
3.3: Simplification of Regular Expressions

In this section, we give three algorithms—of increasing power, but
decreasing efficiency—for regular expression simplification.

The first algorithm—weak simplification—is defined via a
straightforward structural recursion, and is sufficient for many
purposes.

The remaining two algorithms—local simplification and global
simplification—are based on a set of simplification rules that is still
incomplete and evolving.

1 / 69

Regular Expression Complexity

To begin with, let’s consider how we might measure the
complexity/simplicity of regular expressions. The most obvious
criterion is size (remember that regular expressions are trees). But
consider this pair of equivalent regular expressions:

α = (00∗11∗)∗, and

β = %+ 0(0 + 11∗0)∗11∗.

The standard measure of the closure-related complexity of a
regular expression is its star-height: the maximum number n ∈ N

such that there is a path from the root of the regular expression to
one of its leaves that passes through n closures.

α and β both have star-heights of 2.

Star-height isn’t respected by the ways of forming regular
expressions: 0 has strictly lower star-height than 0∗, but 01∗ has
the same star-height as 0∗1∗.

2 / 69

Closure Complexity

Let’s define a closure complexity to be a nonempty list ns of
natural numbers that is (not-necessarily strictly) descending.

E.g., [3, 2, 2, 1] is a closure complexity, but [3, 2, 3] and [] are not.

This is a way of representing nonempty multisets of natural
numbers.

We write CC for the set of all closure complexities.

For all n ∈ N, [n] is a singleton closure complexity.

The union of closure complexities ns and ms (ns ∪ms) is the
closure complexity that results from putting ns @ms in descending
order, keeping any duplicate elements. E.g.,
[3, 2, 2, 1] ∪ [4, 2, 1, 0] = [4, 3, 2, 2, 2, 1, 1, 0].

The successor ns of a closure complexity ns is the closure
complexity formed by adding one to each element of ns,
maintaining the order of the elements. E.g., [3, 2, 2, 1] = [4, 3, 3, 2].

3 / 69

Closure Complexity

Proposition 3.3.1
(1) For all ns,ms ∈ CC, ns ∪ms = ms ∪ ns.

(2) For all ns,ms, ls ∈ CC, (ns ∪ms) ∪ ls = ns ∪ (ms ∪ ls).

(3) For all ns,ms ∈ CC, ns ∪ms = ns ∪ms.

Proposition 3.3.2
(1) For all ns,ms ∈ CC, ns = ms iff ns = ms.

(2) For all ns,ms, ls ∈ CC, ns ∪ ls = ms ∪ ls iff ns = ms.

4 / 69

Closure Complexity

We define a relation <cc on CC by: for all ns,ms ∈ CC,
ns <cc ms iff either:

• ms = ns @ ls for some ls ∈ CC; or

• there is an i ∈ N− {0} such that
• i ≤ |ns | and i ≤ |ms |,
• for all j ∈ [1 : i − 1], ns j = ms j , and
• ns i < ms i .

E.g., [2, 2] <cc [2, 2, 1] and [2, 1, 1, 0, 0] <cc [2, 2, 1].

5 / 69

Closure Complexity

Proposition 3.3.3
(1) For all ns,ms ∈ CC, ns <cc ms iff ns <cc ms.

(2) For all ns,ms, ls ∈ CC, ns ∪ ls <cc ms ∪ ls iff ns <cc ms.

(3) For all ns,ms ∈ CC, ns <cc ns ∪ms.

Proposition 3.3.4
<cc is a strict total ordering on CC.

Proposition 3.3.5
<cc is a well-founded relation on CC.

6 / 69

Closure Complexity

Now we can define the closure complexity of a regular expression.
Define the function cc ∈ Reg→ CC by structural recursion:

cc% = [0];

cc $ = [0];

cc a = [0], for all a ∈ Sym;

cc(∗(α)) = ccα, for all α ∈ Reg;

cc(@(α, β)) = ccα ∪ cc β, for all α, β ∈ Reg; and

cc(+(α, β)) = ccα ∪ cc β, for all α, β ∈ Reg.

We say that ccα is the closure complexity of α.

E.g.,

cc((12∗)∗) = cc(12∗) = cc 1 ∪ cc(2∗) = [0] ∪ cc 2

= [0] ∪ [0] = [0] ∪ [1] = [1, 0] = [2, 1].

7 / 69

Closure Complexity

Returning to our initial examples, we have that
cc((00∗11∗)∗) = [2, 2, 1, 1] and
cc(% + 0(0 + 11∗0)∗11∗) = [2, 1, 1, 1, 1, 0, 0, 0].

Since [2, 1, 1, 1, 1, 0, 0, 0] <cc [2, 2, 1, 1], the closure complexity of
% + 0(0 + 11∗0)∗11∗ is strictly smaller than the closure complexity
of (00∗11∗)∗.

Proposition 3.3.6
For all α ∈ Reg, |ccα| = numLeavesα.

