0 < i < 15, for the term whose free variables are included in 1,

.., x; that is found by going 2i levels down the leftmost path in (the tree) sumRange (so that

sumRange, = sumRange, and sumRange,; = fiz sumRangeBody.)

For 0 <7 < 15, define the closed term

sumRangeSub; = [z1 — v1] -+ [z; — v;] sumRange;,

so that sumRange = sumRange, = sumRangeSub, and sumRangeSub,; = fixsumRangeBody. For
0 <i<15,
sumRangeSub; = (Az;q1. [r1 — v1] -+ - [x; — v;] sumRange; | )vit1,

and we have that sumRangeSub; — sumRangeSub,, ;. Thus

sumRange = sumRangeSub, —°

sumRangeSub,; = fixsumRangeBody,
so that sumRange —* fixsumRangeBody. O

From the lectures notes, we know that tru, fls, zero and one are closed values representing true,
false, 0 and 1, respectively.
Given n,m € N, we write +[n : m] € N for the sum of

{ieN|n<iandi<m}.
Given n,m € N, we define n —y m € N by:

n—m, ifm <n,
n—Nm= .
N 0, ifm > n.

Lemma 2.2
For all closed terms t and n € N, if t converges to a closed value representing n, then:

e if n =0, then isZerot converges to a closed value representing true;
e if n > 0, then isZerot converges to a closed value representing false.

Proof. Suppose tis a closed term, n € N, and ¢ converges to a closed value representing n. Because
isZero is a value, we have that

isZerot —™ isZerot — t (Ax. fls) tru.

To see that (Ax.fls, tru) € SZ, we use ordinary induction to prove that, for alln € N, (Az. fls)"(tru)
converges.



(Basis Step) We have that (\z.fls)"(tru) = tru converges.

(Inductive Step) Suppose n € N, and assume the inductive hypothesis, (Az.fls)™(tru) con-
verges. Thus

(Az.fls)" L (tru) = (. fls)(Az. fls)™ (tru)) —* (Ax. fls) (Az. fls)" (tru) — fls,

so that (Az. fls)"*1(tru) converges.
There are two parts to prove.

e Suppose n = 0. Since ¢ represents 0, we have that ¢ (Az.fls) tru —* (Az.fls)?(tru) = tru = tru.
Hence isZerot converges to a closed value representing true.

e Suppose n > 0. Since ¢ represents n, Proposition F tells us that

t (Azx.fls) tru —* (Az.fls)™(tru) = (Az. fls)((Az. fls)»=1(tru)) = (Az.fls) (Az. fls)*—1(tru)
= (Az.fls) (Az.fls)»~1(tru) = fls.

Hence isZerot converges to a closed value representing false.
O

Lemma 2.3
For all closed terms t and n € N, if t converges to a closed value representing n, then predt converges
to a closed value representing n —y 1.

Proof. Suppose t is a closed term, n € N and ¢ converges to a closed value representing n. Define
closed terms ss and zz by:

ss = Ap. pair (snd p) (plus one (snd p)),

zZ = pair Z€ro zero.

Because pred is a value, we have that predt —* predt — fst(¢sszz).

We say that a closed value v represents a pair (n, m) of natural numbers iff there are closed values
vy and v such that v represents (v, vs), v represents n, and vy represents m. By Proposition H,
we have that zz converges to a closed value representing (0,0). Since fst is a value, fst(fsszz) —*
fst(tsszz). Thus predt —* fst(tsszz).

We use ordinary induction to prove that, for all m € N, ss™(zz) converges to a closed value
representing (m —y 1,m) (so that (ss,zz) € SZ).

Basis Step We have that ss®(zz) = zz, which represents (0,0) = (0 —y 1,0). Thus ss’(zz)
converges to a closed value representing (0 —y 1,0).

