
ENHANCEMENTS TO EXENE
an X windowing toolkit for Standard ML

by

DUSTIN B. DEBOER

B.S., Kansas State University, 2003

A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Science
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2005

Approved by:

Major Professor
Alley Stoughton

ABSTRACT

This thesis gives background on eXene, a multi-threaded X window sys-

tem toolkit for Standard ML. First the strengths of the current version of

eXene are reviewed, but then deficiencies that limit applications built on this

toolkit are introduced. To overcome many of these deficiencies, enhancements

are introduced, many of which were jointly designed by the author and his

major professor. The author then describes his work in implementing these

design changes. EXene widget programming conventions to maximize con-

currency are established, and example widgets using these conventions are

created. Extensions for setting widget input focus, customizing applications

from X resource specifications, and revised interfaces for acquiring and re-

questing X selections are designed and implemented. EXene X authorization

code is revised to behave similarly to the expected Xlib behavior. Finally,

implementations are evaluated to verify that the design changes operate as

specified and sufficiently address the deficiencies identified.

TABLE OF CONTENTS

TABLE OF CONTENTS i

LIST OF FIGURES iii

LIST OF TABLES v

1 Introduction 1

2 Widget Programming Conventions 7

2.1 Suggested Widget Programming Conventions 10

2.2 Implementation and Testing of Conventions 13

3 Handling Input Focus 20

3.1 Implementation of Input Focus Extensions 21

3.2 Testing of Input Focus Extensions 24

4 Customization using X Resources 27

4.1 Command Line Parsing Extensions 28

4.2 Style Management Extensions 33

4.3 Testing X Resource Extensions 35

5 X Selections 39

5.1 Implementation of Selection Extensions 42

5.2 Example and Testing of Selection Extensions 45

i

6 X Authorization 49

7 Conclusion 53

A SimpleEdit source code 58

B Widget Conventions Demo source code 65

C Input Focus Demo source code 68

D Resource Demo source code 71

E Selections Demo source code 76

ii

LIST OF FIGURES

1.1 Selected CML functions . 2

1.2 Example CML program . 6

2.1 Widget components . 8

2.2 Widget router functions . 13

2.3 The wrapFlushableQueue method. 15

2.4 The SIMPLEEDIT signature. 16

2.5 Widget conventions demonstration screenshots 17

2.6 Widget conventions demonstration code 19

3.1 The deletionEvent method 21

3.2 The SHELL signature . 22

3.3 The FOCUSFRAME signature. 24

3.4 Input focus improvements demo application 25

4.1 Example option specification 31

4.2 The STYLES command-line functions 32

4.3 The rootWinOfScr function 33

4.4 The xrdbOfScr function . 34

4.5 The mergeStyles function . 34

4.6 Functions added to widget ROOT 36

4.7 Resource customization demo application 37

5.1 New selection functions . 43

iii

5.2 Selection demo application requesting multiple values 45

5.3 Selection demo application requesting primary selection 47

5.4 Code to test watchProperty function 48

iv

LIST OF TABLES

4.1 Styles.optKind . 30

6.1 Format of an XAUTHORITY file 50

v

Chapter 1

Introduction

Both higher-order languages and graphical user interfaces are of great impor-

tance to application developers. Functional languages such as Standard ML

offer many features such as strong typing, an emphasis on freedom from side-

effects, an emphasis on recursive programming, and rule-based programming

[18]. Graphical user interfaces allow applications to more naturally interact

with users. In addition, modern applications seek to maximize concurrency,

especially in graphical user interfaces, in order to offer greater application

responsiveness and more efficiently utilize processing resources.

EXene is an X window system toolkit that allows application program-

mers to construct graphical applications in the functional language Concur-

rent ML. Concurrent ML (CML) is a set of libraries built in Standard ML

that allows the creation of lightweight threads and offers inter-process com-

munication via synchronous events [1].

CML is implemented as a library of SML that, using SMLs built-in first-

class continuations, supports the creation of threads in SML programs. In

addition, as concurrent programs frequently must collaborate in order to ac-

complish useful tasks, CML supports synchronous communication over typed

channels. CML also provides powerful mechanisms for selective communica-

tion over these channels, since a thread may have several channels over which

valid communication at any given point in time may flow and must therefore

1

choose between such communication to proceed with. [14]

structure CML =

...

type thread_id

type ’a event

type ’a chan

val spawn : (unit -> unit) -> thread_id

val channel : unit -> a chan

val sendEvt : (a chan * a) -> unit event

val recvEvt : a chan -> a event

val sync : a event -> a

val wrap : (a event * a -> b) -> b event

val choose : a event list -> a event

val send : (a chan * ’a) -> unit

val recv : a chan -> a

val select : a event list -> a

...

end struct

Figure 1.1: Selected CML functions

Figure 1.1 shows several selected CML functions. The spawn function

accepts a function, and returns a thread id after spawning a thread that

will execute that supplied function. For inter-thread communication, the

channel constructor function allows for the creation of typed channels. After

a CML channel is created, values may be sent and received synchronously

on the channel by the send and recv functions – that is, send blocks until

another thread receives the value from the same channel.

CML also introduces event types – a type τ event is “the type of a

synchronous operation that returns a value of type τ when it is synchronized

upon.” [14] A thread may synchronize on an event with the sync func-

tion, or may cause an enabled event to be nondeterministically chosen upon

2

synchronization from a list of valid events with the choose function. We

may now notice that send is equivalent to sync o sendEvt, recv to sync o

recvEvt, and select to sync o choose. Also, the wrap function associates

a post-synchronization action to take with an event.

An example Concurrent ML program is shown in Figure 1.2. When the

main function is executed, it spawns two threads – one producer thread, and

one consumer thread. The producer thread maintains an integer counter

state, and attempts to send the value of that state over a channel, or attempts

to receive an exit signal over another thread. The consumer thread receives

integers over the first channel until the count reaches 100, when it signals

the first thread to terminate over the exit channel.

EXene was written by John Reppy and Emden Gansner [3, 5] in CML to

be naturally multi-threaded – that is, the state of each window and graph-

ical widget would be encapsulated in the state of a thread. The threads

maintaining the state of graphical components may then selectively listen

for input events and, upon receiving such events, may independently update

their state. This contrasts with the traditional approach followed by most

windowing toolkits such as Xlib, where graphical components must register

callback functions to be called by a central event processing loop [10, 11].

The X window system consists of a server that is connected to a physical

display. It is the role of the X server to display output from connected X client

applications, in the form of drawable text and graphics, to hardware display

systems. In addition, the X server forwards input such as keyboard presses

or mouse actions to the appropriate X client. Clients create lightweight

rectangular resources on the server known as windows to accomplish this.

Once a window is created, a client may draw text or graphics in the window,

and typically the client receives mouse and keyboard input when the mouse

pointer is positioned inside the window’s area. These server X windows are

created hierarchically: each X display screen is assigned a root window inside

which client windows are created, and clients windows may contain arbitrary

3

numbers of subwindows.

EXene is a client toolkit: it allows programmers to create client applica-

tions in CML. That is, eXene connects via the X protocol over some network

interface to an X server. This level of eXene is referred to as the library level;

it is analogous to the Xlib library for implementers of C programs. This level

provides basic client functionality such as creating windows, drawing text,

and drawing graphics. As well as communicating client commands to the

X server, the library level also exposes CML events which are enabled upon

receipt of messages (such as mouse or keyboard input messages) from the

X server, enabling applications to receive input by synchronizing on these

events.

EXene also provides a higher-level widget abstraction layer on top of

the library level. Just as widget libraries such as Motif are available for X

window clients written in the C language, eXene also provides a widget level

with reusable graphical components. A CML application may therefore be

composed of a collection of graphical widgets. Each of these widgets may

expose higher-level functionality than would be available at the library level.

For example, a button widget may expose BtnDown and BtnUp events, and

a text widget may allow getText and setText functions. Widgets are

described in more detail in Chapter 2.

EXene is an extremely useful toolkit. It allows application programmers

to assemble graphical applications in Standard ML that would be extremely

complex without the support of the toolkit. However, there are a few aspects

of the current version of eXene that are troublesome to developers. In this

thesis, we shall examine the most major of these aspects, and solutions to

address those issues will be described.

Please note that much of the design work for the eXene extensions de-

scribed here was done jointly by the author and his major professor. In

addition, in some parts of this thesis the author uses portions of the paper

by his major professor and himself [1], primarily for those portions where he

4

was the primary author in that joint paper.