Proof. An easy induction on regular expressions. ✷

8 / 69

Closure Complexity

Proposition 3.3.9
Suppose α, β, β′ ∈ Reg, cc β = cc β′, pat ∈ Path is valid for α,
and β is the subtree of α at position pat. Let α′ be the result of

replacing the subtree at position pat in α by β′. Then

ccα = ccα′.

Proof. By induction on α. ✷

Proposition 3.3.11
Suppose α, β, β′ ∈ Reg, cc β′ <cc cc β, pat ∈ Path is valid for α,
and β is the subtree of α at position pat. Let α′ be the result of

replacing the subtree at position pat in α by β′. Then

ccα′ <cc ccα.

Proof. By induction on α. ✷

9 / 69

Regular Expression Complexity

When judging the relative complexities of regular expressions α and
β, we will first look at how their closure complexities are related.

And, when their closure complexities are equal, we will look at how
their sizes are related. To finish explaining how we will judge the
relative complexity of regular expressions, we need three definitions.

10 / 69

Numbers of Concatenations and Symbols

We write numConcatsα and numSymsα for the number of
concatenations and symbols, respectively, in α.

E.g., numConcats(((01)∗(01))∗) = 3. and
numSyms((0∗1) + 0) = 3.

11 / 69

Standardization

We say that a regular expression α is standardized iff none of α’s
subtrees have any of the following forms:

• (β1 + β2) + β3 (unions should be grouped to the right);

• β1 + β2, where β1 > β2, or β1 + (β2 + β3), where β1 > β2
(see Section 3.1 of book for our ordering on regular
expressions—but unions are greater than all other kinds of
regular expressions));

• (β1β2)β3 (concatenations should be grouped to the right);
and

• β∗β, β∗(βγ), (β1β2)
∗β1 or (β1β2)

∗(β1γ) (closures should be
shifted to the right).

If α is standardized, all of its subtrees are standardized.

12 / 69

Judging Relative Complexity

Returning to our assessment of regular expression complexity,
suppose that α and β are regular expressions generating %. Then
(αβ)∗ and (α+ β)∗ are equivalent, and have the same closure
complexity and size, but will will prefer the latter over the former,
because unions are generally more amenable to understanding and
processing than concatenations.

Consequently, when two regular expression have the same closure
complexity and size, we will judge their relative complexity
according to their numbers of concatenations.

13 / 69

Judging Relative Complexity

Next, consider the regular expressions 0 + 01 and 0(% + 1).

These regular expressions have the same closure complexity
[0, 0, 0], size (5) and number of concatenations (1).

We would like to consider the latter to be simpler than the former,
since in general we would like to prefer α(% + β) over α+ αβ.

And we can base this preference on the fact that the number of
symbols of 0(% + 1) (2) is one less than the number of symbols of
0 + 01.

Thus, when regular expressions have identical closure complexity,
size and number of concatenations, we will use their relative
numbers of symbols to judge their relative complexity.

14 / 69

Judging Relative Complexity

Finally, when regular expressions have the same closure complexity,
size, number of concatenations, and number of symbols, we will
judge their relative complexity according to whether they are
standardized, thinking that a standardized regular expression is
simpler than one that is not standardized.

15 / 69

Judging Relative Complexity

We define a relation <simp on Reg by, for all α, β ∈ Reg,
α <simp β iff:

• ccα <cc cc β; or

• ccα = cc β but sizeα < size β; or

• ccα = cc β and sizeα = size β, but
numConcatsα < numConcatsβ; or

• ccα = cc β, sizeα = size β and
numConcatsα = numConcatsβ, but
numSymsα < numSymsβ; or

• ccα = cc β, sizeα = size β,
numConcatsα = numConcatsβ and
numSymsα = numSymsβ, but α is standardized and β is
not standardized.

We read α <simp β as α is simpler (less complex) than β.

16 / 69

Judging Relative Complexity

We define a relation ≡simp on Reg by, for all α, β ∈ Reg,
α ≡simp β iff α and β have the same closure complexity, size,
numbers of concatenations, numbers of symbols, and status of
being (or not being) standardized.

We read α ≡simp β as α and β have the same complexity.

We define a relation ≤simp on Reg by, for all α, β ∈ Reg,
α ≤simp β iff α <simp β or α ≡simp β.

We read α ≤simp β as α is at least as simple as (no more complex

than) β.

For example, the following regular expressions are equivalent and
have the same complexity:

1(01 + 10) + (% + 01)1 and 011 + 1(% + 01 + 10).

17 / 69

Judging Relative Complexity

Proposition 3.3.12
(1) <simp is transitive.

(2) ≡simp is reflexive on Reg, transitive and symmetric.

(3) For all α, β ∈ Reg, exactly one of the following holds:

α <simp β, β <simp α or α ≡simp β.

(4) ≤simp is transitive, and, for all α, β ∈ Reg, α ≡simp β iff

α ≤simp β and β ≤simp α.

