
3.4: Finite Automata and Labeled Paths

In this section, we:

• say what finite automata (FA) are, and give an introduction
to how they can be processed using Forlan;

• say what labeled paths are, and show how they can be
processed using Forlan; and

• use the notion of labeled path to say what finite automata
mean.

1 / 25

Finite Automata

A finite automaton (FA) M consists of:

• a finite set QM of symbols (we call the elements of QM the
states of M);

2 / 25

Finite Automata

A finite automaton (FA) M consists of:

• a finite set QM of symbols (we call the elements of QM the
states of M);

• an element sM of QM (we call sM the start state of M);

2 / 25

Finite Automata

A finite automaton (FA) M consists of:

• a finite set QM of symbols (we call the elements of QM the
states of M);

• an element sM of QM (we call sM the start state of M);

• a subset AM of QM (we call the elements of AM the accepting

states of M);

2 / 25

Finite Automata

A finite automaton (FA) M consists of:

• a finite set QM of symbols (we call the elements of QM the
states of M);

• an element sM of QM (we call sM the start state of M);

• a subset AM of QM (we call the elements of AM the accepting

states of M);

• a finite subset TM of { (q, x , r) | q, r ∈ QM and x ∈ Str } (we
call the elements of TM the transitions of M, and we often
write (q, x , r) as

q
x

→ r

or q, x → r).

2 / 25

Finite Automata

We often abbreviate QM , sM , AM and TM to Q, s, A and T , when
it’s clear which FA we are working with.

We write FA for the set of all finite automata, which is a countably
infinite set.

3 / 25

Example FA

As an example, we can define an FA M as follows:

• QM = {A,B,C};

• sM = A;

• AM = {A,C};

• TM = {(A, 1,A), (B, 11,B), (C, 111,C), (A, 0,B), (A, 2,B),
(A, 0,C), (A, 2,C), (B, 0,C), (B, 2,C)}.

4 / 25

Forlan’s Syntax for FAs

Here is how our example FA M can be expressed in Forlan’s syntax:

{states}

A, B, C

{start state}

A

{accepting states}

A, C

{transitions}

A, 1 -> A; B, 11 -> B; C, 111 -> C;

A, 0 -> B; A, 2 -> B;

A, 0 -> C; A, 2 -> C;

B, 0 -> C; B, 2 -> C

5 / 25

Forlan’s Syntax for FAs

Since whitespace characters are ignored by Forlan’s input routines,
the preceding description of M could have been formatted in many
other ways. States are separated by commas, and transitions are
separated by semicolons. The order of states and transitions is
irrelevant.

Transitions that only differ in their right-hand states can be
merged into single transition families. E.g., we can merge

A, 0 -> B

and

A, 0 -> C

into the transition family

A, 0 -> B | C

6 / 25

Input and Output of FAs in Forlan

The Forlan module FA defines an abstract type fa (in the top-level
environment) of finite automata, as well as a large number of
functions and constants for processing FAs, including:

val input : string -> fa

val output : string * fa -> unit

7 / 25

I/O Example

Suppose that our example FA is in the file 3.4-fa. We can input
this FA into Forlan, and then output it to the standard output, as
follows:

- val fa = FA.input "3.4-fa";

val fa = - : fa

- FA.output("", fa);

{states} A, B, C {start state} A

{accepting states} A, C

{transitions}

A, 0 -> B | C; A, 1 -> A; A, 2 -> B | C; B, 0 -> C;

B, 2 -> C; B, 11 -> B; C, 111 -> C

val it = () : unit

8 / 25

Graphical Notation for FAs

We also make use of graphical notation for finite automata.

Here is how our FA M can be described graphically:

0, 2

11

0, 2
Start A B C

0, 2

1111

9 / 25

Graphical Editor for Finite Automata

The Java program JForlan, can be used to view and edit finite
automata. It can be invoked directly, or run via Forlan. See the
Forlan website for more information.

10 / 25

More on Finite Automata

We define a function alphabet ∈ FA→ Alp by: for all M ∈ FA,
alphabetM is { a ∈ Sym | there are q, x , r such that
q, x → r ∈ TM and a ∈ alphabet x }.

For example, the alphabet of our example FA M is {0, 1, 2}.

The Forlan module FA contains the functions

val numStates : fa -> int

val numTransitions : fa -> int

val equal : fa * fa -> bool

val alphabet : fa -> sym set

11 / 25

Labeled Paths and FA Meaning

We will explain when strings are accepted by finite automata using
the notion of a labeled path. A labeled path lp has the form

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

where the qi ’s (which we think of as states) are symbols, and the
xi ’s are strings. (When n = 0, this is just q0+1 = q1.)

