
1.2: Induction

In the section, we consider several induction principles, i.e.,
methods for proving that every element x of some set A has some
property P(x).
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Principle of Mathematical Induction

Theorem 1.2.1 (Principle of Mathematical Induction)
Suppose P(n) is a property of a natural number n.

If

(basis step)

P(0) and

(inductive step)

for all n ∈ N, if (†) P(n), then P(n + 1),

then,

for all n ∈ N, P(n).

We refer to the formula (†) as the inductive hypothesis.
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Principle of Strong Induction

Theorem 1.2.4 (Principle of Strong Induction)
Suppose P(n) is a property of a natural number n.

If

for all n ∈ N,

if (†) for all m ∈ N, if m < n, then P(m),
then P(n),

then

for all n ∈ N, P(n).

We refer to the formula (†) as the inductive hypothesis.

Proof. Follows by mathematical induction, but using a property
Q(n) derived from P(n). See the book. ✷
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Example Proof Using Strong Induction

Proposition 1.2.5
Every nonempty set of natural numbers has a least element.

Proof. Let X be a nonempty set of natural numbers.

We begin by using strong induction to show that, for all n ∈ N,

if n ∈ X , then X has a least element.

Suppose n ∈ N, and assume the inductive hypothesis: for all
m ∈ N, if m < n, then

if m ∈ X , then X has a least element.

We must show that

if n ∈ X , then X has a least element.
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Example Proof (Cont.)

Proof (cont.). Suppose n ∈ X . It remains to show that X has a
least element. If n is less-than-or-equal-to every element of X ,
then we are done. Otherwise, there is an m ∈ X such that m < n.
By the inductive hypothesis, we have that

if m ∈ X , then X has a least element.

But m ∈ X , and thus X has a least element. This completes our
strong induction.
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Example Proof (Cont.)

Proof (cont.). Now we use the result of our strong induction to
prove that X has a least element. Since X is a nonempty subset of
N, there is an n ∈ N such that n ∈ X . By the result of our
induction, we can conclude that

if n ∈ X , then X has a least element.

But n ∈ X , and thus X has a least element. ✷
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Well-founded Induction

We can also do induction over a well-founded relation.

A relation R on a set A is well-founded iff every nonempty subset
X of A has an R-minimal element, where an element x ∈ X is
R-minimal in X iff there is no y ∈ X such that y R x .

Given x , y ∈ A, we say that y is a predecessor of x in R iff y R x .
Thus x ∈ X is R-minimal in X iff none of x ’s predecessors in R

(there may be none) are in X .

For example, in Proposition 1.2.5, we proved that the strict total
ordering < on N is well-founded.

On the other hand, the strict total ordering < on Z is not
well-founded, as Z itself lacks a <-minimal element.
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Well-founded Induction (Cont.)

Here’s another negative example, showing that even if the
underlying set is finite, the relation need not be well-founded.

Let A = {0, 1}, and R = {(0, 1), (1, 0)}. Then 0 is the only
predecessor of 1 in R , and 1 is the only predecessor of 0 in R .

Of the nonempty subsets of A, we have that {0} and {1} have
R-minimal elements. But consider A itself. Then 0 is not
R-minimal in A, because 1 ∈ A and 1 R 0. And 1 is not R-minimal
in A, because 0 ∈ A and 0 R 1. Hence R is not well-founded.
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Principle of Well-founded Induction

Theorem 1.2.8 (Principle of Well-founded Induction)
Suppose A is a set, R is a well-founded relation on A, and P(x) is
a property of an element x ∈ A.

If

for all x ∈ A,

if (†) for all y ∈ A, if y R x, then P(y),
then P(x),

then

for all x ∈ A, P(x).

We refer to the formula (†) as the inductive hypothesis.

When A = N and R = <, this is the same as the principle of
strong induction.
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Proof of Well-founded Induction

Proof. Suppose A is a set, R is a well-founded relation on A,
P(x) is a property of an element x ∈ A, and

(‡) for all x ∈ A,
if for all y ∈ A, if y R x , then P(y),
then P(x).

We must show that, for all x ∈ A, P(x).

Suppose, toward a contradiction, that it is not the case that, for all
x ∈ A, P(x). Hence there is an x ∈ A such that P(x) is false. Let
X = { x ∈ A | P(x) is false }. Thus x ∈ X , showing that X is
non-empty. Because R is well-founded on A, it follows that there is
a z ∈ X that is R-minimal in X , i.e., such that there is no y ∈ X

such that y R z .
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Proof of Well-founded Induction (Cont.)

Proof (cont.). By (‡), we have that

if for all y ∈ A, if y R z , then P(y),
then P(z).

Because z ∈ X , we have that P(z) is false. Thus, to obtain a
contradiction, it will suffice to show that

for all y ∈ A, if y R z , then P(y).

Suppose y ∈ A, and y R z . We must show that P(y). Because z is
R-minimal in X , it follows that y 6∈ X . Thus P(y). ✷
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Well-founded Induction on Predecessor Relation

Let the predecessor relation predN on N be { (n, n + 1) | n ∈ N }.

Then predN is well-founded on N, because predN ⊆ < and < is
well-founded on N (see Proposition 1.2.9 in the book).

0 has no predecessors in predN, and, for all n ∈ N, n is the only
predecessor of n + 1 in predN. Consequently, if a zero/non-zero
case analysis is used, a proof by well-founded induction on predN
will look like a proof by mathematical induction.
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Well-founded Induction on Integers via Absolute Value

Let R be the relation on Z such that, for all n,m ∈ Z, n R m iff
|n| < |m|.

Since | · | ∈ Z→ N and < is well-founded on N, Proposition 1.2.10
from the book tells us that R is well-founded on Z.

If we do a well-founded induction on R , when proving P(n), for
n ∈ Z, we can make use of P(m) for any m ∈ Z whose absolute
value is strictly less than the absolute value of n.

E.g., when proving P(−10), we could make use of P(5) or P(−9).
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