18 / 69

Closure Complexity in Forlan

The Forlan module Reg defines the abstract type cc of closure
complexities, along with these functions:

val ccToList : cc -> int list

val singCC : int -> cc

val unionCC : cc * cc -> cc

val succCC : cc -> cc

val cc : reg -> cc

val compareCC : cc * cc -> order

19 / 69

Closure Complexity in Forlan

Here are some examples of how these functions can be used:

- val ns =

= Reg.succCC

= (Reg.unionCC(Reg.singCC 1, Reg.singCC 1));

val ns = - : Reg.cc

- Reg.ccToList ns;

val it = [2,2] : int list

- val ms = Reg.unionCC(ns, Reg.succCC ns);

val ms = - : Reg.cc

- Reg.ccToList ms;

val it = [3,3,2,2] : int list

20 / 69

Closure Complexity in Forlan

- Reg.ccToList(Reg.cc(Reg.fromString "(00*11*)*"));

val it = [2,2,1,1] : int list

- Reg.ccToList

= (Reg.cc(Reg.fromString "% + 0(0 + 11*0)*11*"));

val it = [2,1,1,1,1,0,0,0] : int list

- Reg.compareCC

= (Reg.cc(Reg.fromString "(00*11*)*"),

= Reg.cc(Reg.fromString "% + 0(0 + 11*0)*11*"));

val it = GREATER : order

- Reg.compareCC

= (Reg.cc(Reg.fromString "(00*11*)*"),

= Reg.cc(Reg.fromString "(1*10*0)*"));

val it = EQUAL : order

21 / 69

Regular Expression Complexity in Forlan

The module Reg also includes these functions:

val numConcats : reg -> int

val numSyms : reg -> int

val standardized : reg -> bool

val compareComplexity : reg * reg -> order

Here are some examples of how these functions can be used:

- Reg.numConcats(Reg.fromString "(01)*(10)*");

val it = 3 : int

- Reg.numSyms(Reg.fromString "(01)*(10)*");

val it = 4 : int

- Reg.standardized(Reg.fromString "00*1");

val it = true : bool

- Reg.standardized(Reg.fromString "00*0");

val it = false : bool

22 / 69

Regular Expression Complexity in Forlan

- Reg.compareComplexity

= (Reg.fromString "(00*11*)*",

= Reg.fromString "% + 0(0 + 11*0)*11*");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "0**1**", Reg.fromString "(01)**");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "(0*1*)*",

= Reg.fromString "(0*+1*)*");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "0+01", Reg.fromString "0(%+1)");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "(01)2", Reg.fromString "012");

val it = GREATER : order

23 / 69

Regular Expression Complexity in Forlan

- Reg.compareComplexity

= (Reg.fromString "1(01+10)+(%+01)1",

= Reg.fromString "011+1(%+01+10)");

val it = EQUAL : order

24 / 69

Weak Simplification

We say that a regular expression α is weakly simplified iff α is
standardized and none of α’s subtrees have any of the following
forms:

• $ + β or β + $ (the $ is redundant);

• β + β or β + (β + γ) (the duplicate occurrence of β is
redundant);

• %β or β% (the % is redundant);

• $β or β$ (both are equivalent to $); and

• %∗ or $∗ or (β∗)∗ (the first two can be replaced by %, and
the extra closure can be omitted in the third case).

If α is weakly simplified, all of its subtrees are weakly simplified.

25 / 69

Weak Simplification

Proposition 3.3.13
(1) For all α ∈ Reg, if α is weakly simplified and L(α) = ∅, then

α = $.

(2) For all α ∈ Reg, if α is weakly simplified and L(α) = {%},
then α = %.

(3) For all α ∈ Reg, for all a ∈ Sym, if α is weakly simplified and

L(α) = {a}, then α = a.

Proof. The three parts are proved in order, using induction on
regular expressions.

For part (3), suppose a ∈ Sym. It suffices to show that, for all
α ∈ Reg,

if α is weakly simplified and L(α) = {a}, then α = a.

We show the concatenation case.

26 / 69

Weak Simplification

Proof (cont.). Suppose α, β ∈ Reg and assume the inductive
hypothesis: if α is weakly simplified and L(α) = {a}, then α = a;
and if β is weakly simplified and L(β) = {a}, then β = a. Assume
that αβ is weakly simplified and L(αβ) = {a}. We must show that
αβ = a. We have that α and β are weakly simplified. Since
L(α)L(β) = L(αβ) = {a}, we have two cases to consider.

• Suppose L(α) = {a} and L(β) = {%}. Since β is weakly
simplified and L(β) = {%}, part (2) tells us that β = %. But
this means that αβ = α% is not weakly simplified after
all—contradiction. Thus we can conclude that αβ = a.

• Suppose L(α) = {%} and L(β) = {a}. The proof of this case
is similar to that of the other one.

(Note that we didn’t use the inductive hypothesis on either α or β.)

