3.5: Isomorphism of Finite Automata

Let M and N be the finite automata

(M)

(N)

How are M and N related?

3.5: Isomorphism of Finite Automata

Let M and N be the finite automata

(M)

(N)

How are M and N related? Although they are not equal, they do have the same "structure", in that M can be turned into N by replacing A, B and C by A, C and B, respectively. When FAs have the same structure, we will say they are "isomorphic".

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=$
- $\left\{h q \mid q \in A_{M}\right\}=$
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=$

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=s_{N}$;
- $\left\{h q \mid q \in A_{M}\right\}=$
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=$

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=s_{N}$;
- $\left\{h q \mid q \in A_{M}\right\}=A_{N}$; and
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=$

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=s_{N}$;
- $\left\{h q \mid q \in A_{M}\right\}=A_{N}$; and
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=T_{N}$.

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=s_{N}$;
- $\left\{h q \mid q \in A_{M}\right\}=A_{N}$; and
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=T_{N}$.

We define a relation iso on FA by: M iso N iff there is an isomorphism from M to N. We say that M and N are isomorphic iff M iso N.

Definition of Isomorphism

An isomorphism h from an FA M to an FA N is a bijection from Q_{M} to Q_{N} such that

- $h s_{M}=s_{N}$;
- $\left\{h q \mid q \in A_{M}\right\}=A_{N}$; and
- $\left\{(h q), x \rightarrow(h r) \mid q, x \rightarrow r \in T_{M}\right\}=T_{N}$.

We define a relation iso on FA by: M iso N iff there is an isomorphism from M to N. We say that M and N are isomorphic iff M iso N.
Consider our example FAs M and N, and let h be the function

$$
\{(\mathrm{A}, \mathrm{~A}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{~B})\}
$$

Then h is an isomorphism from M to N. Hence M iso N.
Properties of Isomorphism

Clearly, if M and N are isomorphic, then they have the same alphabet.

Proposition 3.5.1

The relation iso is reflexive on FA, symmetric and transitive.

Properties of Isomorphism

Proposition 3.5.2

Suppose M and N are isomorphic FAs. Then $L(M) \subseteq L(N)$. Proof.

Properties of Isomorphism

Proposition 3.5.2

Suppose M and N are isomorphic FAs. Then $L(M) \subseteq L(N)$.
Proof. Let h be an isomorphism from M to N. Suppose $w \in L(M)$. Then, there is a labeled path

$$
I p=q_{1} \stackrel{x_{1}}{\Rightarrow} q_{2} \stackrel{x_{2}}{\Rightarrow} \cdots q_{n} \stackrel{x_{n}}{\Rightarrow} q_{n+1},
$$

such that $w=x_{1} x_{2} \cdots x_{n}, l p$ is valid for $M, q_{1}=s_{M}$ and $q_{n+1} \in A_{M}$. Let

$$
I p^{\prime}=h q_{1} \stackrel{x_{1}}{\Rightarrow} h q_{2} \stackrel{x_{2}}{\Rightarrow} \cdots h q_{n} \stackrel{x_{n}}{\Rightarrow} h q_{n+1} .
$$

Then the label of $I p^{\prime}$ is $w, I p^{\prime}$ is valid for $N, h q_{1}=h s_{M}=s_{N}$ and $h q_{n+1} \in A_{N}$, showing that $w \in L(N)$.

Properties of Isomorphism

Proposition 3.5.3

Suppose M and N are isomorphic FAs. Then $M \approx N$.

Proof.

Properties of Isomorphism

Proposition 3.5.3

Suppose M and N are isomorphic FAs. Then $M \approx N$.
Proof. Since M iso N, we have that N iso M, by
Proposition 3.5.1.

Properties of Isomorphism

Proposition 3.5.3

Suppose M and N are isomorphic FAs. Then $M \approx N$.
Proof. Since M iso N, we have that N iso M, by
Proposition 3.5.1. Thus, by Proposition 3.5.2, we have that $L(M) \subseteq L(N) \subseteq L(M)$. Hence $L(M)=L(N)$, i.e., $M \approx N . \square$

Renaming States

The function renameStates takes in a pair (M, f), where $M \in \mathbf{F A}$ and f is a bijection from Q_{M} to some set of symbols, and returns the FA produced from M by renaming M 's states using the bijection f.

Proposition 3.5.4

Suppose M is an FA and f is a bijection from Q_{M} to some set of symbols. Then renameStates (M, f) iso M.

Renaming States

The function renameStates takes in a pair (M, f), where $M \in \mathbf{F A}$ and f is a bijection from Q_{M} to some set of symbols, and returns the FA produced from M by renaming M 's states using the bijection f.

Proposition 3.5.4

Suppose M is an FA and f is a bijection from Q_{M} to some set of symbols. Then renameStates (M, f) iso M.

The following function is a special case of renameStates. The function renameStatesCanonically $\in \mathbf{F A} \rightarrow$ FA renames the states of an FA M to:

- A, B, etc., when the automaton has no more than 26 states (the smallest state of M will be renamed to A, the next smallest one to B, etc.); or
- $\langle 1\rangle,\langle 2\rangle$, etc., otherwise.
An Algorithm for Finding Isomorphisms

The book presents and proves the correctness of a relatively simple algorithm for finding an isomorphism from one FA to another, if one exists, and for indicating that there are no such isomorphisms, otherwise.

Isomorphism Finding/Checking in Forlan

The Forlan module FA also defines the functions

```
val isomorphism
    : fa * fa * sym_rel -> bool
val findIsomorphism
    : fa * fa -> sym_rel
val isomorphic
    : fa * fa -> bool
val renameStates : fa * sym_rel -> fa
val renameStatesCanonically : fa -> fa
```


Forlan Examples

Suppose that fa1 and fa2 have been bound to our example finite automata M and N, respectively. Then, here are some example uses of the above functions:

```
- val rel = FA.findIsomorphism(fa1, fa2);
val rel = - : sym_rel
- SymRel.output("", rel);
(A, A), (B, C), (C, B)
val it = () : unit
- FA.isomorphism(fa1, fa2, rel);
val it = true : bool
- FA.isomorphic(fa1, fa2);
val it = true : bool
```


Forlan Examples

- val rel' = FA.findIsomorphism(fa1, fa1);
val rel' = - : sym_rel
- SymRel.output("", rel');
$(A, A),(B, B),(C, C)$
val it = () : unit
- FA.isomorphism(fa1, fa1, rel');
val it = true : bool
- FA.isomorphism(fa1, fa2, rel');
val it $=$ false : bool

Forlan Examples

- val rel', = SymRel.input "";
© $(A, 2),(B, 1),(C, 0)$
© .
val rel'' = - : sym_rel
- val fa3 = FA.renameStates(fa1, rel'');
val fa3 = - : fa
- FA.output("", fa3);
\{states\} 0, 1, 2 \{start state\} 2
\{accepting states\} 0, 1, 2
\{transitions\} 0, 1 -> 1; 2, 0 -> 1 | 2; 2, 1 -> 0
val it = () : unit

Forlan Examples

- val fa4 = FA.renameStatesCanonically fa3;
val $f a 4=-\quad$: a
- FA.output("", fa4);
\{states\} A, B, C \{start state\} C
\{accepting states\} A, B, C
\{transitions\} $A, 1 \rightarrow B ; C, 0 \rightarrow B \mid C ; C, 1->A$
val it = () : unit
- FA.equal(fa4, fa1);
val it = false : bool
- FA.isomorphic(fa4, fa1);
val it = true : bool

