
3.15: Applications of Finite Automata and Regular

Expressions

In this section we consider three applications of the material from
Chapter 3:

• searching for regular expressions in files;

• lexical analysis; and

• the design of finite state systems.

1 / 35

Representing Character Sets and Files

Our first two applications involve processing files whose characters
come from some character set, e.g., the ASCII character set.

Although not every character in a typical character set will be an
element of our set Sym of symbols, we can represent all the
characters of a character set by elements of Sym. E.g., we might
represent the ASCII characters newline and space by the symbols
〈newline〉 and 〈space〉, respectively.

2 / 35

Representing Character Sets and Files

Our first two applications involve processing files whose characters
come from some character set, e.g., the ASCII character set.

Although not every character in a typical character set will be an
element of our set Sym of symbols, we can represent all the
characters of a character set by elements of Sym. E.g., we might
represent the ASCII characters newline and space by the symbols
〈newline〉 and 〈space〉, respectively.

So, we will work with a mostly unspecified alphabet Σ representing
some character set. We assume that the symbols 0–9, a–z, A–Z,
〈space〉 and 〈newline〉 are elements of Σ. A line is an element of
(Σ− {〈newline〉})∗; and, a file consists of the concatenation of
some number of lines, separated by occurrences of 〈newline〉.

2 / 35

Representing Character Sets and Files

In what follows, we write:

• [any] for the regular expression a1 + a2 + · · ·+ an, where
a1, a2, . . . , an are all of the elements of Σ except 〈newline〉,
listed in the standard order;

• [letter] for the regular expression

a + b + · · ·+ z + A + B + · · ·+ Z; and

• [digit] for the regular expression

0 + 1 + · · · + 9.

3 / 35

Searching for Regular Expression in Files

Given a file and a regular expression α whose alphabet is a subset
of Σ− {〈newline〉}, how can we find all lines of the file with
substrings in L(α)? (E.g., α might be a(b + c)∗a; then we want to
find all lines containing two a’s, separated by some number of b’s
and c’s.)

It will be sufficient to find all lines in the file that are elements of
L(β), where β =

4 / 35

Searching for Regular Expression in Files

Given a file and a regular expression α whose alphabet is a subset
of Σ− {〈newline〉}, how can we find all lines of the file with
substrings in L(α)? (E.g., α might be a(b + c)∗a; then we want to
find all lines containing two a’s, separated by some number of b’s
and c’s.)

It will be sufficient to find all lines in the file that are elements of
L(β), where β = [any]∗ α [any]∗.

4 / 35

Searching for Regular Expression in Files

Given a file and a regular expression α whose alphabet is a subset
of Σ− {〈newline〉}, how can we find all lines of the file with
substrings in L(α)? (E.g., α might be a(b + c)∗a; then we want to
find all lines containing two a’s, separated by some number of b’s
and c’s.)

It will be sufficient to find all lines in the file that are elements of
L(β), where β = [any]∗ α [any]∗.

To do this, we can first translate β to a DFA M with alphabet
Σ− {〈newline〉}. For each line w , we simply check whether
δM(sM ,w) ∈ AM , selecting the line if it is.

4 / 35

Searching for Regular Expression in Files

Given a file and a regular expression α whose alphabet is a subset
of Σ− {〈newline〉}, how can we find all lines of the file with
substrings in L(α)? (E.g., α might be a(b + c)∗a; then we want to
find all lines containing two a’s, separated by some number of b’s
and c’s.)

It will be sufficient to find all lines in the file that are elements of
L(β), where β = [any]∗ α [any]∗.

To do this, we can first translate β to a DFA M with alphabet
Σ− {〈newline〉}. For each line w , we simply check whether
δM(sM ,w) ∈ AM , selecting the line if it is.

If the file is short, however, it may be more efficient to convert β
to an FA N, and use the algorithm from Section 3.6 to find all
lines that are accepted by N.