27 / 69

Weak Simplification

Proof (cont.). We use both parts of the inductive hypothesis
when proving the union case. If L(α) ∪ L(β) = L(α + β) = {a},
then one possibility is that one of L(α) or L(β) is ∅, in which case
we use part (1) to get our contradiction. Otherwise,
L(α) = {a} = L(β), and so the inductive hypothesis tells us
α = a = β, so that α+ β = a + a, giving us the contradiction. ✷

28 / 69

Weak Simplification

Proposition 3.3.14
For all α ∈ Reg, if α is weakly simplified, then

alphabet(L(α)) = alphabetα.

Proposition 3.3.15
For all α ∈ Reg, if α is weakly simplified and α has one or more

occurrences of $, then α = $.

Proposition 3.3.16
For all α ∈ Reg, if α is weakly simplified and α has one or more

closures, then L(α) is infinite.

29 / 69

Weak Simplification

Let

WS = {α ∈ Reg | α is weakly simplified }.

Define a function deepClosure ∈ WS→WS as follows. For all
α ∈ WS:

deepClosure% = %,

deepClosure $ = %,

deepClosure (∗(α)) = α∗, and

deepClosureα = α∗, if α 6∈ {%, $} and α is not a closure.

30 / 69

Weak Simplification

Define a function deepConcat ∈ WS×WS→WS as follows. For
all α, β ∈ WS:

deepConcat(α, $) = $,

deepConcat($, α) = $, if α 6= $,

deepConcat(α,%) = α, if α 6= $,

deepConcat(%, α) = α, if α 6∈ {$,%}, and

deepConcat(α, β) = shiftClosuresRight(rightConcat(α, β)),

if α, β 6∈ {$,%},

If αn is not a concatenation, then
rightConcat(α1 · · ·αn, β) = α1 · · ·αnβ.

E.g., rightConcat(00, 00) is 0000 (0(0(00))), not (00)(00).

31 / 69

Weak Simplification

Define a function deepConcat ∈ WS×WS→WS as follows. For
all α, β ∈ WS:

deepConcat(α, $) = $,

deepConcat($, α) = $, if α 6= $,

deepConcat(α,%) = α, if α 6= $,

deepConcat(%, α) = α, if α 6∈ {$,%}, and

deepConcat(α, β) = shiftClosuresRight(rightConcat(α, β)),

if α, β 6∈ {$,%},

shiftClosuresRight repeatedly applies the following rules down the
rightmost branch: β∗β → rightConcat(β, β∗), β∗βγ → ββ∗γ,
(β1β2)

∗β1 → β1(rightConcat(β2, β1))
∗ and

(β1β2)
∗β1γ → β1(rightConcat(β2, β1))

∗γ.

32 / 69

Weak Simplification

Define a function deepUnion ∈ WS×WS→WS as follows. For
all α, β ∈ WS:

deepUnion(α, $) = α,

deepUnion($, α) = α, if α 6= $, and

deepUnion(α, β) = sortUnions(rightUnion(α, β)), if α 6= $ and β 6= $.

If αn is not a union, then
rightUnion(α1 + · · ·+ αn, β) = α1 + · · ·+ αn + β.

sortUnions sorts the unions down the right branch using our total
ordering on Reg, removing duplicates.

33 / 69

Weak Simplification

Define weaklySimplify ∈ Reg→WS by structural recursion:

• weaklySimplify% = %;

• weaklySimplify $ = $;

• weaklySimplify a = a, for all a ∈ Sym;

• weaklySimplify(∗(α)) =

deepClosure(weaklySimplify α);

• weaklySimplify(@(α, β)) =

deepConcat(weaklySimplify α,weaklySimplify β); and

• weaklySimplify(+(α, β)) =

deepUnion(weaklySimplify α,weaklySimplify β).

34 / 69

Weak Simplification

Proposition 3.3.28
For all α ∈ Reg:

(1) weaklySimplify α ≈ α;

(2) alphabet(weaklySimplify α) ⊆ alphabetα;

(3) cc(weaklySimplify α) ≤cc cc β;

(4) size(weaklySimplify α) ≤ sizeα;

(5) numSyms(weaklySimplify α) ≤ numSymsα; and

(6) numConcats(weaklySimplify α) ≤ numConcatsα.

Proof. By induction on regular expressions. ✷

Corollary 3.3.30
For all regular expressions α, weaklySimplifyα ≤simp α.

35 / 69

Weak Simplification

Proposition 3.3.31
For all α ∈ Reg, if α is weakly simplified, then

weaklySimplify α = α.

Proof. By induction on regular expressions. ✷

36 / 69

Weak Simplification

Using our weak simplification algorithm, we can define an
algorithm for calculating the language generated by a regular
expression, when this language is finite, and for announcing that
this language is infinite, otherwise.

First, we weakly simplify our regular expression, α, and call the
resulting regular expression β. If β contains no closures, then we
compute its meaning in the usual way. But, if β contains one or
more closures, then its language will be infinite, and thus we can
output a message saying that L(α) is infinite.