5

structure CMLDEMO : sig

val main : (string * string list) -> OS.Process.status

end = struct

val countChan : int CML.chan = CML.channel ()

val exitChan : unit CML.chan = CML.channel ()

(* send a count on the countChan until signaled to exit. *)

fun produceCount n =

CML.select([

CML.wrap(CML.sendEvt(countChan,n),

fn () => (produceCount (n+1))),

CML.wrap(CML.recvEvt(exitChan),

fn () => (RunCML.shutdown OS.Process.success))

])

(* receive a count on countChan until count is at least 100,

* then signal the producer to exit. *)

fun consumeCount () =

let

val n = CML.recv(countChan)

val _ = TextIO.print ("Consumer received "^

(Int.toString n)^"\n")

in

if (n<100)

then consumeCount ()

else CML.send (exitChan, ())

end

fun main _ = RunCML.doit ((fn () => (

CML.spawn (fn () => (produceCount 0));

CML.spawn (consumeCount); ()

)),NONE)

end

Figure 1.2: Example CML program

6

Chapter 2

Widget Programming Conventions

When an eXene widget is realized, it is granted one X window upon which to

render itself and an input environment on which messages will be received.

This input environment consists of keyboard, mouse and command addressed

message input streams [5, 6], as well as a command-out stream (whereby

command messages such as resize requests may be sent), all represented as

CML events. Each of these input streams has a corresponding output stream

upon which the messages are sent by its parent.

Composite widgets—widgets containing one or more child widgets, such

as layout widgets—maintain output streams corresponding to the child wid-

gets’ input streams. A composite widget must contain a router which deter-

mines the child widget (window) a message is destined for, and then sends

it on to the child widget via the output stream corresponding to that child’s

input environment. In addition, many widgets offer CML events to the

application—for example, a button widget may offer a button activity event

on which BtnDown and BtnUp events may be received. The button widget

maintains an output stream over which these events are sent to the user

application.

EXene is intended to be a fully concurrent system [5]. To this end, each

widget’s state is normally encapsulated in its own thread. That is, a button

widget’s state is represented by a thread that listens for user input on its

7

input streams and sends selected messages to the application on its output

stream.

Figure 2.1: Widget components

The functionality of a widget is illustrated in Figure 2.1. User input

messages are received by the widget thread, or by a router in a composite

widget. Also, other input may be received as a result of the application or

widgets calling functions that send messages to (and optionally return data

from) the widget thread; since these functions operate on the state of the

widget let us refer to them as widget “methods.” Drawing messages are sent

to the X server via a handle to an X window, and output messages are sent

to the application, or to child widgets in composite widgets.

In principle, encapsulating the state of a widget in a thread would allow

all widgets in an application to execute concurrently—e.g., if a particular

widget was executing a long-running computation, other widgets could con-

tinue to execute, even responding to further user input. However, because

communication in CML is synchronous, and since eXene’s message router

doesn’t buffer messages, it turns out that some of this possibility for concur-

8

rency is lost.

Because CML communication and the widget input/output streams are

synchronous, any failure of a widget or application to respond to input in

a timely manner has the potential to block the execution of other widget

threads. Consider a widget E that performs some extensive computation,

and that is part of a composite widget C. While E is performing the compu-

tation, any messages that the router thread of C attempts to send to E will

be blocked. Therefore, no further input messages will reach any other chil-

dren of C, and furthermore, if C itself is part of another composite widget,

that parent router thread will also become blocked. This is clearly a loss of

concurrency, since eXene was designed so that C and all of its children should

have the potential to execute concurrently. This cascading blocking may also

arise if the application itself fails to respond (at all, or in a timely manner)

to messages from a widget. The failure of any recipient of messages in an

application to respond to input will eventually block execution of all widget

threads in the same shell (the eXene abstraction for a top-level window).

In addition, some possibilities for deadlock arise by virtue of the bidirec-

tional communication between widgets and applications, and between parent

widgets and child widgets. A widget typically implements its methods by

creating a request channel (stream) over which operation requests may be

sent by applications. Optionally, return values may be sent via synchronous

variables specified in the requests. This functionality is hidden from the ap-

plication programmer, who sees only a method that blocks until complete;

the application programmer cannot selectively communicate over the widget

request channels. Now, suppose that an application A contains a widget W

with a method m. Further suppose that the application applies m to W . The

application is now blocked waiting for a reply (or receipt of the request mes-

sage) from W . But simultaneously, W may be attempting to send a message

to A without selective communication1 (without allowing for the possibility

1This deadlock situation is avoidable if each widget uses selective communication for

9

to also receive the method request message). This causes both W and A

to be blocked waiting on the other. Unfortunately, this blocking will soon

cascade to the rest of the shell. Similarly, a child widget might be trying to

communicate with its parent, while the parent was trying to communicate

with the child.

2.1 Suggested Widget Programming Conventions

In [4, p. 42], Gansner and Reppy say that, in communication between a

parent widget and one of its children, the parent has the responsibility to be

responsive, and that queuing of a child’s messages to its parent could be used

to avoid deadlock. (A wrapQueue function is provided for this very purpose.)

We propose using this idea of parental responsibility as the basis for widget

programming conventions, and apply it not just in parent widget/child wid-

get communication, but also in communications between a widget (thought

of as the parent) and the application (thought of as the child). In general,

we say that

Parents should be more responsible than children.

Widgets should be tolerant of errors in user applications, and composite

widgets should be tolerant of errors in their child widgets.

A parent widget’s first step in becoming more responsible than children

is to queue messages sent to child widgets or applications. This prevents

parent threads from being blocked by error-prone or slow children, at the

cost of extra queue threads and some buffer space. It may sometimes be

necessary to flush the queue—perhaps at the request of an application that

knows that only future messages are of interest. Because all queued messages

originated with the user, there is little risk of the message queues becoming

especially long.

each output message sent—however, it is not trivial to design widgets in this way.

10

Queuing messages sent to child widgets does not entirely prevent parent

threads from being blocked by unresponsive child threads, however. All wid-

gets have a boundsOf method that returns the requested geometrical bounds

of the widget. Parent widgets generally calculate their own bounds based

on the requested bounds of their children. Even if parents queue messages

to their children, a parent will still be blocked while it calls the boundsOf

method of one of its children. Most boundsOf methods are implemented sim-

ilarly to other methods, with bound-of requests sent on a request channel.

To avoid this source of blocking or unresponsiveness, let us establish another

convention—the boundsOf function may only be called prior to widget real-

ization. After realization, the parent should cache the requested bounds of

the child, and only update the bounds when the child requests it be resized

in a resize request (which will now include the requested bounds).

Prior to realization, we shall assume that the boundsOf function of child

widgets will terminate, in a reasonably short time. We may justify this

assumption in several ways. First, it is much more trivial to program a widget

to ensure termination of methods prior to realization, before input or output

message streams must be monitored. In addition, any source of deadlock

arising in a child widget prior to realization is likely to be deterministic, as

no source of user input is yet available to the child widget or indeed any other

widget in its application. Therefore it is likely that any design error leading

to such non-termination will be identified and removed when the designer

tests the widget.

This convention suggests the following life cycle of a widget:

• Construction. The widget is created, and the thread encapsulating

its state is started. Some of its methods may now be called by the

application.

• Bounds Determination. The boundsOf method of the widget is

called, determining the requested bounds of the widget. The boundsOf

11

method should never be called again in the lifetime of the widget; ex-

ception BoundsFunctionAlreadyCalled will be raised if boundsOf is

called again.

• Realization. The realize function of the widget is called, supplying

the widget with an input environment and a window. The realize

function should never again be called in the lifetime of the widget;

calling realize again will raise exception AlreadyRealized.

Note that, if the widget’s desired size changes after its bounds function

has been called but before it is realized, its parent won’t know what

this desired size is. Some widgets in the current eXene release suffer

from this defect. It can be avoided by having the widget remember

that it should ask its parent to resize it after realization.

• Post-Realization. The widget is realized, and may be visible on the

display. User input or method calls causing a change in the desired

bounds of the widget should cause the widget to send its parent a

resize request accompanied by the desired bounds. Such requests may

not be honored, and should not be repeated.

• Death. The widget is notified of the loss of its window by a CI OwnDeath

message.

To summarize, let us insist on the following eXene widget programming

conventions:

• Parent widgets must queue output sent to child widgets and applica-

tions, and may flush those queues in some cases.

• A widget’s boundsOf function may only be called prior to realization,

and the parent should cache a child’s desired bounds. Subsequently,

the child is responsible for letting its parent know when its sizing wishes

have changed, supplying it new bounds as part of the requests.

12

• A widget’s methods must be guaranteed to terminate (ideally, in a

timely fashion).

• Attempts by a child widget to send messages to its parent should always

succeed (ideally, in a timely manner).

