
CS 516—Software Foundations via Formal Languages—Spring 2025

Problem Set 2

Due by 11:59pm on Thursday, February 20

Submission via Gradescope and GitHub

Problem 1 (60 points)

Define a function diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − 2(the number of 0’s in w).

Thus

• diff % = 0;

• diff 0 = −2;

• diff 1 = 1;

• for all x, y ∈ {0, 1}∗, diff(xy) = diff x+ diff y.

And, for all w ∈ {0, 1}∗, diff w = 0 iff w has twice as many 1’s as 0’s.

Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X;

(2) 1 ∈ X;

(3) for all x, y ∈ X, 1x1y0 ∈ X;

(4) for all x, y ∈ X, xy ∈ X.

Let Y = {w ∈ {0, 1}∗ | for all prefixes v of w,diff v ≥ 0 }.

(a) Use induction on X to prove that X ⊆ Y . [20 points]

(b) Use strong string induction to prove that Y ⊆ X. Your proof should be “constructive”

in the sense that an algorithm for explaining why elements of Y are in X can be

extracted from it. [40 points]



Problem 2 (40 points)

The context for this problem is Problem 1 and the Forlan/SML file ps2-framework.sml

(see the course website). Among the definitions in this file are the following datatype and

functions:

datatype expl =

Rule1 (* % *)

| Rule2 (* 1 *)

| Rule3 of expl * expl (* 1x1y0 *)

| Rule4 of expl * expl (* xy *)

val printExplanation : expl -> unit

val test : (str -> expl) -> str -> unit

A value of type expl explains why a string is in X. The four constructors correspond to

the four rules of X’s definition:

• Rule1 explains that % ∈ X because of rule (1) of X’s definition;

• Rule2 explains that 1 ∈ X because of rule (2) of X’s definition;

• if expl1 and expl2 have type expl, then Rule3(expl1, expl 2) explains that 1x11x20 ∈ X

because of rule (3) of X’s definition, where x1 is the string whose membership in X

is explained by expl1, and x2 is the string whose membership in X is explained by

expl2;

• if expl1 and expl2 have type expl, then Rule4(expl 1, expl2) explains that x1x2 ∈ X

because of rule (4) of X’s definition, where x1 is the string whose membership in X

is explained by expl1, and x2 is the string whose membership in X is explained by

expl2.

E.g.,

Rule4(Rule3(Rule3(Rule2, Rule1), Rule4(Rule2, Rule3(Rule2, Rule1))), Rule2)

explains why the string 1111011111001 is in X:

1111011111001 = 111101111100 @ 1 is in X, by rule (4)

111101111100 = 1 @ 1110 @ 1 @ 11110 @ 0 is in X, by rule (3)

1110 = 1 @ 1 @ 1 @ % @ 0 is in X, by rule (3)

1 is in X, by rule (2)

% is in X, by rule (1)

11110 = 1 @ 1110 is in X, by rule (4)

1 is in X, by rule (2)

1110 = 1 @ 1 @ 1 @ % @ 0 is in X, by rule (3)



1 is in X, by rule (2)

% is in X, by rule (1)

1 is in X, by rule (2)

The function printExplanation turns elements of expl into such human-readable expla-

nations.

Your job is to define a function

val explain : str -> expl

that, when given an element w of Y , returns a value of type expl that explains why w is in

X. (When called with a w that is not in Y , it doesn’t matter what your function returns,

or even whether it returns.)

As closely as possible, make the structure of your function definition match the struc-

ture of the proof you gave in Problem 1(b). In particular: induction in the proof should

correspond to recursion in your function definition; division into cases in the proof should

correspond to the use of conditionals/pattern matching in the function definition; and the

use of lemmas in your proof should correspond to the use of auxiliary functions in your

function definition.

You can test your definition of explain using the function test. If w is not in Y , then

test explain w explains why w is not in Y . Otherwise it calls explain on w. If the

resulting explanation explains why another string is in X, test notes that fact. Otherwise

it calls printExplanation with the explanation. E.g., you can proceed as follows:

val doit = test explain;

doit(Str.fromString "%");

doit(Str.fromString "110110");

doit(Str.fromString "11111100");

and so on. You should do enough testing to give yourself reasonable confidence that your

function definition is correct.

Your solution should reside in a file called ps2-explain.sml. This file should not

include—either textually or via a call to use—the contents of ps2-framework.sml. Instead,

you should load (using use) ps2-framework.sml once at the beginning of a Forlan session.

Submission via Private GitHub Repository

So that you can privately submit Forlan/sml code in a machine-readable form, you will need

to create a private GitHub repository and grant me (GitHub account: alleystoughton)

access to it. If you don’t already have a GitHub account, you will need to create one first.

Your solution to ps2-explain.sml along with a copy of ps2-framework.sml should reside

in a subdirectory CS516-PS2 of your repository. In your Gradescope submission, you should

include a Forlan transcript showing how you tested your definition of explain. (You don’t

need to include a listing of ps2-explain.sml as part of your Gradescope submission.)