37 / 69

Weak Simplification in Forlan

The Forlan module Reg defines the following functions relating to
weak simplification:

val weaklySimplified : reg -> bool

val weaklySimplify : reg -> reg

val toStrSet : reg -> str set

Here are some examples of how these functions can be used:
- val reg = Reg.input "";

@ (% + $0)(% + 00*0 + 0**)*

@ .

val reg = - : reg

- Reg.output("", Reg.weaklySimplify reg);

(% + 0* + 000*)*

val it = () : unit

- Reg.toStrSet reg;

language is infinite

uncaught exception Error
38 / 69

Weak Simplification in Forlan

- val reg’ = Reg.input "";

@ (1 + %)(2 + $)(3 + %*)(4 + $*)

@ .

val reg’ = - : reg

- StrSet.output("", Reg.toStrSet reg’);

2, 12, 23, 24, 123, 124, 234, 1234

val it = () : unit

- Reg.output("", Reg.weaklySimplify reg’);

(% + 1)2(% + 3)(% + 4)

val it = () : unit

- Reg.output

= ("",

= Reg.weaklySimplify(Reg.fromString "(00*11*)*"));

(00*11*)*

val it = () : unit

39 / 69

Local and Global Simplification

In the book, we define a function/algorithm
hasEmp ∈ Reg→ Bool such that, for all α ∈ Reg, % ∈ L(α) iff
hasEmpα = true.

In the book, we define a function/algorithm
obviousSubset ∈ Reg × Reg→ Bool that is a conservative

approximation to subset testing: for all α, β ∈ Reg, if
obviousSubset(α, β) = true, then L(α) ⊆ L(β).

On the positive side, we have that, e.g.,
obviousSubset(0∗011∗1, 0∗1∗) = true.

On the other hand,
obviousSubset((01)∗, (% + 0)(10)∗(% + 1)) = false, even though
L((01)∗) ⊆ L((% + 0)(10)∗(% + 1)).

In Section 3.13, we will learn of a less efficient algorithm that will
provide a complete test for L(α) ⊆ L(β).

40 / 69

Simplification Rules

We have two kinds of simplification rules, which may be applied to
subtrees of regular expressions:

• structural rules,

• reduction rules.

Given some set of simplification rules and a regular expression α,
when we generate the set of all regular expressions X that can be
formed using these simplification rules starting from α, we add
regular expressions to X in a series of stages. At stage 0, we have
{α}. At some stage n, we start with the regular expressions that
we added at that stage (i.e., that were not added at any earlier
stage). For each of these regular expressions, β, we add at stage
n + 1 all the regular expressions γ that can be formed by applying
an allowed simplification rule to one of the subtrees of β, subject
to the restriction that γ has not already been added at a previous
stage. We must show that this process terminates.

41 / 69

Structural Rules

There are nine structural rules, which preserve the alphabet,
closure complexity, size, number of concatenations and number of
symbols of a regular expression:

(1) (α+ β) + γ → α+ (β + γ).

(2) α+ (β + γ)→ (α+ β) + γ.

(3) α(βγ)→ (αβ)γ.

(4) (αβ)γ → α(βγ).

(5) α+ β → β + α.

(6) α∗α→ αα∗.

(7) αα∗ → α∗α.

(8) α(βα)∗ → (αβ)∗α.

(9) (αβ)∗α→ α(βα)∗.

42 / 69

Structural Rules

Because the structural rules preserve the size and alphabet of
regular expressions, if we start with a regular expression α, there
are only finitely many regular expressions that we can transform α
into using structural rules.

For even small regular expressions, there may be a very large
number of ways to reorganize them using the structural rules. E.g.,
consider α1 + · · ·+ αn, where n ≥ 1 and α1, . . . , αn are distinct
regular expressions. There are n! ways of ordering the αi . And
there are (2n)!/(n!)(n + 1)! (these are the Catalan numbers)
binary trees with exactly n leaves. Consequently, using structural
rules (1), (2) and (5) (without making changes inside the αi), we
can reorganize α1 + · · ·+ αn into (n!)(2n)!/(n!)(n + 1)! regular
expressions. For n = 16, this is about 7 ∗ 1020.

43 / 69

Reduction Rules

There are 26 reduction rules, some of which make use of a
conservative approximation sub to subset testing.

When α→ β because of a reduction rule, we have that
alphabetβ ⊆ alphabetα and β simp α, where simp is the
well-founded relation on Reg defined below.

Most of the rules strictly decrease a regular expression’s closure
complexity and size. The exceptions are labeled “cc” (for when the
closure complexity strictly decreases, but the size strictly
increases), “concatenations” (for when the closure complexity and
size are preserved, but the number of concatenations strictly
decreases) or “symbols” (for when the closure complexity and size
normally strictly decrease, but occasionally they and the number of
concatenations stay they same, but the number of symbols strictly
decreases).

