CS 591 S2—Formal Language Theory: Integrating Experimentation and Proof—Fall 2019

Problem Set 6

Model Answers

Problem 1

Easy mathematical inductions show that for all $n \in \mathbb{N}$, $\operatorname{diff}(1^n) = n$ and $\operatorname{diff}(0^n) = -2n$. Let X be the least subset of $\{0, 1\}^*$ such that:

- (1) $\% \in X;$
- (2) $1 \in X;$
- (3) for all $x, y \in X$, $1x1y0 \in X$;
- (4) for all $x, y \in X, xy \in X$.

In Problem Set 2, we proved X = Y.

Lemma PS6.1.1

For all $n \in \mathbb{N}$, $1^{2n} \mathbf{0}^n \in Y$.

Proof. Because Y = X, it will suffice to show that, for all $n \in \mathbb{N}$, $1^{2n}0^n \in X$. We proceed by mathematical induction.

- (basis step) We have that $1^{2*0}0^0 = 1^00^0 = \%\% = \% \in X$, by Rule (1) of X's definition.
- (inductive step) Suppose $n \in \mathbb{N}$, and assume the inductive hypothesis: $1^{2n}0^n \in X$. Then $1^{2(n+1)}0^{n+1} = 1^{2n+2}0^n 0 = 1^{1+1+2n}0^n 0 = 111^{2n}0^n 0 = 1(\%)1(1^{2n}0^n)0 \in X$, by Rule (3) of X's definition, since $\% \in X$ (by Rule (1) of X's definition) and $1^{2n}0^n \in X$ (by the inductive hypothesis).

Suppose, toward a contradiction, that Y is regular. Thus there is an $n \in \mathbb{N} - \{0\}$ with the property of the Pumping Lemma, where Y has been substituted for L. Suppose $z = 1^{2n}0^n$. By Lemma PS6.1.1, we have that $z \in Y$. Thus, since $|z| = 2n + n = 3n \ge n$, it follows there are $u, v, w \in$ **Str** such that z = uvw and properties (1)–(3) of the lemma hold. Since $uvw = z = 1^{2n}0^n = 1^n1^n0^n$, (1) tells us that there are $i, j, k \in \mathbb{N}$ such that

$$u = 1^i, v = 1^j, w = 1^k 1^n 0^n, i + j + k = n.$$

By (2), we have that $j \ge 1$, and thus that i + k = n - j < n. By (3), we have that $1^{i+k+n}0^n = 1^i 1^k 1^n 0^n = uw = u\%w = uv^0 w \in Y$. Because $1^{i+k+n}0^n$ is a prefix of itself, we have that $i + k - n = i + k + n + -n + -n = (i + k + n) + -2n = \text{diff}(1^{i+k+n}) + \text{diff}(0^n) = \text{diff}(1^{i+k+n}0^n) \ge 0$. But since i + k < n, we have that i + k - n < 0—contradiction. Thus Y is not regular.

Problem 2

Let G be the grammar

$$\mathsf{A} \rightarrow \% \mid \mathsf{1} \mid \mathsf{1}\mathsf{A}\mathsf{1}\mathsf{A}\mathsf{0} \mid \mathsf{A}\mathsf{A}$$

Because Y = X (see Problem 1), it will suffice to show that L(G) = X.

Lemma PS6.2.1

For all $w \in \Pi_A$, $w \in X$.

Proof. We proceed by induction on Π . There are four productions to consider.

- $(A \rightarrow \%)$ We must show that $\% \in X$, and this follows by Rule (1) of X's definition.
- $(A \rightarrow 1)$ We must show that $1 \in X$, and this follows by Rule (2) of X's definition.
- $(A \rightarrow 1A1A0)$ Suppose $x, y \in \Pi_A$, and assume the inductive hypothesis: $x, y \in X$. Then $1x1y0 \in X$ by Rule 3 of X's definition.
- $(A \to AA)$ Suppose $x, y \in \Pi_A$, and assume the inductive hypothesis: $x, y \in X$. Then $xy \in X$ by Rule 4 of X's definition.

Lemma PS6.2.2

For all $w \in X$, $w \in \Pi_A$.

Proof. We proceed by induction on X. There are four steps to show.

- (1) We must show that $\% \in \Pi_A$. And this follows because of the production $A \to \%$ of G.
- (2) We must show that $1 \in \Pi_A$. And this follows because of the production $A \to 1$ of G.
- (3) Suppose $x, y \in X$, and assume the inductive hypothesis: $x, y \in \Pi_A$. We must show that $1x1y0 \in \Pi_A$, and this follows because of the production $A \rightarrow 1A1A0$ and the inductive hypothesis.
- (4) Suppose $x, y \in X$, and assume the inductive hypothesis: $x, y \in \Pi_A$. We must show that $xy \in \Pi_A$, and this follows because of the production $A \to AA$ and the inductive hypothesis.

Lemma PS6.2.1 tells us that $L(G) = \prod_{A} \subseteq X$, and Lemma PS6.2.2 tells us that $X \subseteq \prod_{A} = L(G)$. Thus L(G) = X.

Problem 3

(a) $L(G) = \{ 0^i 1^j 2^k \mid i, j, k \in \mathbb{N} \text{ and } (i < j \text{ or } j < k) \}.$

(b) Let pt_1 be the parse tree

And let pt_2 be the parse tree

To check that our answer is correct, we proceed as follows:

```
- fun amb(gram, pt1, pt2) =
        not(PT.equal(pt1, pt2))
                                                                       andalso
=
        Gram.validPT gram pt1 andalso Gram.validPT gram pt2
                                                                       andalso
=
        Sym.equal(Gram.startVariable gram, PT.rootLabel pt1)
=
                                                                       andalso
        Sym.equal(Gram.startVariable gram, PT.rootLabel pt2)
                                                                        andalso
=
=
        Str.equal(PT.yield pt1, PT.yield pt2)
                                                                       andalso
        SymSet.subset(Str.alphabet(PT.yield pt1), Gram.alphabet gram);
=
val amb = fn : gram * pt * pt -> bool
- val gram = Gram.input "";
@ {variables} A, B, C, D, E {start variable} A
@ {productions}
@ A -> BE | DC; B -> 1 | B1 | OB1; C -> 2 | C2 | 1C2;
@ D -> % | OD; E -> % | 2E
@ .
val gram = - : gram
- val pt1 = PT.fromString "A(B(1), E(2, E(2, E(%))))";
val pt1 = - : pt
- val pt2 = PT.fromString "A(D(%), C(1, C(2), 2))";
val pt2 = - : pt
- amb(gram, pt1, pt2);
val it = true : bool
```