12 / 25

Labeled Paths and FA Meaning

We will explain when strings are accepted by finite automata using
the notion of a labeled path. A labeled path lp has the form

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

where the qi ’s (which we think of as states) are symbols, and the
xi ’s are strings. (When n = 0, this is just q0+1 = q1.)

We write LP for the set of all labeled paths, which is a countably
infinite set.

12 / 25

Labeled Paths and FA Meaning

We will explain when strings are accepted by finite automata using
the notion of a labeled path. A labeled path lp has the form

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

where the qi ’s (which we think of as states) are symbols, and the
xi ’s are strings. (When n = 0, this is just q0+1 = q1.)

We write LP for the set of all labeled paths, which is a countably
infinite set.

We sometimes (e.g., when using Forlan) write a path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1

as

q1, x1 ⇒ q2, x2 ⇒ · · · qn, xn ⇒ qn+1.

12 / 25

Notation for Labeled Paths

Let lp be the labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

We say that:

• the start state of lp (startState lp) is q1;

• the end state of lp (endState lp) is qn+1;

• the length of lp (|lp|) is n; and

• the label of lp (label lp) is x1x2 · · · xn (%, when n = 0).

13 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are , whose
length is , and whose label is And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is

• end state is

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is , and whose label is And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is

• end state is

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is

• end state is

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is

• end state is

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is A;

• end state is

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is A;

• end state is C;

• length is

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is A;

• end state is C;

• length is 3; and

• label is

14 / 25

Example Labeled Paths

For example

A

is a labeled path whose start and end states are both A, whose
length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose

• start state is A;

• end state is C;

• length is 3; and

• label is 0(11)2 = 0112.

14 / 25

Validity of Labeled Paths in FAs

A labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

is valid for an FA M iff, for all i ∈ [1 : n],

qi , xi → qi+1 ∈ TM ,

and qn+1 ∈ QM .

15 / 25

Validity of Labeled Paths in FAs

A labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

is valid for an FA M iff, for all i ∈ [1 : n],

qi , xi → qi+1 ∈ TM ,

and qn+1 ∈ QM .

For example, the labeled paths

A and A
0

⇒ B
11

⇒ B
2

⇒ C

are valid for our example FA M. But the labeled path

A
%

⇒ A

is not valid for M, since A,%→ A 6∈ TM .
15 / 25

The Meaning of Finite Automata

A string w is accepted by a finite automaton M iff there is a
labeled path lp such that

• lp is valid for M;

• the label of lp is w ;

• the start state of lp is the start state of M; and

• the end state of lp is an accepting state of M.

Clearly, if w is accepted by M, then alphabetw ⊆ alphabetM.

The language accepted by a finite automaton M (L(M)) is

{w ∈ Str | w is accepted by M }.

16 / 25

Example of FA Meaning

Consider our example FA M:

0, 2

11

0, 2
Start A B C

0, 2

1111

We have that

L(M) =

17 / 25

Example of FA Meaning

Consider our example FA M:

0, 2

11

0, 2
Start A B C

0, 2

1111

We have that

L(M) = {1}∗ ∪

17 / 25

Example of FA Meaning

Consider our example FA M:

0, 2

11

0, 2
Start A B C

0, 2

1111

We have that

L(M) = {1}∗ ∪

{1}∗{0, 2}{11}∗{0, 2}{111}∗ ∪

17 / 25

Example of FA Meaning

Consider our example FA M:

0, 2

11

0, 2
Start A B C

0, 2

1111

We have that

L(M) = {1}∗ ∪

{1}∗{0, 2}{11}∗{0, 2}{111}∗ ∪

{1}∗{0, 2}{111}∗ .

17 / 25

Example of FA Meaning

Consider our example FA M:

0, 2

11

0, 2
Start A B C

0, 2

1111

We have that

L(M) = {1}∗ ∪

{1}∗{0, 2}{11}∗{0, 2}{111}∗ ∪

{1}∗{0, 2}{111}∗ .

For example, %, 11, 110112111 and 2111111 are accepted by M.
And 21112 and 2211 are not accepted by M.

17 / 25

More on Finite Automata Meaning

Proposition 3.4.1

Suppose M is a finite automaton. Then

alphabet(L(M)) ⊆ alphabetM.