2.2 Implementation and Testing of Conventions

The forementioned conventions have been implemented and tested in a few

key widgets and structures in the eXene distribution. Queues have been

added to message streams in the generic router provided with the widget

library, queues have been added to the Button widgets, a new example

SimpleEdit text widget has been written that conforms to the widget life

cycle, and the BoxLayout widget has been modified to cache the bounds of

its children.

val mkRouter : Interact.in_env * Interact.out_env *

(EXB.window * Interact.out_env) list -> router

val addChild : router -> EXB.window * Interact.out_env -> unit

val delChild : router -> EXB.window -> unit

val getChildEnv : router -> EXB.window -> Interact.out_env

Figure 2.2: Widget router functions

The eXene widget library provides a Router structure whereby composite

widgets may easily construct a router to handle passing input messages on

to the appropriate children. A parent widget may construct a router via the

mkRouter function (shown in Figure 2.2). It is the mkRouter function’s task

to spawn a thread to route input messages to the widget they are addressed to

– either a child widget or the parent widget itself. This constructor function

therefore accepts as arguments the parent widget’s original input environ-

ment I, an output environment O′ (corresponding to the parent widget’s

13

new input environment I ′), and a list of child windows and child output en-

viroments.2 The router then receives messages on input environment I and

dispatches them to the correct child window’s output environment. If the

message is addressed to the parent widget, the router sends the message over

the output environment O′ which is received by the parent on the new input

environment I ′.

The Router structure has been modified to queue all messages sent on the

keyboard, mouse, and command-in streams of the output environments held

by the router (the output environment to the parent and output environ-

ments to the children). This satisfies item 1 of the four widget programming

conventions outlined in the previous section, for composite widgets using the

widget Router structure.

The BoxLayout widget provides a method for arranging lists of graphical

widgets in horizontal or vertical layouts. In order to compute its own desired

bounds, as well as to perform this layout task, the BoxLayout widget must

know the desired bounds of its children. In the current release of eXene,

the layout widget calls the bounds function of all of its children whenever it

needs to recompute its layout, or whenever it must calculate its own desired

bounds. This code has been modified to cache the first bounds reply from

the child widgets – which satisfies item 2 above, provided that the bounds

function of the layout itself is called only before realization.

The eXene ButtonCtrl functor provides the foundation for all of the

events dispatched by eXene buttons. ButtonCtrl interprets mouse messages

as appropriate and converts these into button act messages, such as BtnUp

or BtnDown messages. If a client application were to use eXene button wid-

gets, but failed to receive button events in a timely manner (either because

2Widget input and output environments are created in pairs; user input and control-in
commands are sent to a widget over streams of an output environment and received over
the streams of the corresponding input environment, while control-out commands are sent
over a stream of the input environment and received over a stream of the corresponding
output environment.

14

signature WIDGET_BASE =

sig

...

val wrapFlushableQueue : ’a CML.event ->

(’a CML.event) * (unit CML.event)

...

end

Figure 2.3: The wrapFlushableQueue method.

of lengthy computation or design error) button widget threads would be-

come blocked. Therefore, the ButtonCtrl code has been modified to use the

wrapFlushableQueue function that converts a blocking CML event into a

non-blocking CML event, by a queue that is optionally flushable by synchro-

nizing on the additional unit CML event returned.

In addition, a flushEvts : button -> unit method has been added to

the eXene buttons, whereby button events may be flushed from the outbound

event queue. This may be useful in situations where an application wishes

to invalidate all user input occurring after some user input event is received.

For example, suppose a button bar where upon the press of one button, all

buttons became inactive until some processing is completed. In this case, it

would be useful to flush the queues of all buttons in the button bar upon

deactivation to ensure that any events received after reactivation occurred

only after reactivation.

An example SimpleEdit text widget has also been created that demon-

strates principles outlined in this widget conventions chapter (as well as some

features to be introduced in later chapters). The SimpleEdit widget has no

output message streams to a client application, so it is not obligated to buffer

its output. However, it does raise the BoundsFunctionAlreadyCalled ex-

ception if its bounds function is called more than once. Methods of the

widget are designed to send messages to the thread encapsulating the state

15

signature SIMPLEEDIT =

sig

structure W : WIDGET

type simple_edit

val simpleEdit : (W.root * Widget.view * Widget.arg list)

-> string -> simple_edit

val setString : simple_edit -> string -> unit

val getString : simple_edit -> string

val setSelection : simple_edit ->

(int * int * W.EXB.XTime.time) -> unit

val getSelection : simple_edit -> string

val widgetOf : simple_edit -> W.widget

val takeFocus : simple_edit * W.EXB.XTime.time -> unit

val focusableOf : simple_edit -> Shell.focusable

end

Figure 2.4: The SIMPLEEDIT signature.

of the widget, which selectively receives these messages along with user input

messages. This ensures responsiveness as there is no state where some input

cannot be accepted.

Finally, a demonstration application has been built that demonstrates

how the above conventions serve to increase responsiveness in applications.

For use with this application, a copy of the eXene text button widget was

created that introduces a delay in passing mouse button-down and button-up

events on to the application. An excerpt of this source code is shown in Fig-

ure 2.6. This modification allows this button to simulate a slow-responding

widget in an application.

A screenshot of this demonstration application is shown in Figure 2.5.

The application uses three (almost identical) buttons labeled “Handle Quit”,

“Ignore Quit”, and “Slowly Quit”. Ordinarily we would supply to CML.select

the list of all events that would occur in the operation of this application –

in this particular application, quitEvt1, slowEvt, and quitEvt2. However,

16

(a) Upon startup.

(b) After resize.

Figure 2.5: Widget conventions demonstration screenshots

by failing to select on quitEvt2 we may simulate the case where an event

of quitBttn2 caused long-running computation (or perhaps even deadlock).

Thus, quitBttn2 will fail to send any events to the demo application. How-

ever, we may verify that the widget threads are not blocked and continue to

execute concurrently, since button events are buffered in the button’s output

queue. This may be verified with the following test case: launch the applica-

tion, click on “Ignore Quit” (the event of which will not be received by the

application), resize the application, and click on “Handle Quit”. In this test,

the application will respond to resize requests (the buttons should redraw

after the resize) and should exit when the “Handle Quit” button is clicked.

That is, even though no events are received from the second button, both

button threads continue to execute and events may be received from the first

button.

In addition, by the use of the slowly-responding button, we may simulate

the case where a slow or compute-intensive widget causes input messages

17

to be buffered in the composite widget router. We may launch the appli-

cation, then click on “Slowly Quit”. The slow-running button will wait five

seconds before sending a BtnDown message, and another five seconds after

releasing the mouse button before sending a BtnUp message. If we resize the

application while we are waiting to respond, we note that the application

looks similar to screenshot (b) of Figure 2.5. That is, we note that the upper

two buttons are responding and have redrawn, but the bottom slow button

is busy and has not redrawn itself. This demonstrates that the composite

widget router is behaving as designed, and that the eXene widgets in the

application are executing concurrently.

The results obtained from the test cases performed on this test application

suggest that the conventions introduced in this chapter are indeed helpful in

increasing eXene widget concurrency.

18

val quitBttn1 = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Handle Quit")])

val quitEvt1 = Button.evtOf quitBttn1

val quitBttn2 = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Ignore Quit")])

val quitEvt2 = Button.evtOf quitBttn2

val slowBttn = TestButton.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Slowly Quit")])

val slowEvt = TestButton.evtOf slowBttn

...

fun loop():unit =

let

fun handleQuit (Button.BtnUp _) = quit()

| handleQuit (_) = loop()

in CML.select

[CML.wrap(quitEvt1, handleQuit),

CML.wrap(slowEvt, handleQuit)]

end

...

(a) Demo application code excerpt.

...

| handleM (MseUp (bttn,time),((s,isin,isdown),drawf)) = let

val state’ = (s,isin,false)

in

drawf state’;

(* timeout 5 seconds to test buffering *)

CML.sync (CML.timeOutEvt (Time.fromSeconds 5));

send(evtc, ... BT.BtnUp ...

end

...

(b) Slow button code excerpt.

Figure 2.6: Widget conventions demonstration code

19

Chapter 3

Handling Input Focus

By default, the keyboard input focus of an X application is set to the root

window, which means that keyboard input is sent to the window currently

pointed to by the mouse [12, p. 612] [9]. This functionality can be annoying to

deal with in eXene applications, particularly when trying to enter text in an

application with multiple text input fields. The X protocol (the set of valid

requests that a standard X server will accept) provides the SetInputFocus

request for assigning keyboard focus to a particular window. This allows, e.g.,

an application to assign a text input widget input focus so that movement

of the mouse pointer will not affect the user’s ability to enter text in that

widget.

Motif also provides the ability to navigate between widgets by moving

the keyboard focus between “tab groups” of widgets; this is accomplished by

pressing a particular key (usually, of course, Tab). As normally all widgets

are assigned to be part of a tab group, this effectively allows a user to move

keyboard focus to every widget accepting keyboard input in an application

by the use of the Tab navigation key [12, p. 172]. This focus-handling func-

tionality would be very useful in eXene, as it would help provide a more

pleasant experience for users.