Inductive Step Suppose m € N, and assume the inductive hypothesis, ss"(zz) converges to a
closed value representing (m —y 1,m). We must show that ss™*1(zz) converges to a closed
value representing ((m + 1) —y 1,m + 1). Let u be the closed value such that ss”(zz) —* u,



fstu converges to a closed value representing m —y 1, and snd u converges to a closed value
representing m. Since ss is a value,

ss" T (ZZ) = ss(ss"(Z2))
—%ssu

— pair (snd u) (plusone (snd u)).

Since one is a closed value representing 1, and snd u converges to a closed value representing
m, Proposition J tells us that plusone (snd u) converges to a closed value representing m + 1.
Thus, by Proposition H, pair (snd «) (plusone (snd u)) converges to a closed value representing
(m,m+1). Thus ss™*1(zZ) converges to a closed value representing (m,m +1). So it remains
to show that (m 4+ 1) —y 1 = m, and this follows since 1 < m + 1, and thus (m +1) -y 1 =
(m+1)—1=m.

Thus ¢ ss7Z converges to ss™(zz), which is a closed value representing (n—y1,n). Hence fst ss™(z2)
converges to a closed value representing n—y1. Since fst is a value, it follows that fst(f sszz) converges
to a closed value representing n —y 1, so that predt converges to a closed value representing n —y 1.
O

Lemma 2.4

For all closed terms t and t' and n,m € N, if t converges to a closed value representing n, and t'
converges to a closed value representing m, then minustt’ converges to a closed value representing
n-—Nm.

Proof. Since minus is a value, by Proposition G, it will suffice to show that, for all closed values
v and v’, and n,m € N, if v represents n, and v’ represents m, then minusv v’ converges to a
closed value representing n —y m. (To see this, suppose ¢t and t' are closed terms, n,m € N, ¢
converges to a closed value representing n, and ¢’ converges to a closed value representing m. Thus
minustt’ = minustt’ converges to a closed value representing n —y m. Hence, by Proposition G,
minustt’ converges and

minustt’ = minustt’,
and thus minustt’ converges to a closed value representing n —y m.) Suppose v and v’ are closed
values, n,m € N, v represents n, and v’ represents m. We have that minusv v’ —* v’ pred v.

We use ordinary induction to prove that, for all [ € N, predl(v) converges to a closed value
representing n —y ! (so that (pred,v) € SZ).

(Basis Step) We have that pred”(v) = v represents n = n —y 0, so that pred’(v) converges to a
closed value representing n —y 0.

(Inductive Step) Suppose | € N, and assume the inductive hypothesis, predl(v) converges to
a closed value representing n —y [. We must show that predH'l(U) converges to a closed
value representing n —y (I + 1). By the inductive hypothesis and Lemma 2.3, we have that
pred ™! (v) = pred(pred'(v)) converges to a closed value representing (n—n1)—y1. So it remains
to show that (n —y{) —y 1 =n —y ({ + 1). There are two cases to consider.

e Suppose I+ 1 <mn. Thenl <nand 1 <n-—1[ sothat (n —n{)—nl=(n—-1)—n1l=
n-0)—-1=n—-(I4+1)=n—-n(I+1).



e Suppose [+1 > n. Thus n—y(I4+1) = 0, so it will suffice to show that (n—yl) —y1 = 0. If
[ > n, then (n—nl)—n1 = 0—y1 = 0. Otherwise, [ = n, so that (n—yl)—y1 =0—y1 = 0.

Thus we have that v’ pred v converges to pred” (v), which is a closed value representing n —y m.
Hence minusv v’ converges to a closed value representing n —y m. O

Lemma 2.5
For all closed terms t and t' and n,m € N, if t converges to a closed value representing n, and t'
converges to a closed value representing m, then:

e if n < m, then lessThanOrEqualTott' converges to a closed value representing true;

e if n. > m, then lessThanOrEqualTott' converges to a closed value representing false.

Proof. By Proposition G, it will suffice to show that, for all closed values v and v’, and n,m € N,
if v represents n, and v’ represents m, then:

e if n < m, then lessThanOrEqualTov v’ converges to a closed value representing true;
e if n > m, then lessThanOrEqualTov v’ converges to a closed value representing false.