4 / 35

Lexical Analysis

A lexical analyzer is the part of a compiler that groups the
characters of a program into lexical items or tokens. The modern
approach to specifying a lexical analyzer for a programming
language uses regular expressions. E.g., this is the approach taken
by the lexical analyzer generator Lex.

5 / 35

Lexical Analzyer Specifications

A lexical analyzer specification consists of a list of regular
expressions α1, α2, . . . , αn whose alphabets are subsets of Σ,
together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process
elements of Σ∗.

For example, we might have

α1 = 〈space〉 + 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are

6 / 35

Lexical Analzyer Specifications

A lexical analyzer specification consists of a list of regular
expressions α1, α2, . . . , αn whose alphabets are subsets of Σ,
together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process
elements of Σ∗.

For example, we might have

α1 = 〈space〉 + 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are whitespace characters,

6 / 35

Lexical Analzyer Specifications

A lexical analyzer specification consists of a list of regular
expressions α1, α2, . . . , αn whose alphabets are subsets of Σ,
together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process
elements of Σ∗.

For example, we might have

α1 = 〈space〉 + 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are whitespace characters,
identifiers and

6 / 35

Lexical Analzyer Specifications

A lexical analyzer specification consists of a list of regular
expressions α1, α2, . . . , αn whose alphabets are subsets of Σ,
together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process
elements of Σ∗.

For example, we might have

α1 = 〈space〉 + 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are whitespace characters,
identifiers and numerals, respectively. The code associated with α4

will probably indicate that an error has occurred.

6 / 35

Lexical Analzyer Specifications

A lexical analyzer meets such a specification iff it behaves as
follows.

At each stage of processing its file, the lexical analyzer should
consume the longest prefix of the remaining input that is in the
language generated by one of the regular expressions.

7 / 35

Lexical Analzyer Specifications

A lexical analyzer meets such a specification iff it behaves as
follows.

At each stage of processing its file, the lexical analyzer should
consume the longest prefix of the remaining input that is in the
language generated by one of the regular expressions.

It should then supply the prefix to the code associated with the
earliest regular expression whose language contains the prefix.

7 / 35

Lexical Analzyer Specifications

A lexical analyzer meets such a specification iff it behaves as
follows.

At each stage of processing its file, the lexical analyzer should
consume the longest prefix of the remaining input that is in the
language generated by one of the regular expressions.

It should then supply the prefix to the code associated with the
earliest regular expression whose language contains the prefix.

However, if there is no such prefix, or if the prefix is %, then the
lexical analyzer should indicate that an error has occurred.

7 / 35

Lexical Analyzer Specifications

What happens when we process the file
123Easy〈space〉1E2〈newline〉 using a lexical analyzer meeting our
example specification?

The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of
our regular expressions is

8 / 35

Lexical Analyzer Specifications

What happens when we process the file
123Easy〈space〉1E2〈newline〉 using a lexical analyzer meeting our
example specification?

The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of
our regular expressions is 123. Since this prefix is only in α3, it is
consumed from the input and supplied to code3.

The remaining input is now Easy〈space〉1E2〈newline〉. The longest
prefix of the remaining input that is in one of our regular
expressions is

8 / 35

Lexical Analyzer Specifications

What happens when we process the file
123Easy〈space〉1E2〈newline〉 using a lexical analyzer meeting our
example specification?

The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of
our regular expressions is 123. Since this prefix is only in α3, it is
consumed from the input and supplied to code3.

The remaining input is now Easy〈space〉1E2〈newline〉. The longest
prefix of the remaining input that is in one of our regular
expressions is Easy. Since this prefix is only in α2, it is consumed
and supplied to code2.

The remaining input is then 〈space〉1E2〈newline〉. The longest
prefix of the remaining input that is in one of our regular
expressions is

8 / 35

Lexical Analyzer Specifications

What happens when we process the file
123Easy〈space〉1E2〈newline〉 using a lexical analyzer meeting our
example specification?