A top-level window may participate in the WM TAKE FOCUS window man-

ager protocol, so that the window manager will send it a CLIENT TakeFocus

20

client message when it assigns focus to the window; in addition, any window

may receive FocusIn and FocusOut events indicating that it has received

or lost input focus [17, pp. 648,592]. When a top-level window receives a

CLIENT TakeFocus client message, it might use the SetInputFocus X re-

quest to reassign focus to the sub-widget that had it before focus was lost.1

And some widgets might highlight their borders when they have input focus.

3.1 Implementation of Input Focus Extensions

As a basis for widgets to set input focus in eXene, a setInputFocus method

for setting the keyboard input focus to a window has been added. EXene’s

createSimpleTopWin function has also been modified to return a client msg

CML event whereby CLIENT TakeFocus client messages may be read. Also,

the ability for eXene windows to receive CI FocusIn and CI FocusOut mes-

sages over their input environments has been added.

Support has also been provided for the WM DELETE WINDOW window man-

ager protocol. When a top-level window participates in this protocol, it will

receive a CLIENT DeleteWindow client message when the user, via the window

manager, has requested that window delete itself. This message can also be

received on the above-mentioned client msg CML event. A deletionEvent

method has been added to the widget shell whereby a unit event may be ob-

tained that can be synchronized on when the shell’s top-level window has

received a CLIENT DeleteWindow message (Figure 3.1).

val deletionEvent : shell -> unit CML.event

Figure 3.1: The deletionEvent method

1A CLIENT TakeFocus client message carries the timestamp of the X event that caused
the window manager to assign focus to the top-level window. This timestamp (which isn’t
part of a FocusIn event), must be supplied to a subsequent SetInputFocus request.

21

signature SHELL =

sig

...

datatype focusable_msg = FocusIn

| FocusOut

| Assign of Interact.time

| Release of Interact.time

| Next of Interact.time

| Previous of Interact.time

datatype focusable = Focusable of

{focusableEvt : focusable_msg CML.event,

takeFocus : Interact.time -> unit}

type fid

val addFocusableFirst : shell -> focusable -> fid

val addFocusableAfter : shell -> fid * focusable -> fid

val deleteFocusable : fid

...

end

Figure 3.2: The SHELL signature

A focus manager has been added to the widget top-level shell (the widget-

level abstraction of a top-level window). The additions to the SHELL signature

are shown in Figure 3.2.

This focus manager allows a user to move input focus through a list of

eXene widgets/windows by means of some navigation keys, for example Tab.

Widgets that can be turned into objects of type focusable, e.g., via a

val focusableOf : some_widget -> focusable

method, may be added to the manager. A focusable object will inform the

22

manager by means of a focusable msg when input received indicates that

the focus has been received or lost, when focus should be assigned to the

object (perhaps upon a mouse click; carried out by invoking the object’s

takeFocus method), when focus should be moved to the next or previous

focusable object (perhaps upon a Tab or Shift+Tab), or when focus should

be released (perhaps upon an Esc).

Because the focus manager of the shell will know which, if any, of its fo-

cusable objects currently has the focus, when it receives a CLIENT TakeFocus

client message, it can take appropriate action when none of its focusable ob-

jects currently have the focus. If none of its objects ever had the focus, or

the last one to have the focus explicitly gave it up, then the manager can

assign focus to the first of its objects. Otherwise, it can set the focus back

to the object that had the focus before focus was lost. The time that is

included as part of some of the focusable messages and that is passed to

the takeFocus method is always supposed to be the time at which the user

pressed/released the key or mouse button that initiated the change.2 This

time must be passed to a subsequent call of setInputFocus.

The type fid stands for “focusable object identifier”; fid’s are used

to refer to managed focusable objects. A shell’s focus manager is told

to manage focusable objects using the methods addFocusableFirst and

addFocusableAfter; they return fid’s for referring to those objects. The

addFocusableFirst method makes the supplied focusable object be the first

element of the list of managed objects, whereas the addFocusableAfter

method makes the supplied object be the next object after the object named

by the supplied fid. Finally, the deleteFocusable method is used to stop

a focus manager from managing a given focusable object.

A FocusFrame composite widget has been added to the eXene code base

(Figure 3.3). A FocusFrame wraps around a widget and its focusable object,

2The current eXene release didn’t annotate keyboard messages with timestamps; this
has been modified so that a KEY Press contains the timestamp so that, e.g., Tab may
cause focus to be assigned to the next focusable object.

23

signature FOCUSFRAME =

sig

type frame

val focusframe : (W.root * W.view * W.arg list) ->

(W.widget * Shell.focusable) -> frame

val widgetOf : frame -> W.widget

val focusableOf : frame -> Shell.focusable

end

Figure 3.3: The FOCUSFRAME signature.

and draws a border around the child widget when that widget has focus. This

is done by monitoring the focusableEvt of the focusable object. Of course,

the FocusFrame widget has a focusableOf method that may be used to turn

it into a focusable object, enabling it to be added to the focus manager of

the shell.

The SimpleEdit widget (Figure 2.4) has been implemented as an example

of a widget that accepts focus. It sends an Assign focus message to its focus

manager when it receives a MOUSE FirstDown event, a Next focus message

when it receives a Tab keypress, and a Previous focus message when it

receives a Ctrl+Tab keypress. The source code for the SimpleEdit widget

has been included as Appendix A.

3.2 Testing of Input Focus Extensions

The SimpleEdit widget has been incorporated into an input-focus demon-

stration application demo-focus, screenshots of which are shown in Figure

3.4. We may verify the correct operation of the SimpleEdit widget, the

FocusFrame widget, and the Shell’s focus manager with a test case exe-

cuted on this simple application.

We may first launch the application, then click the mouse in one of the

24

(A) (B) (C)

Figure 3.4: Input focus improvements demo application

SimpleEdit widgets. This causes the SimpleEdit widget to send an Assign

focus message to its focus manager – in this case, the FocusFrame wid-

get enclosing it. The FocusFrame widget then sends an Assign focus mes-

sage to its enclosing Shell focus manager. The Shell focus manager calls

the FocusFrame’s takeFocus function, which in turn calls the SimpleEdit’s

takeFocus function. This causes the setInputFocus function to be called,

supplying the SimpleEdit’s window and the timestamp of the initial mouse

click. When the X server notifies the SimpleEdit that it has received input

focus by way of the CI FocusIn, it enables its focusableEvt allowing its

FocusFrame to determine that it should draw a border around itself, signify-

ing that the widget it contains currently holds the input focus. Suppose that

we had clicked on the second SimpleEdit widget; the application should now

resemble (A) in Figure 3.4. We may easily verify that the widget does indeed

hold the input focus by moving the mouse pointer to some other widget, then

typing some text that will appear in the widget that holds the focus.

Now, we may press the Tab key – this will cause the second SimpleEdit

widget to send a Next focus message to the Shell via its enclosing FocusFrame.

This in turn causes the Shell to call the third FocusFrame’s setInputFocus

function, and it the third SimpleEdit’s setInputFocus function. If this

third widget successfully obtains the input focus after requesting it, and is no-

25

tified of such an event, a border will be drawn around the third FocusFrame.

The application will now resemble (B) of Figure 3.4.

We may instead press the Shift+Tab keys. This will cause the SimpleEdit

widget that currently holds the focus to send a Previous focus message to

the Shell focus manager. In the scenario above, the focus will then move

to the first SimpleEdit widget, causing the application to resemble (C) of

Figure 3.4.

We may perform a few additional tests with this demo application. If we

cause a widget in the demo to obtain the input focus, next move the input

focus to another top-level window, then cause the demo top-level window to

regain focus, the input focus will revert to the widget previously holding the

focus before the demo top-level window lost focus.

Additional work on existing eXene widgets would be helpful. For example,

it would be helpful to modify the Button widgets to accept keyboard input,

then modify allow them to return a Shell.focusable structure. It would

then be possible to create a quite accessible and useful application with

buttons and text input that could be navigated entirely from the keyboard.

However, in the work relating to this thesis the Button widgets have not

been modified to return such a Shell.focusable structure: this is left to

others to implement based on the SimpleEdit example.

26

Chapter 4

Customization using X Resources

Xlib provides for user customization of applications by means of “resource

specifications”. For example, an application may allow background and fore-

ground color, window geometry, and font settings to be configured by the user

[7, p. 339]. Some of these resource settings might be passed as arguments

to the application on the command line, such as “-background white”. On

the other hand, some resource specifications may be general to several appli-

cations or to all instances of a given application, and these may be stored in

a configuration file. Xlib provides support for both of these methods, with a

XrmParseCommand function for loading resource settings from a list of argu-

ments into a resource “database”, and a XrmGetFileDatabase function for

loading a resource configuration file into a resource database [17, p. 460].

In addition, as X users may often wish to apply a set of resource spec-

ifications to all applications on a given display, regardless of whether those

applications all have access to a common filesystem, X distributions provide

an xrdb (“rdb” stands for resource database) utility that loads the contents

of a resource specification file into a RESOURCE MANAGER property of the X

display [17, p. 450]. The contents of this property may then be used as the

contents of a file would.