Suppose v and v’ are closed values, n, m € N, v represents n, and v’ represents m. We have that
lessThanOrEqualTov v’ —* isZero(minus v v’).

By Lemma 2.4, we have that minusv v’ converges to a closed value representing n —y m. There are
two parts to prove.

e Suppose n < m. Thus m > n, so that n —y m = 0. Since minusv v’ converges to a closed
value representing 0, Lemma 2.2 tells us that isZero(minusvv’) converges to a closed value
representing true. Thus lessThanOrEqualTov v’ converges to a closed value representing true.

e Suppose n > m. Thus m < n, so that n —ym = n —m > 0. Since minusv v’ converges to a
closed value representing a non-zero natural number, Lemma, 2.2 tells us that isZero(minus v v”)
converges to a closed value representing false. Thus lessThanOrEqualTov v’ converges to a
closed value representing false.

Let sumRangeBodyFix be the closed value

>\y- NsumRangeBody NsumRangeBody y.

Lemma 2.6
(1) sumRange —* sumRangeBodyFix.

(2) For all closed values v, sumRangeBodyFix v —* sumRangeBody sumRangeBodyFix v.

Proof.



(1) By Lemma 2.1, we have that
sumRange —* fixsumRangeBody
- )‘y NsumRangeBody NsumRangeBody Y

= sumRangeBodyFix.

(2) Suppose v is a closed value. Then

sumRangeBodyFixv — NsumRangeBody NsumRangeBody v
= (Az.sumRangeBody (\y. z £ ¥)) NeumRangeBody U

— SumRangEBOdy (/\y NsumRangeBody NsumRangeBody y) v

= sumRangeBody sumRangeBodyFix v.

O
Lemma 2.7
For all closed values v and v', and n,m € N, if v represents n, and v’ represents m, then:

e ifn < m, then
sumRangeBodyFixv v’ —* plusv (sumRangeBodyFix (plus v one) v');

e if n > m, then
sumRangeBodyFixv v’ —* zero.

Proof. Suppose v and v’ are closed values, n,m € N, v represents n, and v’ represents m. By
Lemma 2.6(2), we have that sumRangeBodyFixv v’ —* sumRangeBody sumRangeBodyFix v v’, which

is related by —* to

if (lessThanOrEqualTo v v')
(Az. plus v (sumRangeBodyFix (plus v one) v'))

(Az. zero).

There are two parts to prove.
e Suppose n < m. By Lemma 2.5, we have that lessThanOrEqualTovv’ —* u, where u is a

closed value representing true. Thus

if (lessThanOrEqualTo v v')
(Az. plus v (sumRangeBodyFix (plus v one) v'))

(A\z. zero)
is related by —* to
if u
(Az. plus v (sumRangeBodyFix (plus v one) v"))

(A\z. zero),



which is related by —* to
u (Az. plus v (sumRangeBodyFix (plus v one) v')) (Az. zero) tru,
which (because u represents true) is related by —* to
(Az. plusv (sumRangeBodyFix (plus v one) v')) tru,

which evaluates to
plus v (sumRangeBodyFix (plus v one) v").

Thus
sumRangeBodyFix v v’ —* plusv (sumRangeBodyFix (plus v one) v').

e Suppose n > m. By Lemma 2.5, we have that lessThanOrEqualTovv’ —* u, where u is a
closed value representing false. Thus

if (lessThanOrEqualTo v v')
(Az. plusv (sumRangeBodyFix (plus v one) v"))
(Ax. zero)

is related by —* to

if u
(Az. plus v (sumRangeBodyFix (plus v one) v"))
(Ax. zero),

which is related by —* to
u (Az. plus v (sumRangeBodyFix (plus v one) v')) (Az. zero) tru,
which (because u represents false) is related by —* to
(Az. zero) tru,
which evaluates to zero. Thus
sumRangeBodyFixv v’ —* zero.

