
Preface

These slides are a summary of the the book’s Preface:

• the subject of formal language theory;

• the Forlan Project;

• overview of book.

1 / 15



Background

Since the 1930s, the subject of formal language theory has been
developed by computer scientists, linguists and mathematicians.

Formal languages are sets of strings over finite sets of symbols,
called alphabets, and languages can be described by

• regular expressions (which “generate” languages),

• finite automata (which “accept” languages),

• grammars (which “generate” languages) and

• Turing machines (which “accept” languages).

The set of identifiers of a programming language is a formal
language—one that can be described by a regular expression or a
finite automaton.

The set of all strings of tokens that are generated by a
programming language’s grammar is another example of a formal
language.

2 / 15



Background (Cont.)

Because of its applications, computer science programs typically
offer courses in this subject.

• Applications to compiler construction:
• Regular expressions and finite automata used when specifying

and implementing lexical analyzers;
• Grammars used to specify and implement parsers.

• Finite automata used when designing hardware and network
protocols.

• Turing machines used to formalize the notion of
algorithm—enabling study of what is, and is not, computable.

3 / 15



Background (Cont.)

Formal language theory largely concerned with algorithms, both
ones that are explicitly presented, and ones implicit in theorems
that are proved constructively.

Typically, students apply these algorithms to toy examples by hand,
and learn how they are used in applications.

Students would obtain a deeper understanding if they could
experiment with the algorithms using computer tools.

4 / 15



Background (Cont.)

Consider, e.g., an exercise in which students are asked to synthesize
a deterministic finite automaton that accepts some language, L.

• Conventionally, a student builds machine by hand, then proves
it correct.

• But given right computer tools, another approach possible.

• First, express L in terms of simpler languages, making use of
various language operations.

• Next synthesize automata for those languages, and combine
machines using corresponding operations.

• Finally, minimize resulting machine.

5 / 15



Integrating Experimentation and Proof

To support experimentation with formal languages, I designed and
implemented a computer toolset called Forlan.

Forlan is implemented in the functional programming language
Standard ML (SML), a language whose notation and concepts are
similar to those of mathematics.

Forlan is a library on top of the Standard ML of New Jersey
(SML/NJ) implementation of SML.

It’s used interactively, and users are able to extend Forlan by
defining SML functions.

6 / 15



Integrating Experimentation and Proof (Cont.)

In Forlan, the objects of formal language theory—finite automata,
regular expressions, etc.—are defined as abstract types, and have
concrete syntax.

Instead of Turing machines, Forlan implements a simple functional
programming language of equivalent power but that’s easier to
program in.

Forlan includes the Java program JForlan, a graphical editor for
finite automata and regular expression, parse and program trees.

7 / 15



Integrating Experimentation and Proof (Cont.)

Forlan implements:

• conversions between regular expressions and different kinds of
automata,

• the usual operations (e.g., union) on regular expressions,
automata and grammars,

• equivalence testing and minimization of deterministic finite
automata,

• a general parser for grammars,

• tentative algorithms for simplifying regular expressions,

• the functional programming language used instead of Turing
machines.

8 / 15



Integrating Experimentation and Proof (Cont.)

The textbook on formal language theory Formal Language Theory:

Integrating Experimentation and Proof is based on Forlan.

I have attempted to keep the conceptual and notational distance
between the textbook and toolset as small as possible.

Book treats concepts and algorithms both theoretically, especially
using proof, and through experimentation, using Forlan.

Book provides numerous, fully worked-out examples of how regular
expressions, finite automata, grammars and programs can be
designed and proved correct.

I have tried to simplify the subject’s foundations, using alternative
definitions when needed.

9 / 15



Integrating Experimentation and Proof (Cont.)

Readers of the book are assumed to have significant experience
reading and writing informal mathematical proofs.

The book assumes no previous knowledge of Standard ML.

Drafts of the book have been successfully used at Kansas State
University in a semester long, advanced undergraduate-level course
on formal language theory.

10 / 15



Outline of the Book

Book consists of five chapters:

• Chapter 1: Mathematical Background Set theory,
induction and recursion, trees and inductive definitions.

• Chapter 2: Formal Languages Symbols, strings, alphabets,
and (formal) languages. Proving language equalities using
induction principles. Introduction to Forlan.

• Chapter 3: Regular Languages Regular expressions and
languages, five kinds of finite automata, algorithms for
processing and converting between regular expressions and
finite automata, applications of regular expressions and finite
automata to hardware design, searching in text files and
lexical analysis.

11 / 15



Outline of the Book (Cont.)

• Chapter 4: Context-free Languages Context-free grammars
and languages, algorithms for processing grammars and for
converting regular expressions and finite automata to
grammars, and recursive-descent (top-down) parsing.

• Chapter 5: Recursive and Recursively Enumerable

Languages A functional programming language, and the
recursive and recursively enumerable languages, which are
defined using programs. Algorithms for processing programs
and for converting grammars to programs. Problems, like the
halting problem (the problem of determining whether a
program halts when run on a given input), that can’t be
solved by programs.

12 / 15



Further Reading and Related Work

Book suggests several alternative books on formal language theory
that may be consulted for more information or for alternative
presentations of the book’s material.

Neil Jones pioneered the use of a programming language with
structured data as an alternative to Turing machines for studying
the limits of what is computable.

We’ve followed Jones’s approach in some ways, but our
programming language is functional, not imperative, and has
explicit support for symbols and strings of formal language theory.

Book briefly surveys other formal languages toolsets. Some are
graphically oriented and help students work out relatively small
examples.

Others, like Forlan, are embedding in programming languages, and
support sophisticated experimentation with formal languages.

13 / 15



Notes, Exercises and Website

“Notes” subsections describe how book’s approach differs from
standard practice.

Book contains numerous fully worked-out examples, many of which
consist of designing and proving the correctness of regular
expressions, finite automata, grammars and programs.

Similar exercises, as well as other kinds of exercises, are scattered
throughout the book.

14 / 15



Notes, Exercises and Website (Cont.)

Forlan website

https://alleystoughton.us/forlan

contains:

• instructions for downloading and installing the Forlan toolset,
and JForlan;

• the Forlan manual;

• instructions for reporting errors or making suggestions; and

• the Forlan distribution, including the source for Forlan and
JForlan, as well as the LATEX source for this book.

15 / 15

https://alleystoughton.us/forlan