Finally, as resource specifications may originate from several sources (say,

from command line options or the RESOURCE MANAGER property), application

27

developers must have a way of combining resource databases in such a way

that the specifications of one database takes preference over another. Xlib

provides the XrmMergeDatabases function for this purpose.

EXene currently provides support for user customization of widgets [2].

Widgets are passed the following resource-related information:

• A “view”, consisting of a a “style” and a “style-view”, where a style is

the eXene version of an Xlib resource database, and a style-view is a

search key into that style, such as the name of the application.

• An “args” list, consisting of a list of attribute/value pairs.

Internally, the widget maintains an “attrs” list of triples, where each triple

consists of an attribute, its type (an element of a datatype of attribute types)

and its default value. EXene provides support for searching for the value of

an attribute that is in the attrs list, first looking in the args list, then looking

in the style as filtered by the style-view, and falling back on the default in

the attrs list if necessary. When this search succeeds, it’s guaranteed to have

the type listed in the widget’s attrs list.

4.1 Command Line Parsing Extensions

Xlib provides the routine XrmParseCommand that, given a specification of

the command line options that the application wishes to recognize, parses

command line arguments into a resource database. While it is useful to em-

ulate the option specification used by Xlib, so that eXene applications might

recognize the same types of command line options, we must also recognize

that eXene does not have any other command line parsing functions avail-

able. Therefore, a command line argument parsing function may be useful

not only for obtaining user preferences, but for obtaining data for processing

by the application. For example, an application may wish to accept requests

to set the background color by “ -background blue”, but may also wish to

28

obtain the value of a filename by “ -filename foo”. There is really no need

for the filename to be recognized as a user preference for the application and

all of its widgets to view. Let us therefore distinguish between two types

of options - “resource” options whose purpose is to be loaded into an eX-

ene style, and “named” options, whose purpose is to be used for application

processing.

It is the application’s responsibility to set up a command line option

specification table. This table, Styles.optSpec, shall be a:

(optName * argName * optKind * Attrs.attr_type) list

The option name, Styles.optName, shall be of either Styles.OPT NAMED

of string or Styles.OPT RESSPEC of string, where the former is a named

option and the latter is a resource option. The string given for a named option

shall be any string of the application’s choosing, simply used to identify the

option when retrieving a value later, such as OPT NAMED ("filename"). The

string given for a resource option is a resource name, such as OPT RESSPEC

("*background") or OPT RESSPEC ("appname.background").

The argument name, Styles.argName, shall be a string that is valid

to be used on the command line to specify the setting of this option. For

example, "-background" or "--bg" or "/bg=" might be used as argument

name values.

The option “kind” (term taken from Xlib), Styles.optKind, shall be of

one of the values listed in Table 4.1.

Finally, the option type, of type Attrs.attr type, is the type of the

value to be returned.

An example option specification is given here, for an application wish-

ing to find values for named options of “help”, “flag”, “x”, and “y”; and

resource options of “*background”, “*foreground”, and “*borderWidth”. It

also allows the user to skip an argument or all following arguments on the

command line with “-skip” or “-ignore”. In addition, note that the option

“help” may be toggled on with “-help” or off with “-nohelp”.

29

OPT NOARG of string Similar to Xlib’s XrmOptionNoArg. Option
will assume the value of the string given if
set.

OPT ISARG Similar to Xlib’s XrmOptionIsArg. Option
will assume the value of the argument name
itself if set.

OPT STICKYARG Similar to Xlib’s XrmOptionStickyArg. Op-
tion will assume the value of the substring
following the argument name if set. For ex-
ample, if "-bg=" is the argument name, and
“ -bg=blue” is given on the command line,
the value of the option will be “ blue”.

OPT SEPARG Similar to Xlib’s XrmOptionSepArg. Option
will assume the value of the command line
argument immediately following if set.

OPT RESARG Similar to Xlib’s XrmOptionResArg. A re-
source specification argument should follow
on the command line. For example, if
"-res" is the argument name, and “ -res

"*background:blue"” is given on the com-
mand line, there will be two option values
created in the option db returned: one with
a name of "-res", of either named or re-
source specification name, and a value of “
*background:blue”; and the other of name
OPT RESSPEC("*background") and value of “
*background:blue”.

OPT SKIPARG Similar to Xlib’s XrmOptionSkipArg. Skip
the next argument given on the command
line; do not attempt to match it to any option
nor to assign it as a value to any option.

OPT SKIPLINE Similar to Xlib’s XrmOptionSkipLine. Ignore
all following command line arguments given.

Table 4.1: The option “kind” (term taken from Xlib), Styles.optKind, shall
be of one of the above.

30

structure S = Styles

structure A = Attrs

val optSpec =

[(S.OPT_NAMED("help"),"-help", S.OPT_NOARG("on"), A.AT_Bool),

(S.OPT_NAMED("help"),"-nohelp",S.OPT_NOARG("off"),A.AT_Bool),

(S.OPT_NAMED("sum"), "-sum", S.OPT_ISARG, A.AT_Str),

(S.OPT_NAMED("x"), "-x=", S.OPT_STICKYARG, A.AT_Real),

(S.OPT_NAMED("y"), "-y", S.OPT_SEPARG, A.AT_Real),

(S.OPT_NAMED("res"), "-res", S.OPT_RESARG, A.AT_Str),

(S.OPT_NAMED("skip"),"-skip", S.OPT_SKIPARG, A.AT_Str),

(S.OPT_NAMED("ign"), "-ignore",S.OPT_SKIPLINE, A.AT_Str),

(S.OPT_RESSPEC("*background"), "-bg",S.OPT_SEPARG,A.AT_Str),

(S.OPT_RESSPEC("*foreground"), "-fg",S.OPT_SEPARG,A.AT_Str),

(S.OPT_RESSPEC("*borderColor"),"-bc",S.OPT_SEPARG,A.AT_Str)]

Figure 4.1: An example option specification is given here, for an application
wishing to find values for named options of “help”, “flag”, “x”, and “y”; and
resource options of “*background”, “*foreground”, and “*borderColor”. It
also allows the user to skip an argument or all following arguments on the
command line with “-skip” or “-ignore”. In addition, note that the option
“help” may be toggled on with “-help” or off with “-nohelp”.

31

signature STYLES = sig (* actually defined in StylesFunc *)

...

fun parseCommand: ctxt * optSpec ->

string list -> optDb * string list

fun findNamedOpt: optDb -> optName -> Attrs.attr_value list

fun findNamedOptStrings: optDb -> optName -> string list

fun styleFromOptDb: ctxt * Styles.optDb -> Styles.style

end

Figure 4.2: The STYLES command-line functions

Command line arguments may be parsed into an “option database”,

Styles.optDb, with the function parseCommand. ParseCommand takes a

styles context (basically, a connection to the X server, used in converting

strings to certain attribute values such as colors), an option specification, and

a list of command line arguments as strings, and returns an option database

and the list of strings that were not recognized as option arguments. Note

that any unique prefix of an argument name will be recognized as a valid

command line option. Also note that the function will not throw any excep-

tions upon encountering an unknown command line argument, it will simply

add that string to the list of unrecognized arguments. The position of the

unrecognized arguments is not noted in the list returned; this may be a fu-

ture enhancement, as the position of these arguments may be important to

some applications.

Named command line option values may be retrieved from an option

database using the findNamedOpt function. The list of attribute values re-

turned are the list of all values specified for the named option on the command

line, in reverse order. For example, if “-x=3.14 -x=3.15 -x=3.16” were

given on the command line, and an optDb was returned from parsing these

arguments based on the option specification in Figure 4.1, findNamedOpt

32

signature DISPLAY = sig

...

fun rootWinOfScr: screen -> XProtTypes.win_id

...

end

Figure 4.3: The rootWinOfScr function

optDb (OPT NAMED "x") would return a list [A.AV Real 3.16, A.AV Real

3.15, A.AV Real 3.14]. Note that this is the list of all arguments associ-

ated with the “-x” flag on the command line, converted to real numbers, in

reverse order. In this way, the application could choose to let the last option

given have priority over the others, in which case it would choose the head

of the list. Or, the application could choose to use all of the option values

given and process the whole list.

Note that only “named” options may be returned by findNamedOpt; if a

resource option is searched on, an empty list will be returned.

If it is sufficient to obtain the value of named arguments as strings, and

not as attr values, one may use the findNamedOptStrings function – in

which case it is not necessary to supply the context necessary for attribute

conversions.

Finally, resource options and their values in an option database may be

converted to an eXene style. The function styleFromOptDb takes a context

and an option database and returns a style.

4.2 Style Management Extensions

When xrdb is run, it loads preferences (as strings) into the resource manager

(XA RESOURCE MANAGER) property of the root window of the X-Server. The

function rootWinOfScr, shown in Figure 4.3, returns the root window id of

a screen.