18 / 25

More on Finite Automata Meaning

Proposition 3.4.1

Suppose M is a finite automaton. Then

alphabet(L(M)) ⊆ alphabetM.

We say that finite automata M and N are equivalent iff
L(M) = L(N). In other words, M and N are equivalent iff M and
N accept the same language.

18 / 25

More on Finite Automata Meaning

Proposition 3.4.1

Suppose M is a finite automaton. Then

alphabet(L(M)) ⊆ alphabetM.

We say that finite automata M and N are equivalent iff
L(M) = L(N). In other words, M and N are equivalent iff M and
N accept the same language.

We define a relation ≈ on FA by: M ≈ N iff M and N are
equivalent. It is easy to see that ≈ is reflexive on FA, symmetric
and transitive.

18 / 25

Processing Labeled Paths in Forlan

The Forlan module LP defines an abstract type lp (in the top-level
environment) of labeled paths, as well as various functions for
processing labeled paths, including:

val input : string -> lp

val output : string * lp -> unit

val equal : lp * lp -> bool

val startState : lp -> sym

val endState : lp -> sym

val label : lp -> str

val length : lp -> int

19 / 25

Checking the Validity of Labeled Paths

The module FA also defines the functions

val checkLP : fa -> lp -> unit

val validLP : fa -> lp -> bool

for checking whether a labeled path is valid in a finite automaton.

The function checkLP takes in an FA M and returns a function
that checks whether a labeled path lp is valid for M. When lp is
not valid for M, the function explains why it isn’t; otherwise, it
prints nothing.

The function validLP takes in an FA M and returns a function
that tests whether a labeled path lp is valid for M, silently
returning true, if it is, and silently returning false, otherwise.

20 / 25

Example Labeled Path and FA Processing

Assume that fa is still bound to our example FA

0, 2

11

0, 2
Start A B C

0, 2

1111

Here are some examples of labeled path and FA processing:

21 / 25

Example Labeled Path and FA Processing

- val lp = LP.input "";

@ A, 1 => A, 0 => B, 11 => B, 2 => C, 111 => C

@ .

val lp = - : lp

- Sym.output("", LP.startState lp);

A

val it = () : unit

- Sym.output("", LP.endState lp);

C

val it = () : unit

- LP.length lp;

val it = 5 : int

22 / 25

Examples

- Str.output("", LP.label lp);

10112111

val it = () : unit

- val checkLP = FA.checkLP fa;

val checkLP = fn : lp -> unit

- checkLP lp;

val it = () : unit

- val lp’ = LP.fromString "A";

val lp’ = - : lp

- LP.length lp’;

val it = 0 : int

- Str.output("", LP.label lp’);

%

val it = () : unit

- checkLP lp’;

val it = () : unit

23 / 25

Examples

- checkLP(LP.input "");

@ A, % => A, 1 => A

@ .

invalid transition: "A, % -> A"

uncaught exception Error

24 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

25 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

It seems reasonable that our machine have two states:

25 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

It seems reasonable that our machine have two states: an
accepting (and start) state A corresponding to the strings of 0’s
and 1’s with an even number of zeros, and a state B corresponding
to the strings of 0’s and 1’s with an odd number of zeros.
Processing a 1 in either state should cause us to

25 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

It seems reasonable that our machine have two states: an
accepting (and start) state A corresponding to the strings of 0’s
and 1’s with an even number of zeros, and a state B corresponding
to the strings of 0’s and 1’s with an odd number of zeros.
Processing a 1 in either state should cause us to stay in that state,
but processing a 0 in one of the states should cause us to

25 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

It seems reasonable that our machine have two states: an
accepting (and start) state A corresponding to the strings of 0’s
and 1’s with an even number of zeros, and a state B corresponding
to the strings of 0’s and 1’s with an odd number of zeros.
Processing a 1 in either state should cause us to stay in that state,
but processing a 0 in one of the states should cause us to switch to
the other state.

25 / 25

Designing Finite Automata

Let’s consider the problem of finding a finite automaton that
accepts the set of all strings of 0’s and 1’s with an even number of
0’s.

It seems reasonable that our machine have two states: an
accepting (and start) state A corresponding to the strings of 0’s
and 1’s with an even number of zeros, and a state B corresponding
to the strings of 0’s and 1’s with an odd number of zeros.
Processing a 1 in either state should cause us to stay in that state,
but processing a 0 in one of the states should cause us to switch to
the other state.

The above considerations lead us to the FA:

1

Start A

1

0

0

B

25 / 25