44 / 69

Simplification Well-founded Relation

We define a relation simp on Reg by, for all α, β ∈ Reg, α simp β
iff:

• ccα <cc cc β; or

• ccα = cc β but sizeα < size β; or

• ccα = cc β and sizeα = size β, but
numConcatsα < numConcatsβ; or

• ccα = cc β, sizeα = size β and
numConcatsα = numConcatsβ, but
numSymsα < numSymsβ.

We have that simp ⊆ <simp ⊆ ≤simp.

Proposition 3.3.35
simp is a well-founded relation on Reg.

45 / 69

Simplification Well-founded Relation

Proposition 3.3.36
simp is transitive.

Proposition 3.3.37
Suppose α, β, γ ∈ Reg.

(1) If α and β have the same closure complexity, size, numbers of

concatenations and numbers of symbols, and β simp γ, then
α simp γ.

(2) If α simp β, and β and γ have the same closure complexity,

size, numbers of concatenations and numbers of symbols,

then α simp γ.

(3) If α ≤simp β simp γ, then α simp γ.

(4) If α simp β ≤simp γ, then α simp γ.

46 / 69

Simplification Well-founded Relation

Proposition 3.3.38
Suppose α, β, β′ ∈ Reg, β′ simp β, pat ∈ Path is valid for α, and
β is the subtree of α at position pat. Let α′ be the result of

replacing the subtree at position pat in α by β′. Then α′ simp α.

Proof. By induction on α. ✷

47 / 69

Reduction Rules

(1) If sub(α, β), then α+ β → β.

(2) αβ1 + αβ2 → α(β1 + β2).

(3) α1β + α2β → (α1 + α2)β.

(4) If hasEmpα and sub(α, β∗), then αβ∗ → β∗.

(5) If hasEmp β and sub(β, α∗), then α∗β → α∗.

(6) If sub(α, β∗), then (α+ β)∗ → β∗.

(7) (α∗ + β)∗ → (α+ β)∗.

(8) (concatenations) If hasEmpα and hasEmpβ, then
(αβ)∗ → (α+ β)∗.

(9) (concatenations) If hasEmpα and hasEmpβ, then
(αβ + γ)∗ → (α+ β + γ)∗.

(10) If hasEmpα and sub(α, β∗), then (αβ)∗ → β∗.

(11) If hasEmp β and sub(β, α∗), then (αβ)∗ → α∗.

48 / 69

Reduction Rules

(12) If hasEmpα and sub(α, (β + γ)∗), then
(αβ + γ)∗ → (β + γ)∗.

(13) If hasEmp β and sub(β, (α + γ)∗), then
(αβ + γ)∗ → (α+ γ)∗.

(14) (cc) If not(hasEmpα) and ccα ∪ cc β <cc cc β, then
(αβ∗)∗ →%+ α(α+ β)∗.

(15) (cc) If not(hasEmp β) and ccα ∪ cc β <cc ccα, then
(α∗β)∗ →%+ (α+ β)∗β.

(16) (cc) If not(hasEmpα) or not(hasEmp γ), and

ccα ∪ cc β ∪ cc γ <cc cc, β, then
(αβ∗γ)∗ →%+ α(β + γα)∗γ.

(17) If sub(αα∗, β), then α∗ + β →%+ β.

(18) If hasEmp β and sub(ααα∗, β), then α∗ + β → α+ β.

(19) (symbols) If α 6∈ {%, $} and sub(αn, β), then
αn+1α∗ + β → αnα∗ + β.

49 / 69

Reduction Rules

(20) If n ≥ 2, l ≥ 0 and 2n − 1 < m1 < · · · < ml , then
(αn + αn+1 + · · ·+ α2n−1 + αm1 + · · · + αml)∗ →%+ αnα∗.

(21) (symbols) If α 6∈ {%, $}, then α+ αβ → α(% + β).

(22) (symbols) If α 6∈ {%, $}, then α+ βα→ (% + β)α.

(23) α∗(% + β(α+ β)∗)→ (α+ β)∗.

(24) (% + (α+ β)∗α)β∗ → (α+ β)∗.

(25) If sub(α, β∗) and sub(β, α), then % + αβ∗ → β∗.

(26) If sub(β, α∗) and sub(α, β), then % + α∗β → α∗.

50 / 69

Local Simplification

Suppose sub is a conservative approximation to subset testing. We
say that a regular expression α is locally simplified with respect to

sub: iff

• α is weakly simplified, and

• α can’t be transformed by our structural rules (which may be
applied to subtrees) into a regular expression to which one of
our reduction rules (which may be applied to subtrees) applies.

51 / 69

Local Simplification

The local simplification of a regular expression α with respect to a
conservative approximation to subset testing sub proceeds as
follows.

It calls its main function with the weak simplification, β, of α.
Then β ≤simp α, alphabetβ ⊆ alphabetα and β is equivalent to
α.