33

signature ICCC = sig

...

fun xrdbOfScr : EXB.screen -> string list

...

end

Figure 4.4: The xrdbOfScr function

signature STYLES = sig

...

fun mergeStyles : style * style -> style

...

end

Figure 4.5: The mergeStyles function

The function ICCC.xrdbOfScr, Figure 4.4, uses rootWinOfScr to retrieve

the resource properties stored by xrdb in the XA RESOURCE MANAGER property

and convert them into strings.

When an application obtains eXene styles from several sources (such as

command line arguments and X-server preferences) it is necessary to combine

or “merge” these styles together. It is also necessary to perform this merge in

such a way that certain preferences have priority over others. For example, an

application may wish to allow run-time preferences in a style obtained from

the command line to have priority over preferences from a style obtained

from X-server preferences, which may have priority over preferences from an

application default style.

The function mergeStyles, Figure 4.5, takes two eXene style arguments,

the first the “source” style and the second the “target” style, and merges

them into one “merged” style. The function mergeStyles, when applied

to (style1, style2), returns a style where all specifications of style1 have been

34

inserted into style2, effectively giving priority to the specifications of style1

(this function was trivial to write, given the previously existing support for

updating styles).

For ease of use by developers using widgets, functions (shown in Figure

4.6) have been added to the widget ROOT signature that facilitate parsing of

command line arguments into named values and styles, and the merging of

styles.

4.3 Testing X Resource Extensions

The functionality of most of the resource handling code discussed here may

be demonstrated with a simple eXene application, the source code of which

is included as Appendix D. The demo-res application first uses the option

specification table shown in Figure 4.1 to parse command line arguments

supplied to the application. These include some numeric x and y values,

a “-sum” flag, and some “-fg” and “-bg” resource arguments. The x and

y arguments are used to pass input to the application. Upon startup, the

application obtains the list of all x argument values, sums them, and sets

the topmost SimpleEdit widget to that value. Likewise, it also sums all y

values provided, and sets the second text widget to that sum. If the “-sum”

flag is given, the application also sums the x values with the y values, and

sets the third text widget to that value.

We can see a screenshot of this application in Figure 4.7, run with com-

mand line arguments “-fg White -bg DarkGrey -x=1 -x=2 -x=3 -y 3 -y

5 -y 7 -y 11 -sum”. (Note that in the option specification, x arguments

are specified as “sticky”: that is, they immediately follow the “-x=” string,

whereas the y arguments are said to be “separate”, separated from the “-y”

string by a some number of spaces.) The display of the sums of the argument

inputs in this test case implies that the command-line parsing code used to

obtain program inputs works correctly.

35

signature ROOT = sig

...

(* existing: *)

type style

val styleOf : root -> style

val styleFromStrings : root * string list -> style

...

(* added: *)

val mergeStyles : style * style -> style

val styleFromXRDB : root -> style

type optName

type argName

type optKind

type optSpec

type optDb

type attr_value

val parseCommand : optSpec -> string list ->

optDb * string list

val findNamedOpt : optDb -> optName -> root ->

attr_value list

val findNamedOptStrings : optDb -> optName ->

string list

val styleFromOptDb : root * optDb -> style

...

end

Figure 4.6: Functions added to widget ROOT

36

Figure 4.7: A screenshot of the resource customization demo application,
with command line arguments “-fg White -bg DarkGrey -x=1 -x=2 -x=3

-y 3 -y 5 -y 7 -y 11 -sum” supplied.

We also wish to test the resource specification code. We may obtain re-

source specifications from three sources: the default resources specified in the

application code, the resource specifications stored by xrdb in the X server,

and arguments specified by the user on the command line. We wish for server

resource specifications to take priority over application defaults, and for com-

mand line resource specifications to take priority over those specified by the

server. Therefore, the application code first merges the server resources with

those specified by the application, then merges the command line resource

specifications with that resulting style.

The test case must therefore test not only the ability of the application’s

appearance to be customized from all three of these sources, but must test

the order in which these resources are merged. Let us first test the resources

specified by the application (note that this test does not involve any code

newer than the latest eXene release). We may run the demo-res application

and note that the background color is white and the foreground is black, as

specified in the application (or we may alter these specifications, and see the

changes reflected in the application).

Next, we wish to verify that the resources loaded into the X server by

xrdb are applied. We may create a file, perhaps called xresources, and enter

37

some resource specification such as “*background: yellow” into it. Then,

we run the command “xrdb xresources” to load these specifications into

the X server, and we relaunch the demo-res application. The background

of the application will now be yellow, overriding the background specified in

the application.

Finally, we wish to verify that any resources specified on the command

line are applied after those specifications provided by the X server. We may

launch the application again, this time giving arguments such as “-fg White

-bg DarkGrey”. The application will appear as in the screenshot of Figure

4.7.

38

Chapter 5

X Selections

It is often desirable to exchange information between X client applications.

For example, a user may wish to cut or copy information from one application

and paste it into another. The Inter-Client Communications Conventions [16]

(ICCC) documents two methods for the exchange of information between

clients: the cut buffer and the selection mechanism.

The cut buffer mechanism is the simpler of the two. The cut buffer

consists of eight properties with string text encoding on the first root window

of the display. When an application wishes to store a string in the cut buffer,

it rotates the values of the first seven properties to be the values of the last

seven of the properties, and then stores the string in the first property.1

Retrieving a value from the cut buffer is as simple as obtaining the value of

the first cut buffer property from the X server.

EXene provides functions for getting and setting properties of a root win-

dow on a display, and a function for rotating properties. In this way, it is

quite possible for an eXene application to make full use of cut buffers, pro-

vided the developer has some understanding of how the cut buffer mechanism

1In addition to the functions XStoreBytes (display,string) and XFetchBytes
(display) which store and retrieve a string to the first property of the cut buffer, re-
spectively, Xlib also provides the function XRotateBuffers(display,integer) by which
the properties of the cut buffer may be rotated by an arbitrary offset, and functions for
storing to and retrieving from arbitrary properties within the buffer[17].

39

is implemented. However, it would be helpful to have a few simple functions

available in eXene, similar to Xlib’s XStoreBytes(display,string) and

XFetchBytes(display), to work with the cut buffer[17, p. 476].

Cut buffers provide a simple mechanism for exchanging text between

clients. However, the more general selection mechanism allows for greater

flexibility in exchanging information. The ICCC Manual states, “Selections

are a much more powerful and useful mechanism for interchanging data be-

tween clients and generally should be used instead of cut buffers.” [17, p.

476]

Like the cut buffers, the selection mechanism also transfers information

between clients via X window properties. In contrast to the cut buffer mech-

anism, though, selection values do not persist in those properties. A selection

is owned by one client window, and other clients may request the value of

that selection by providing a target type to convert the value to along with

an empty property to store the value in. Several predefined selections are

specified by the ICCC Manual, namely PRIMARY, SECONDARY, and CLIPBOARD,

but any number of selections may exist on a given X server.2

To acquire a selection, a client window W (usually via some toolkit like

Xlib) sends a SetSelectionOwner protocol request to the X server. This

request must be accompanied by the timestamp of the event that triggered

the request for selection ownership (perhaps the timestamp accompanying

the keystroke or mouse event that signifies selecting a region). If W specifies

a time later than the last time the selection was set or changed, the server

releases the current selection and W is said to “own” the selection specified

[17, p. 524]. Thereafter until W loses the selection to another window, any

requests for the current selection are routed to W . When another client win-

dow W ′ requests the value of the current selection, it will provide a property

to store the value in and a target type to convert the selection to; for exam-

2A selection is named by an “atom”, a unique name represented by the X server as
a 32-bit integer. [17, p. 608] Atoms are used for identifying many entities in X windows
including selection names and selection target types.

40

ple, STRING indicating that the requestor wants the value as type string or

TIMESTAMP indicating that the requestor wants the value of the timestamp

that caused W to acquire the selection. If W is unable or unwilling to con-

vert the selection value to a requested type, it may refuse to return any value

[17, p. 617]. Otherwise, W will encode the selection value as the specified

type, or some (hopefully similar) target type of its own choice, and store this

converted value along with the corresponding actual type in the requestor

W ′’s property. The requestor W ′ will then be notified via an event that the

value has been stored (or that no value was converted or stored).

The ICCC Manual specifies that clients are required to support several

targets, namely the TARGETS, MULTIPLE, and TIMESTAMP targets [17, p. 623].

When a requestor asks for a selection to be converted to type TARGETS, it is

asking for a list of target types (X atoms) that the selection owner is willing

to convert the selection to. The MULTIPLE target specifies that a list of target

type, property pairs will accompany the conversion request, and requires the

selection owner to proceed through the target list, in order, converting the

selection to each target specified (and storing the converted value in the

accompanying property).

