
Synchronization Variables

CML’s SyncVar structure provides two kinds of synchronous variables:

incremental variables, or I-vars, and mutable variables, or M-vars.

These variables have two states: empty and full. I-vars are write-once

variables, whereas M-vars may be written, emptied, written again, etc.

I-vars and M-vars could be implemented in terms of channels, but they

are actually implemented in a more efficient way. It is more efficient to

use I-vars for communicating replies, than to use reply channels.

1



Synchronization Variables (Cont.)

Here is part of the signature of the SyncVar structure:

exception Put (* raised when writing to non-empty var *)

type ’a ivar (* pointer to I-var *)

val iVar : unit -> ’a ivar

val iPut : ’a ivar * ’a -> unit

val iGet : ’a ivar -> ’a

val iGetEvt : ’a ivar -> ’a CML.event

type ’a mvar (* pointer to M-var *)

val mVar : unit -> ’a mvar

val mPut : ’a mvar * ’a -> unit

val mTake : ’a mvar -> ’a (* empties *)

val mTakeEvt : ’a mvar -> ’a CML.event (* empties on sync *)

val mGet : ’a mvar -> ’a

val mGetEvt : ’a mvar -> ’a CML.event

2



Multicasting

A multicast channel is a way of sending messages to an arbitrary

number of listeners via ports onto the multicast channel. When a

message is sent to the multicast channel, it is available via all ports

onto the multicast channel that existed when the message was sent.

Multicast channels are provided by CML’s Multicast structure. But

we will re-implement part of this structure, as an example.

3



Multicasting (Cont.)

A multicast channel consists of a stream of messages made out of

I-vars, a server thread (which takes in messages to be multicasted, plus

requests to create new ports), plus some number of port threads.

121110

server

port port

The server thread keeps a pointer to the unfilled I-var at the end of

the stream. And each port thread has a pointer to the I-var whose

value will next be supplied to threads receiving on that port.

4