The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of
our regular expressions is 123. Since this prefix is only in α3, it is
consumed from the input and supplied to code3.

The remaining input is now Easy〈space〉1E2〈newline〉. The longest
prefix of the remaining input that is in one of our regular
expressions is Easy. Since this prefix is only in α2, it is consumed
and supplied to code2.

The remaining input is then 〈space〉1E2〈newline〉. The longest
prefix of the remaining input that is in one of our regular
expressions is 〈space〉. Since this prefix is only in α1 and α4, we
consume it from the input and supply it to the code associated
with the earlier of these regular expressions: code1.

8 / 35

Lexical Analzyer Specifications

The remaining input is then 1E2〈newline〉. The longest prefix of
the remaining input that is in one of our regular expressions is

9 / 35

Lexical Analzyer Specifications

The remaining input is then 1E2〈newline〉. The longest prefix of
the remaining input that is in one of our regular expressions is 1E2.
Since this prefix is only in α3, we consume it from the input and
supply it to code3.

The remaining input is then 〈newline〉. The longest prefix of the
remaining input that is in one of our regular expressions is

9 / 35

Lexical Analzyer Specifications

The remaining input is then 1E2〈newline〉. The longest prefix of
the remaining input that is in one of our regular expressions is 1E2.
Since this prefix is only in α3, we consume it from the input and
supply it to code3.

The remaining input is then 〈newline〉. The longest prefix of the
remaining input that is in one of our regular expressions is
〈newline〉. Since this prefix is only in α1, we consume it from the
input and supply it to the code associated with this expression:
code1.

The remaining input is now empty, and so the lexical analyzer
terminates.

9 / 35

Generating Lexical Analyzers from Specifications

What is a simple method for generating a lexical analyzer that
meets a given specification? (More sophisticated methods are
described in compilers courses.)

10 / 35

Generating Lexical Analyzers from Specifications

What is a simple method for generating a lexical analyzer that
meets a given specification? (More sophisticated methods are
described in compilers courses.)

First, we convert the regular expressions α1, . . . , αn into DFAs
M1, . . . ,Mn with alphabet Σ. Next we determine which of the
states of the DFAs are dead/live.

10 / 35

Generating Lexical Analyzers from Specifications

Given its remaining input x , the lexical analyzer consumes the next
token from x and supplies the token to the appropriate code, as
follows.

First, it initializes the following variables to error values:

• a string variable acc , which records the longest prefix of the
prefix of x that has been processed so far that is accepted by
one of the DFAs;

• an integer variable mach, which records the smallest i such
that acc ∈ L(Mi); and

• a string variable aft, consisting of the suffix of x that one gets
by removing acc .

11 / 35

Generating Lexical Analyzers from Specifications

Given its remaining input x , the lexical analyzer consumes the next
token from x and supplies the token to the appropriate code, as
follows.

First, it initializes the following variables to error values:

• a string variable acc , which records the longest prefix of the
prefix of x that has been processed so far that is accepted by
one of the DFAs;

• an integer variable mach, which records the smallest i such
that acc ∈ L(Mi); and

• a string variable aft, consisting of the suffix of x that one gets
by removing acc .

Then, the lexical analyzer enters its main loop, in which it
processes x , symbol by symbol, in each of the DFAs, keeping track
of what symbols have been processed so far, and what symbols
remain to be processed.

11 / 35

Main Loop

If, after processing a symbol, at least one of the DFAs is in an
accepting state, then the lexical analyzer stores the string that has
been processed so far in the variable acc , stores the index of the
first machine to accept this string in the integer variable mach, and
stores the remaining input in the string variable aft.

If there is no remaining input, then the lexical analyzer supplies
acc to code codemach, and returns; otherwise it continues.

12 / 35

Main Loop

If, after processing a symbol, none of the DFAs are in accepting
states, but at least one automaton is in a live state (so that,
without knowing anything about the remaining input, it’s possible
that an automaton will again enter an accepting state), then the
lexical analyzer leaves acc , mach and aft unchanged.