In addition, selection owners must be capable of transferring large selec-

tion values incrementally in order to respect X server property size limits, and

selection requestors must be capable of receiving values sent incrementally.

The incremental transfer of values proceeds as follows: the selection owner

responds to a conversion request by setting the property value to type INCR.

When the selection requestor encounters this type, it deletes the contents of

the property and waits until notification of a new property value. It then

reads the value, deletes the value, and continues in this fashion until the new

property value is of zero length (empty). The owner, meanwhile, initially

waits for notification that the property has been cleared, stores a value in

the property, then waits for that value to be cleared before continuing to

store sub-parts of the value until the transfer is complete[17, p. 619].

41

5.1 Implementation of Selection Extensions

The current distribution of eXene contains basic support for aquiring and

requesting selections. EXene contains a

acquireSelection : (window * atom * time)

-> selection_handle option

function for acquiring the ownership of a selection, and a

selectionReqEvt : selection_handle -> {

target : atom,

time : time option,

reply : XProtTypes.prop_val option -> unit,

property : atom

} CML.event

function for obtaining an event that will become enabled when a client re-

quests the value of the selection. However, this leaves the responsibility for

handling the target types required by the ICCC on the client as well as

all the technical details of converting target types to raw property values

(prop vals). Similarly, clients may use requestSelection to request the

conversion of a selection value to a target type, but the requestor must have

intimate knowledge of what format the value will be stored as within the

prop val in order to convert to some workable data type. These non-trivial

format conversions, along with the requirement that owners and requestors

support incremental transfers, make it a bit difficult to author eXene clients

or widgets that fully support X selection transfers.

In order to make it easier for eXene clients to support X selections, an

eXene selection interface has been implemented that is similar to the exist-

ing one, but that allows clients to operate at a somewhat higher level. As

figure 5.1 shows, datatypes have been created that specify common selection

42

structure ICCCSelection : sig

datatype selection = Sel_PRIMARY

| Sel_SECONDARY

| Sel_CLIPBOARD

| Sel_OTHER of XProtTypes.atom

datatype target = Tgt_TARGETS

| Tgt_MULTIPLE of (target list)

| Tgt_TIMESTAMP

| Tgt_STRING

| Tgt_LENGTH ...

datatype value = Val_TARGETS of target list

| Val_MULTIPLE of value list

| Val_TIMESTAMP of XTime.time

| Val_STRING of string

| Val_LENGTH of int ...

type convertfn : target -> value option

val convertString : string -> target -> value option

type selection_handle

val releaseEvt : selection_handle -> unit CML.event

val releaseSelection : selection_handle -> unit

val acquireSelection : (Window.window * selection *

XTime.time * convertfn) -> selection_handle option

val requestSelection : (Window.window * selection *

target * XTime.time) -> value option CML.event

val requestSelectionString : (Window.window * selection *

XTime.time) -> string option CML.event

val storeCutBuffer : (Window.window * string) -> unit

val fetchCutBuffer : (Window.window) -> string option

val rotateCutBuffer : (Window.window * int) -> unit

end

Figure 5.1: New selection functions

43

names, target types, and return types. Just as the existing SELECTION sig-

nature contains an acquireSelection function, so does this new interface.

However, this function also takes a convertfn function as an argument. It

is this conversion function’s task, when a request for a selection value occurs,

to convert the requested target type to SOME v where v is a valid value,

or to NONE if the conversion is not possible. The conversion function may

communicate via CML channels with a selection owner thread to obtain an

up-to-date value of a dynamic selection value, or the conversion function

may be created to statically hold the state of the selection value. Indeed, for

the common case where a string value is selected, a convertString curried

function is provided, so that a selection owner may simply furnish the string

value of the selection and the convertString function applied to that string

may then handle the conversions of that string to the value types that can

reasonably be converted to (including string, compound text, hostname as a

string, and length of the string).

In all cases, the server thread spawned by calling acquireSelection au-

tomatically handles the Tgt TIMESTAMP target type even if the convertfn

provided fails to handle that target. In addition, the list of target types

supported by the provided convertfn should be revealed by applying the

convertfn to Tgt TARGETS, but the server thread will append the built-

in Tgt TIMESTAMP and Tgt MULTIPLE targets to the list returned by the

convertfn before returning the list to the requestor.

Like the existing interface, a requestSelection function is provided

whereby clients can request the value of a particular selection. In contrast

to the existing code, however, this function hides the allocation and deallo-

cation of a property to use in the transfer of the selection value. In addition,

it handles the details of incremental transfers, and converts the raw data of

a prop val to a value of type value option. In addition, for the common

case where a client wishes to request the value of a selection as a string, a

requestSelectionString function is provided.

44

Figure 5.2: Selection demo application requesting multiple values

Finally, for those clients who wish to transfer data via the cut buffer,

several “syntactic sugar” functions are provided whereby clients can set the

string value of the first cut buffer, obtain the value of the first cut buffer,

and rotate the cut buffers.

5.2 Example and Testing of Selection Extensions

The example SimpleEdit text widget (Figure 2.4) has been created to work

with the improved selections interface. Text in a SimpleEdit widget may be

selected by clicking and dragging the mouse over the text; this selected text

will then become the PRIMARY selection.

We may demonstrate this functionality by the use of a simple application

entitled demo-sel. This demo application shown in Figure 5.2 contains four

SimpleEdit widgets – three that we may use to display results of selection

requests, and one that we may use to create test selections. The application

is written so that when the “Get PRIMARY Selection” button is clicked,

a request for the primary selection is sent with target type Tgt MULTIPLE

[Tgt STRING, Tgt TIMESTAMP, Tgt LENGTH] to the eXene selection server.

If a reply is returned, the first text widget is set to the value of the selection as

a string, the second widget is set to the timestamp at which the selection was

acquired, and the third widget is set to the selection length. However, if no

45

valid reply is returned in response to the MULTIPLE request, the application

will try a second request with only the target Tgt STRING of which any valid

returned value shall be displayed in the first text widget.

Let us perform the first test case entirely against the eXene selection code.

When text from the fourth text widget is selected, it becomes the primary

selection. This primary selection may be obtained as a string, as well as its

length and the timestamp at which it was acquired, by pressing the “Get

PRIMARY Selection” button. The requested attributes of the selection will

then appear in the first three text widgets.

We may then test the application against other X applications to en-

sure interoperability. However, other X applications have not been found

that support the MULTIPLE target type (all seem to return value NONE to a

requestSelection request with MULTIPLE target type specified). We may

still test requests with other target types, though. Figure 5.3 shows such a

test case. We may select text in another X application, such as xemacs. We

may then display the Val STRING value of this PRIMARY selection by clicking

the “Get PRIMARY Selection” button.

Unfortunately, even though support for incremental selection transfers

has been added – both for selection acquisition and selection requests – test-

ing revealed that this code does not function correctly. In order to perform

an incremental transfer, we must be capable of monitoring an X property for

new values and deletions. EXene provides a

datatype prop_change = NewValue | Deleted

val watchProperty : property -> (prop_change * time) CML.event

function for obtaining this event. Therefore, the incremental transfer func-

tions rely heavily on this watchProperty function. However, it appears that

watched property events never become enabled. If we execute code such as

that shown in Figure 5.4, the diagnostic message is never printed. Although

it is unfortunate that incremental transfers do not currently work, the central

issue has been identified and it will hopefully soon be resolved.

46

(A)

(B)

Figure 5.3: Selection demo application requesting primary selection

47

let

val w = ... (* some window *)

val p = Property.unusedProperty w

fun f () = ((CML.sync (Property.watchProperty p));

TextIO.print "Test property changed.\n")

val _ = CML.spawn f

in Property.deleteProperty p end

Figure 5.4: Code to test watchProperty function

The new selection extensions provide an easy-to-use interface for appli-

cation or widget developers to add selection support to their code. The

extensions hide many of the low-level details of selection transfers and pro-

vide ICCC compliance for the required target types. In addition, testing of

these extensions proves most of them to be reliable and workable.

48

Chapter 6

X Authorization

When an X client application starts, it is provided with a “display” variable,

either from a command line argument or from an environment variable, that

specifies the X server to connect to. The syntax of the display variable is:

[protocol/][host]:server[.screen]

where protocol is the transport protocol by which the client should connect

to the X server, host is the hostname on which the server is running and

server refers to a specific X server instance on that host. Since a given X

server instance may be capable of displaying graphics on multiple screens, the

screen specifies which screen to initially display any windows on[13, p. 63].

The server and screen arguments are specified as integers; for example,

display “localhost:0.0” specifies the first screen of the first server instance

on host “localhost”. Note that the host and screen arguments are optional

- if host is omitted, the connecting code should default to the local host;

if screen is omitted, the connecting code should default to the first screen

(“0”) [13, p. 64].