The main function is defined by well-founded recursion on simp.
When called with a weakly simplified α, it returns a β such that:

• β is locally simplified with respect to sub;

• β is equivalent to α;

• alphabetβ ⊆ alphabetα; and

• β ≤simp α.

52 / 69

Local Simplification

The main function works as follows:

• It generates the (finite) set X of all regular expressions
weaklySimplify γ, such that α can be reorganized using the
structural rules (allowing applications to subtrees) into a
regular expression β, which can be transformed by a single
application of one of our reduction rules (allowing applications
to subtrees) into γ.

• If X is empty, then it returns α.

• Otherwise, it calls itself recursively on the simplest element, λ,
of X (when X doesn’t have a unique simplest element, the
smallest of the simplest elements—in our total ordering on
regular expressions—is selected).

53 / 69

Local Simplification

Because

• the structural rules (even applied to subtrees) preserve closure
complexity, size, number of concatenations, and number of
symbols,

• the reduction rules (even applied to subtrees) produce
simp-predecessors, and

• and weak simplification respects ≤simp,

we have that λ simp α (and so λ ≤simp α), so that the recursive
call is legal. Furthermore, weak simplification, and all of the rules,
either preserve or decrease (via ⊆) the alphabet of regular
expressions. Thus alphabetλ ⊆ alphabetα. Finally, λ is
equivalent to α, because all the rules and weak simplification
preserve equivalence.

54 / 69

Local Simplification

We define a function/algorithm

locallySimplify ∈ (Reg × Reg→ Bool)→ Reg→ Reg

by: for all conservative approximations to subset testing sub, and
α ∈ Reg, locallySimplify sub α is the result of running our local
simplification algorithm on α, using sub as the conservative
approximation to subset testing.

Theorem 3.3.39
For all conservative approximations to subset testing sub, and

α ∈ Reg:
• locallySimplify subα is locally simplified with respect to sub;
• locallySimplify subα is equivalent to α;
• alphabet(locallySimplify sub α) ⊆ alphabetα; and
• locallySimplify subα ≤simp α.

Proof. By well-founded induction on simp. ✷

55 / 69

Local Simplification in Forlan

The Forlan module Reg provides the following functions relating to
local simplification:

val locallySimplified :

(reg * reg -> bool) -> reg -> bool

val locallySimplify :

int option * (reg * reg -> bool) ->

reg -> bool * reg

val locallySimplifyTrace :

int option * (reg * reg -> bool) ->

reg -> bool * reg

The argument of type reg * reg -> bool is a conservative
approximation to subset testing. If the optional integer argument is
SOME n, then at each recursive call of the principal function, only at
most n structural reorganizations are considered. The returned
boolean is true iff all the structural reorganizations of the returned
regular expression were considered, and so it is locally simplified.

56 / 69

Local Simplification in Forlan

- val locSimped =

= Reg.locallySimplified Reg.obviousSubset;

val locSimped = fn : reg -> bool

- locSimped(Reg.fromString "(1 + 00*1)*00*");

val it = false : bool

- locSimped(Reg.fromString "(0 + 1)*0");

val it = true : bool

- fun locSimp nOpt =

= Reg.locallySimplify(nOpt, Reg.obviousSubset);

val locSimp = fn : int option -> reg -> bool * reg

- locSimp

= NONE

= (Reg.fromString "% + 0*0(0 + 1)* + 1*1(0 + 1)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*

val it = () : unit

57 / 69

Local Simplification in Forlan

- locSimp

= NONE

= (Reg.fromString "% + 1*0(0 + 1)* + 0*1(0 + 1)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*

val it = () : unit

- locSimp NONE (Reg.fromString "(1 + 00*1)*00*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*0

val it = () : unit

58 / 69

Local Simplification in Forlan

- Reg.locallySimplifyTrace

= (NONE, Reg.obviousSubset)

= (Reg.fromString "0*(1 + 0*)*");

considered all 2 structural reorganizations of

0*(1 + 0*)*

0*(1 + 0*)* transformed by structural rule 5 at

position [2, 1] to 0*(0* + 1)* transformed by

reduction rule 7 at position [2] to 0*(0 + 1)*

considered all 2 structural reorganizations of

0*(0 + 1)*

0*(0 + 1)* transformed by reduction rule 4 at position

[] to (0 + 1)*

considered all 2 structural reorganizations of

(0 + 1)*

(0 + 1)* is locally simplified

val it = (true,-) : bool * reg

59 / 69

Local Simplification in Forlan

- val reg = Reg.input "";

@ 1 + (% + 0 + 2)(% + 0 + 2)*1 +

@ (1 + (% + 0 + 2)(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)*

@ .

val reg = - : reg

- Reg.equal(Reg.weaklySimplify reg, reg);

val it = true : bool

- val (b’, reg’) = locSimp (SOME 10) reg;

val b’ = false : bool

val reg’ = - : reg

- Reg.output("", reg’);

(0 + 2)*1(0 + 2 + 1(0 + 2)*1)*

val it = () : unit

60 / 69

Local Simplification in Forlan

- val (b’’, reg’’) = locSimp (SOME 1000) reg’;

val b’’ = true : bool

val reg’’ = - : reg

- Reg.output("", reg’’);

(0 + 2)*1(0 + 2 + 1(0 + 2)*1)*

val it = () : unit

61 / 69

Global Simplification

Given a conservative approximation to subset testing sub, and a
regular expression α, we say that α is globally simplified with

respect to sub iff no strictly simpler regular expression can be
found by an arbitrary number of applications (to subtrees) of weak
simplification, structural rules and reduction rules.