If there is no remaining input, the lexical analyzer supplies acc to
codemach (it signals an error if acc is still set to the error value),
resets the remaining input to aft, and returns; otherwise, it
continues.

13 / 35

Main Loop

If, after processing a symbol, all of the automata are in dead states
(and so could never enter accepting states again, no matter what
the remaining input was), the lexical analyzer supplies string acc to
code codemach (it signals an error if acc is still set to the error
value), resets the remaining input to aft, and returns.

14 / 35

Example

Let’s see what happens when the file 123Easy〈newline〉 is processed
by the lexical analyzer generated from our example specification.

• After processing 1,

15 / 35

Example

Let’s see what happens when the file 123Easy〈newline〉 is processed
by the lexical analyzer generated from our example specification.

• After processing 1, M3 and M4 are in accepting states, and so
the lexical analyzer sets acc to 1, mach to 3, and aft to
23Easy〈newline〉. It then continues.

• After processing 2, so that 12 has been processed so far,

15 / 35

Example

Let’s see what happens when the file 123Easy〈newline〉 is processed
by the lexical analyzer generated from our example specification.

• After processing 1, M3 and M4 are in accepting states, and so
the lexical analyzer sets acc to 1, mach to 3, and aft to
23Easy〈newline〉. It then continues.

• After processing 2, so that 12 has been processed so far, only
M3 is in an accepting state, and so the lexical analyzer sets
acc to 12, mach to 3, and aft to 3Easy〈newline〉. It then
continues.

• After processing 3, so that 123 has been processed so far,

15 / 35

Example

Let’s see what happens when the file 123Easy〈newline〉 is processed
by the lexical analyzer generated from our example specification.

• After processing 1, M3 and M4 are in accepting states, and so
the lexical analyzer sets acc to 1, mach to 3, and aft to
23Easy〈newline〉. It then continues.

• After processing 2, so that 12 has been processed so far, only
M3 is in an accepting state, and so the lexical analyzer sets
acc to 12, mach to 3, and aft to 3Easy〈newline〉. It then
continues.

• After processing 3, so that 123 has been processed so far, only
M3 is in an accepting state, and so the lexical analyzer sets
acc to 123, mach to 3, and aft to Easy〈newline〉. It then
continues.

15 / 35

Example

• After processing E, so that 123E has been processed so far,

16 / 35

Example

• After processing E, so that 123E has been processed so far,
none of the DFAs are in accepting states, but M3 is in a live
state, since 123E is a prefix of a string that is accepted by M3.
Thus the lexical analyzer continues, but doesn’t change acc ,
mach or aft.

• After processing a, so that 123Ea has been processed so far,

16 / 35

Example

• After processing E, so that 123E has been processed so far,
none of the DFAs are in accepting states, but M3 is in a live
state, since 123E is a prefix of a string that is accepted by M3.
Thus the lexical analyzer continues, but doesn’t change acc ,
mach or aft.

• After processing a, so that 123Ea has been processed so far,
all of the machines are in dead states, since 123Ea isn’t a
prefix of a string that is accepted by one of the DFAs. Thus
the lexical analyzer supplies acc = 123 to codemach = code3,
and sets the remaining input to aft = Easy〈newline〉.

16 / 35

Example

• After processing E, so that 123E has been processed so far,
none of the DFAs are in accepting states, but M3 is in a live
state, since 123E is a prefix of a string that is accepted by M3.
Thus the lexical analyzer continues, but doesn’t change acc ,
mach or aft.

• After processing a, so that 123Ea has been processed so far,
all of the machines are in dead states, since 123Ea isn’t a
prefix of a string that is accepted by one of the DFAs. Thus
the lexical analyzer supplies acc = 123 to codemach = code3,
and sets the remaining input to aft = Easy〈newline〉.