O

Lemma 2.8
For all closed values v and v', and n, m € N, if v represents n, and v’ represents m, then

sumRangeBodyFixv v’

converges to a closed value representing +[n : m].



Proof. Define a predicate P(l) on N by: for all closed values v and v/, and n,m € N, if m —yn =1,
v represents n, and v’ represents m, then

sumRangeBodyFixv v’

converges to a closed value representing +[n : m]. It will suffice to show using ordinary induction
that, for all [ € N, P(l). (To see this, suppose v and v are closed values, n,m € N, v represents n,
and v’ represents m. Then P(m —yn), so that

sumRangeBodyFix v v’

converges to a closed value representing +[n : m].)

(Basis Step) We must show P(0). Suppose v and v’ are closed values, n,m € N, m —yn = 0,
v represents n, and v’ represents m. We must show that

sumRangeBodyFixv v’

converges to a closed value representing +[n : m]. Since m —y n = 0, there are two cases to
consider.

e Suppose n = m. Then +[n : m] = n. Since n < m, Lemma 2.7 tells us that
sumRangeBodyFix v v' —* plusv (sumRangeBodyFix (plusv one) v’). By Proposition J, we
have that plusvone —* u, for a closed value u representing n + 1. Because u and v’ are
closed values representing n + 1 and m, respectively, and n + 1 > m, Lemma 2.7 tells
us that sumRangeBodyFixuv’ —* zero. Thus sumRangeBodyFix (plusvone) v’ —* zero,
by Proposition G. Since v and zero are closed values representing n and 0, respectively,
Proposition J tells us that plusv (sumRangeBodyFix (plusvone)v’) converges to a closed
value representing n + 0 = n = +[n : m]. Thus sumRangeBodyFixv v’ converges to a
closed value representing +[n : m].

e Suppose n > m. Then +[n : m] = 0. By Lemma 2.7, we have that
sumRangeBodyFix v v' —* zero, and zero represents 0 = +[n : m].

(Inductive Step) Suppose | € N, and assume the inductive hypothesis, P(l). We must show
P(I+41). Suppose v and v are closed values, n,m € N, m —yn =+ 1, v represents n, and v’
represents m. We must show that

sumRangeBodyFixv v’

converges to a closed value representing +[n : m]. Since m —yn = 14+ 1 > 0, we have
that n < mand m —n =1+1. Hencen+1 < m, +[n:m] =n++n+1: m], and
m-ymn+1) =m-(mn+1) =m-—n—1=1 Since n < m, Lemma 2.7 tells us that
sumRangeBodyFix v v/ —* plus v (sumRangeBodyFix (plusv one) v’). By Proposition J, we have
that plusvone —* wu, for a closed value u representing n + 1. Since u and v’ are closed
values representing n + 1 and m, respectively, and m —y (n + 1) = [, the inductive hypothesis,
P(1), tells us that sumRangeBodyFixu v’ —* ' for a closed value v’ representing +[n + 1 :
m]. By Proposition G, it follows that sumRangeBodyFix (plusvone) v’ —* «'. Since v and v’
are closed values representing n and +[n + 1 : m], respectively, Proposition J tells us that
plus v (sumRangeBodyFix (plusv one) v’) converges to a closed value representing n + +[n + 1 :
m] = +[n : m]. Thus sumRangeBodyFixv v’ converges to a closed value representing +[n : m].



Now, to prove the result of the exercise, suppose t and t’ are closed terms, n,m € N, ¢ converges
to a closed value representing n, and ¢’ converges to a closed value representing m. We must show
that sumRange ¢t converges to a closed value representing +[n : m]. By Lemmas 2.6(1) and 2.8, we
have that

sumRangett’ —* sumRangeBodyFixtt’

*)* /I_}’

where v is a closed value representing +[n : m]. By Proposition G, it follows that sumRangett’

converges to v.