The global simplification of a regular expression α with respect to

a conservative approximation to subset testing sub consists of
generating the set X of all regular expressions β that can formed
from α by an arbitrary number of applications of weak
simplification, the structural rules and the reduction rules (which
may be applied to subtrees). All of the elements of X will have the
same meaning as α, and will have alphabets that are subsets of the
alphabet of α.

62 / 69

Global Simplification

Because
• weak simplification (even applied to subtrees) either preserves

the closure complexity, size, numbers of concatenations and
numbers of symbols of a regular expression, or results in a
regular expression that is a simp-predecessor,

• the structural rules (even applied to subtrees) preserve the
closure complexity, size, numbers of concatenations and
numbers of symbols of a regular expression, and

• the reduction rules (even applied to subtrees) produce regular
expressions that are simp-predecessors,

all the elements of X either are simp-predecessors of α or have the
same closure complexity, size, numbers of concatenations and
numbers of symbols as α.

The book uses graph theory’s König’s lemma (every infinite finitely
splitting tree has an infinite branch) to prove that the generation
of X terminates.

63 / 69

Global Simplification

The simplest element of X is then selected (when there isn’t a
unique simplest element, the smallest of the simplest elements—in
our total ordering on regular expressions—is selected). If this
element is a simp-predecessor of α, it will be ≤simp α. Otherwise,
it will have the same closure complexity, size, numbers of
concatenations and numbers of symbols as α. And it will be
standardized, as weak simplification of a non-standardized regular
expression will standardize it, making it more simplified. Thus it
will be ≤simp α. Similarly, it will be globally simplified with respect
to sub, as otherwise it wouldn’t be the simplest element of X .

64 / 69

Global Simplification

We define a function/algorithm

globallySimplify ∈ (Reg × Reg→ Bool)→ Reg→ Reg

by: for all conservative approximations to subset testing sub, and
α ∈ Reg, globallySimplify sub α is the result of running our global
simplification algorithm on α, using sub as our conservative
approximation to subset testing.

Theorem 3.3.42
For all conservative approximations to subset testing sub, and

α ∈ Reg:
• globallySimplify subα is globally simplified with respect to

sub;

• globallySimplify subα is equivalent to α;
• alphabet(globallySimplify subα) ⊆ alphabetα; and
• globallySimplify subα ≤simp α.

65 / 69

Global Simplification in Forlan

The Forlan module Reg provides the following functions relating to
global simplification:

val globallySimplified :

(reg * reg -> bool) -> reg -> bool

val globallySimplifyTrace :

int option * (reg * reg -> bool) ->

reg -> bool * reg

val globallySimplify :

int option * (reg * reg -> bool) ->

reg -> bool * reg

The argument of type reg * reg -> bool is a conservative
approximation to subset testing. If the optional integer argument is
SOME n, at most n candidates will be considered. The returned
boolean is true iff all candidates were considered, and so the
returned regular expression is globally simplified.

66 / 69

Global Simplification in Forlan

- fun globSimp nOpt =

= Reg.globallySimplify

= (nOpt, Reg.obviousSubset);

val globSimp = fn : int option -> reg -> bool * reg

- fun globSimpTr nOpt =

= Reg.globallySimplifyTrace

= (nOpt, Reg.obviousSubset);

val globSimpTr = fn : int option -> reg -> bool * reg

67 / 69

Global Simplification in Forlan

- globSimpTr NONE (Reg.fromString "(0*0)*");

considering candidates with explanations of length 0

simplest result now: (0*0)*

considering candidates with explanations of length 1

simplest result now: (0*0)* weakly simplifies to

(00*)*

simplest result now: (0*0)* transformed by reduction

rule 10 at position [] to 0*

considering candidates with explanations of length 2

considering candidates with explanations of length 3

considering candidates with explanations of length 4

considering candidates with explanations of length 5

considering candidates with explanations of length 6

search completed after considering 17 candidates with

maximum size 8

(0*0)* transformed by reduction rule 10 at position []

to 0* is globally simplified

val it = (true,-) : bool * reg
68 / 69

Global Simplification in Forlan

- locSimp NONE (Reg.fromString "(00*11*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 00*1(% + (0 + 1)*1)

val it = () : unit

- globSimp NONE (Reg.fromString "(00*11*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 0(0 + 1)*1

val it = () : unit

69 / 69