• In subsequent steps, the lexical analyzer extracts Easy from
the remaining input, and supplies this string to code code2,
and extracts 〈newline〉 from the remaining input, and supplies
this string to code code1.

16 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

17 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

In terms of time, a single left-to-right scan of the string is needed.
And we only need enough space to encode the DFA, and to keep
track of what state we are in at each point, as well as what part of
the string remains to be processed.

17 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

In terms of time, a single left-to-right scan of the string is needed.
And we only need enough space to encode the DFA, and to keep
track of what state we are in at each point, as well as what part of
the string remains to be processed.

But if the string to be checked is supplied, symbol-by-symbol, from
our environment, we don’t need to store the string at all.

17 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

In terms of time, a single left-to-right scan of the string is needed.
And we only need enough space to encode the DFA, and to keep
track of what state we are in at each point, as well as what part of
the string remains to be processed.

But if the string to be checked is supplied, symbol-by-symbol, from
our environment, we don’t need to store the string at all.

Consequently, DFAs may be easily and efficiently implemented in
both hardware and software.

17 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

In terms of time, a single left-to-right scan of the string is needed.
And we only need enough space to encode the DFA, and to keep
track of what state we are in at each point, as well as what part of
the string remains to be processed.

But if the string to be checked is supplied, symbol-by-symbol, from
our environment, we don’t need to store the string at all.

Consequently, DFAs may be easily and efficiently implemented in
both hardware and software.

One can design DFAs by hand, and test them using Forlan.

17 / 35

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently check
membership in a regular language.

In terms of time, a single left-to-right scan of the string is needed.
And we only need enough space to encode the DFA, and to keep
track of what state we are in at each point, as well as what part of
the string remains to be processed.

But if the string to be checked is supplied, symbol-by-symbol, from
our environment, we don’t need to store the string at all.

Consequently, DFAs may be easily and efficiently implemented in
both hardware and software.

One can design DFAs by hand, and test them using Forlan.

But DFA minimization plus the operations on automata and
regular expressions of Section 3.12, give us an alternative—and
very powerful—way of designing finite state systems.

17 / 35

First Example

As the first example, suppose we wish to find a DFA M such that
L(M) = X , where X = {w ∈ {0, 1}∗ | w has an even number of
0’s or an odd number of 1’s }.

18 / 35

First Example

As the first example, suppose we wish to find a DFA M such that
L(M) = X , where X = {w ∈ {0, 1}∗ | w has an even number of
0’s or an odd number of 1’s }.

First, we can note that X = Y1 ∪ Y2, where

Y1 = {w ∈ {0, 1}∗ | w has an even number of 0’s }, and

Y2 = {w ∈ {0, 1}∗ | w has an odd number of 1’s }.

18 / 35

First Example

As the first example, suppose we wish to find a DFA M such that
L(M) = X , where X = {w ∈ {0, 1}∗ | w has an even number of
0’s or an odd number of 1’s }.

First, we can note that X = Y1 ∪ Y2, where

Y1 = {w ∈ {0, 1}∗ | w has an even number of 0’s }, and

Y2 = {w ∈ {0, 1}∗ | w has an odd number of 1’s }.

Since we have a union operation on EFAs (Forlan doesn’t provide a
union operation on DFAs), if we can find EFAs accepting Y1 and
Y2, we can combine them into a EFA that accepts X . Then we
can convert this EFA to a DFA, and then minimize the DFA.

18 / 35

First Example

Let N1 and N2 be the DFAs

B

1 1

0

0

(N1)

B

0 0

1

1

(N2)

Start A Start A

It is easy to prove that L(N1) = Y1 and L(N2) = Y2.

19 / 35

First Example

Let N1 and N2 be the DFAs

B

1 1

0

0

(N1)

B

0 0

1

1

(N2)

Start A Start A

It is easy to prove that L(N1) = Y1 and L(N2) = Y2.

Let M be the DFA

renameStatesCanonically(minimizeN),

where N is the DFA

nfaToDFA(efaToNFA(union(N1,N2))).

19 / 35

First Example

Then

L(M) = L(renameStatesCanonically(minimizeN))

= L(minimizeN)

= L(N)

= L(nfaToDFA(efaToNFA(union(N1,N2))))

= L(efaToNFA(union(N1,N2)))

= L(union(N1,N2))

= L(N1) ∪ L(N2)

= Y1 ∪ Y2

= X ,

showing that M is correct.

20 / 35

First Example

But how do we figure out what the components of M are, so that,
e.g., we can draw M?

In a simple case like this, we could apply the definitions union,
efaToNFA, nfaToDFA, minimize and
renameStatesCanonically, and work out the answer.

21 / 35

First Example

Instead, we can use Forlan to compute the answer. Suppose dfa1
and dfa2 of type dfa are N1 and N2, respectively. The we can
proceed as follows:

- val efa =

= EFA.union(injDFAToEFA dfa1, injDFAToEFA dfa2);

val efa = - : efa

- val dfa’ = nfaToDFA(efaToNFA efa);

val dfa’ = - : dfa

- DFA.numStates dfa’;

val it = 5 : int

- val dfa =

= DFA.renameStatesCanonically

= (DFA.minimize dfa’);

val dfa = - : dfa

- DFA.numStates dfa;

val it = 4 : int

22 / 35

First Example

- DFA.output("", dfa);

{states} A, B, C, D {start state} D

{accepting states} A, C, D

{transitions}

A, 0 -> C; A, 1 -> D; B, 0 -> D; B, 1 -> C; C, 0 -> A;

C, 1 -> B; D, 0 -> B; D, 1 -> A

val it = () : unit

23 / 35

First Example

- DFA.output("", dfa);

{states} A, B, C, D {start state} D

{accepting states} A, C, D

{transitions}

A, 0 -> C; A, 1 -> D; B, 0 -> D; B, 1 -> C; C, 0 -> A;

C, 1 -> B; D, 0 -> B; D, 1 -> A

val it = () : unit

Thus M is:

Start
0

0

0

0

1 1 1 1

A

D B

C

Of course, this claim assumes that Forlan is correctly implemented.
23 / 35

Second Example

Given a string w ∈ {0, 1}∗, we say that:

• w stutters iff aa is a substring of w , for some a ∈ {0, 1}; and

• w is long iff |w | ≥ 5.

So, e.g., 1001 and 10110 both stutter, but 01010 and 101 don’t.
(We can make the alphabet and length parameters to what
follows.)

24 / 35

Second Example

Given a string w ∈ {0, 1}∗, we say that:

• w stutters iff aa is a substring of w , for some a ∈ {0, 1}; and

• w is long iff |w | ≥ 5.

So, e.g., 1001 and 10110 both stutter, but 01010 and 101 don’t.
(We can make the alphabet and length parameters to what
follows.)

Let the language AllLongStutter be

{w ∈ {0, 1}∗ | for all substrings v of w , if v is long, then v stutters }.

24 / 35

Second Example

Given a string w ∈ {0, 1}∗, we say that:

• w stutters iff aa is a substring of w , for some a ∈ {0, 1}; and

• w is long iff |w | ≥ 5.

So, e.g., 1001 and 10110 both stutter, but 01010 and 101 don’t.
(We can make the alphabet and length parameters to what
follows.)

Let the language AllLongStutter be

{w ∈ {0, 1}∗ | for all substrings v of w , if v is long, then v stutters }.

Since every substring of 0010110 of length five stutters, every long
substring of this string stutters, and thus the string is in
AllLongStutter.

On the other hand, 0010100 is not in AllLongStutter, because
01010 is a long, non-stuttering substring of this string.

24 / 35

Second Example

Let’s consider the problem of finding a DFA that accepts this
language.

25 / 35

Second Example

Let’s consider the problem of finding a DFA that accepts this
language.

One possibility is to reduce this problem to that of finding a DFA
that accepts the complement of AllLongStutter. Then we’ll be
able to use our set difference operation on DFAs to build a DFA
that accepts AllLongStutter, which we can then minimize.

25 / 35

Second Example

Let’s consider the problem of finding a DFA that accepts this
language.

One possibility is to reduce this problem to that of finding a DFA
that accepts the complement of AllLongStutter. Then we’ll be
able to use our set difference operation on DFAs to build a DFA
that accepts AllLongStutter, which we can then minimize.

To form the complement of AllLongStutter, we negate the
formula in AllLongStutter’s expression. Let
SomeLongNotStutter be the language

{w ∈ {0, 1}∗ | there is a substring v of w such that
v is long and doesn’t stutter }.

Lemma 3.15.1

AllLongStutter = {0, 1}∗ − SomeLongNotStutter.

25 / 35

Second Example

Next, it’s convenient to work bottom-up for a bit. Let

Long = {w ∈ {0, 1}∗ | w is long },

Stutter = {w ∈ {0, 1}∗ | w stutters },

NotStutter = {w ∈ {0, 1}∗ | w doesn’t stutter }, and

LongAndNotStutter = {w ∈ {0, 1}∗ | w is long and doesn’t stutter }.

The following lemma is easy to prove:

Lemma 3.15.2

(1) NotStutter = {0, 1}∗ − Stutter.

(2) LongAndNotStutter = Long ∩NotStutter.

26 / 35

Second Example

Clearly, we’ll be able to find DFAs accepting Long and Stutter,
respectively. Thus, we’ll be able to use our set difference operation
on DFAs to come up with a DFA that accepts NotStutter. Then,
we’ll be able to use our intersection operation on DFAs to come up
with a DFA that accepts LongAndNotStutter.

What remains is to find a way of converting LongAndNotStutter

to SomeLongNotStutter.

27 / 35

Second Example

Clearly, we’ll be able to find DFAs accepting Long and Stutter,
respectively. Thus, we’ll be able to use our set difference operation
on DFAs to come up with a DFA that accepts NotStutter. Then,
we’ll be able to use our intersection operation on DFAs to come up
with a DFA that accepts LongAndNotStutter.

What remains is to find a way of converting LongAndNotStutter

to SomeLongNotStutter. Clearly, the former language is a subset
of the latter one. But the two languages are not equal, since an
element of the latter language may have the form xvy , where
x , y ∈ {0, 1}∗ and v ∈ LongAndNotStutter.

This suggests the following lemma:

Lemma 3.15.3

SomeLongNotStutter = LongAndNotStutter

27 / 35

Second Example

Clearly, we’ll be able to find DFAs accepting Long and Stutter,
respectively. Thus, we’ll be able to use our set difference operation
on DFAs to come up with a DFA that accepts NotStutter. Then,
we’ll be able to use our intersection operation on DFAs to come up
with a DFA that accepts LongAndNotStutter.

What remains is to find a way of converting LongAndNotStutter

to SomeLongNotStutter. Clearly, the former language is a subset
of the latter one. But the two languages are not equal, since an
element of the latter language may have the form xvy , where
x , y ∈ {0, 1}∗ and v ∈ LongAndNotStutter.

This suggests the following lemma:

Lemma 3.15.3

SomeLongNotStutter = {0, 1}∗ LongAndNotStutter {0, 1}∗.

27 / 35

Second Example

Because of the preceding lemma, we can construct an EFA
accepting SomeLongNotStutter from a DFA accepting {0, 1}∗

and our DFA accepting LongAndNotStutter, using our
concatenation operation on EFAs. We can then convert this EFA
to a DFA.

28 / 35

Second Example

Because of the preceding lemma, we can construct an EFA
accepting SomeLongNotStutter from a DFA accepting {0, 1}∗

and our DFA accepting LongAndNotStutter, using our
concatenation operation on EFAs. We can then convert this EFA
to a DFA.

Now we’ll turn these ideas into reality, mirroring operations on
languages with the corresponding operations on regular expressions
and finite automata.

The book first shows how our DFA can be constructed and proved
correct.

But we’ll skip directly to constructing the DFA in Forlan.

28 / 35

Second Example

We put the following code in the file stutter1.sml:

val regToEFA = faToEFA o regToFA;

val efaToDFA = nfaToDFA o efaToNFA;

val regToDFA = efaToDFA o regToEFA;

val minAndRen =

DFA.renameStatesCanonically o DFA.minimize;

val allStrReg = Reg.fromString "(0 + 1)*";

val allStrDFA = minAndRen(regToDFA allStrReg);

val allStrEFA = injDFAToEFA allStrDFA;

val longReg =

Reg.concat

(Reg.power(Reg.fromString "0 + 1", 5),

Reg.fromString "(0 + 1)*");

val longDFA = minAndRen(regToDFA longReg);

29 / 35

Second Example

We put the following code in the file stutter2.sml:

val stutterReg =

Reg.fromString "(0 + 1)*(00 + 11)(0 + 1)*";

val stutterDFA = minAndRen(regToDFA stutterReg);

val notStutterDFA =

minAndRen(DFA.minus(allStrDFA, stutterDFA));

val longAndNotStutterDFA =

minAndRen(DFA.inter(longDFA, notStutterDFA));

val longAndNotStutterEFA =

injDFAToEFA longAndNotStutterDFA;

30 / 35

Second Example

And, we put the following code in the file stutter3.sml:

val someLongNotStutterEFA’ =

EFA.concat

(allStrEFA,

EFA.concat(longAndNotStutterEFA,

allStrEFA));

val someLongNotStutterEFA =

EFA.renameStatesCanonically someLongNotStutterEFA’;

val someLongNotStutterDFA =

minAndRen(efaToDFA someLongNotStutterEFA);

val allLongStutterDFA =

minAndRen

(DFA.minus(allStrDFA, someLongNotStutterDFA));

31 / 35

Second Example

Then, we proceed as follows:

- use "stutter1.sml";

[opening stutter1.sml]

val regToEFA = fn : reg -> efa

val efaToDFA = fn : efa -> dfa

val regToDFA = fn : reg -> dfa

val minAndRen = fn : dfa -> dfa

val allStrReg = - : reg

val allStrDFA = - : dfa

val allStrEFA = - : efa

val longReg = - : reg

val longDFA = - : dfa

val it = () : unit

32 / 35

Second Example

- use "stutter2.sml";

[opening stutter2.sml]

val stutterReg = - : reg

val stutterDFA = - : dfa

val notStutterDFA = - : dfa

val longAndNotStutterDFA = - : dfa

val longAndNotStutterEFA = - : efa

val it = () : unit

- use "stutter3.sml";

[opening stutter3.sml]

val someLongNotStutterEFA’ = - : efa

val someLongNotStutterEFA = - : efa

val someLongNotStutterDFA = - : dfa

val allLongStutterDFA = - : dfa

val it = () : unit

33 / 35

Second Example

- DFA.output("", allLongStutterDFA);

{states} A, B, C, D, E, F, G, H, I, J {start state} A

{accepting states} A, B, C, D, E, F, G, H, I

{transitions}

A, 0 -> B; A, 1 -> C; B, 0 -> B; B, 1 -> E; C, 0 -> D;

C, 1 -> C; D, 0 -> B; D, 1 -> G; E, 0 -> F; E, 1 -> C;

F, 0 -> B; F, 1 -> I; G, 0 -> H; G, 1 -> C; H, 0 -> B;

H, 1 -> J; I, 0 -> J; I, 1 -> C; J, 0 -> J; J, 1 -> J

val it = () : unit

34 / 35

Second Example

Thus, allLongStutterDFA is

1

0

1

0, 1

0

B E F I

C D G H

0

1

101

0

1

J

0 1 0

0

1

1

0

AStart

35 / 35