Using this information on what display to connect to, client code may

then connect over some desired transport mechanism to the X server. Often,

especially over network transport, it is necessary to provide some authoriza-

tion information to the X server upon connecting so that unauthorized clients

may not use the display. This authorization information – the name of the

49

2 bytes Family value; common values include
0=FamilyInternet, 256=FamilyLocal, and
65535=FamilyWild

2 bytes Address length A
A bytes Host address; four bytes for an IP address or

a string for a local host name
2 bytes Display number length S
S bytes Display number string
2 bytes Authorization name length N
N bytes Authorization name string
2 bytes Authorization data length D
D bytes Authorization data string

Table 6.1: The fields and field lengths of a record of an XAUTHORITY file [15]
[19, xc/lib/xtrans/Xtransutil.c].

authorization protocol being used, and some data proving authorized status

– is provided within the first request on connection setup [17, p. 500]. There-

fore, the X client must obtain this information prior to connection setup.

Typically, X authorization information is obtained from a file named in

a user’s XAUTHORITY environment variable, or if no file is named there, a file

named .Xauthority found in the user’s home directory. (Let us refer to this

file simply as the XAUTHORITY file in the remainder of this chapter.) This

file is to contain a series of records, each containing a connection family field

(Local/Unix Socket, Internet, etc.), host address field, display number field,

authorization name field, and authorization data field, as shown in Table 6.1.

It is then the task of the client, or the toolkit that the client is built upon,

to search this file for the correct authorization data to supply.

While testing eXene applications, especially applications to be displayed

over a tunneled SSH connection, we encountered a few issues with eXene. It

seems that eXene would often fail to locate the correct authorization infor-

mation to supply when initializing the connection, and the connection would

be denied.

50

In an attempt to resolve the issues with eXene, I examined the Xlib source

code [19]. When opening a connection to an X server, Xlib first determines

the protocol, if supplied, and the hostname from the display variable. If no

protocol is supplied, Xlib chooses the most efficient connection protocol with

respect to the hostname supplied (for example, if “localhost” is supplied, a

local connection is preferable to a TCP/IP connection). EXene also chooses

between possible connection protocols; no issues have been encountered with

this code. In Xlib, after a connection protocol is chosen a connection is

created. Prior to sending the initialization request, however, Xlib determines

the authorization data it must send. It does this by determining the peer

address of the connection (or the local system name if a local connection),

and this address string is then passed to a GetAuthByAddr function that

searches for the correct authorization data in the XAUTHORITY file. EXene

has a counterpart getAuthByAddr that serves the same function. Once this

authorization data is obtained, it is supplied to the X server over the newly

created connection.

In the current version of eXene, however, the hostname passed to eXene’s

getAuthByAddr function for comparison with the entries of the XAUTHORITY

file is obtained from the display variable. This means, for example, that if

the display variable were “:0.0” for connecting to the first server on the local

host, the empty string would be passed to getAuthByAddr; or if the display

variable were “linux.cis.ksu.edu:23.0” for an ssh-tunnelled connection,

the string “linux.cis.ksu.edu” would be passed to getAuthByAddr. In

either case, no entry would be found in the XAUTHORITY file. In the first case,

we should search for a FamilyLocal family record in which the host address

field is set to the full system name of the host, which would never match

the empty string. Or, in the second case, we should search records with

FamilyInternet family with a host address equal to “linux.cis.ksu.edu”

– but FamilyInternet records store the four bytes of the IP address in the

host address field rather than a full host name.

51

These issues have been resolved by ensuring that the address string sent

to getAuthByAddr matches the connection method to be used. That is, if

a local connection is to be created, the full system name of the local host

is sent to getAuthByAddr, and if an Internet connection is to be created, a

string containing the IP address (in standard dotted notation) of the resolved

display hostname is sent to getAuthByAddr. It was also necessary to modify

getAuthByAddr to unpack the four host IP address bytes of FamilyInternet

records into a standard dotted notation string for comparison.

52

Chapter 7

Conclusion

EXene is an important toolkit for CML programmers: it allows development

with all the advantages of the strongly-typed, functional CML when creating

easy-to-use graphical user interfaces. It has been my goal in this thesis to

address the most troublesome issues with the current release of eXene, so

that the eXene programmer may find the eXene toolkit as easy to use as

possible.

In view of the test cases performed on the extensions added, it may be

concluded that the extensions are reliable and helpful. It is the goal of the

widget programming conventions to provide a framework for the develop-

ment of robust, concurrently operating widgets, and the test cases performed

demonstrate that they are capable of providing that robustness.

The input focus extensions were designed to make the user experience

more enjoyable. By providing a simple interface for the application devel-

oper to use widgets that obtain keyboard input focus, users will find eXene

applications easier to use and more accessible.

Command line parsing extensions provided will make it easier for appli-

cation developers to accept user input via command line arguments, in addi-

tion to providing avenues for customizing the look-and-feel of applications at

runtime. In addition, extensions added to obtain resource specifications from

the X server, and methods to merge these resulting styles, makes it easier

53

for a developer to create applications that will respond similarly to other X

applications.

Just as it is important to provide easy interfaces for developers to assign

input focus to widgets and to easily customize application resources, it is also

important to provide extensions for easily acquiring and requesting the value

of X selections. These extensions must also comply with the requirements

of the Inter-Client Communications Conventions. With the new selections

functions provided, developers may work with selections with assurance that

ICCC compliance is provided, as well as concerning themselves as little as

possible with the low-level details of X selections.

Finally, miscellaneous improvements such as fixes to the eXene authoriza-

tion code were necessary in order that users could use eXene applications in

a wide variety of environments.

These improvements will greatly improve the usability of the eXene toolkit.

There is certainly much room for future work, of course: many existing eXene

widgets should be rewritten to follow the widget programming conventions,

and miscellaneous bugs will surely appear over time in the eXene toolkit

that must be fixed. However, it is the author’s opinion that eXene is well

on its way to becoming a widely-used basis for the development of SML

applications.

An archive file containing the eXene source code updated in the course

of this thesis work will be available at:

http://www.cis.ksu.edu/~stough/eXene/index.html

54

http://www.cis.ksu.edu/~stough/eXene/index.html�

References

[1] D. deBoer and A. Stoughton. On the Future of eXene.

http://www.cis.ksu.edu/~stough/eXene/future.pdf,

2005.

[2] E. M. Gansner. Notes on the new eXene widgets. Included as

part of version 1.0 of the eXene distribution, 1995.

[3] E. M. Gansner and J. H. Reppy. eXene. In 1991 CMU Work-

shop on SML, 1991.

[4] E. M. Gansner and J. H. Reppy. The eXene widgets manual.

AT&T Bell Laboratories, February 1993.

[5] E. R. Gansner and J. H. Reppy. A multi-threaded higher-

order user interface toolkit. In Bass and Dewan, editors, User

Interface Software, volume 1 of Software Trends. Wiley, 1993.

[6] D. Haahr. Montage: Breaking windows into small pieces. In

USENIX Summer Conference, pages 289-297, USENIX Asso-

ciation, June 1990.

[7] A. Nye. Xlib programming manual, volume 1 of The definitive

guides to the X window system. O’Reilly & Associates, Inc.,

third edition, 1992.

55

http://www.cis.ksu.edu/~stough/eXene/future.pdf�

[8] A. Nye. Xlib reference manual, volume 2 of The definitive

guides to the X window system. O’Reilly & Associates, Inc.,

third edition, 1992.

[9] A. Nye. X protocol reference manual, volume 0 of The defini-

tive guides to the X window system. O’Reilly & Associates,

Inc., fourth edition, 1995.

[10] A. Nye and T. O’Reilly. X toolkit intrinsics programming

manual, volume 4 of The definitive guides to the X window

system. O’Reilly & Associates, Inc., second edition, 1992.

[11] A. Nye and T. O’Reilly. X toolkit intrinsics reference manual,

volume 5 of The definitive guides to the X window system.

O’Reilly & Associates, Inc., second edition, 1992.

[12] A. Nye and T. O’Reilly. X toolkit intrinsics programming

manual, volume 4 of The definitive guides to the X window

system. O’Reilly & Associates, Inc., Motif edition, 1993.

[13] V. Quercia and T. O’Reilly. X Window System User’s Guide,

volume 3 of The Definitive Guides to the X Window System.

O’Reilly & Associates, Inc., Motif edition, 1993.

[14] J. H. Reppy. Concurrent Programming in ML. Cambridge

University Press, 1999.

[15] J. H. Reppy and J. Buntrock. xauth.sml. Included as part of

version 1.0 of the eXene distribution, 1995.

[16] D. Rosenthal. The inter-client communication conventions

manual, Version 2.0. Sun Microsystems, Inc., December 1993.

56

[17] R. W. Scheifler and J. Gettys. X window system: the complete

reference to Xlib, X protocol, ICCCM, and XLFD. Digital

Press, third edition, 1992.

[18] J. D. Ullman. Elements of ML Programming. Prentice Hall,

1998.

[19] The XFree86 Project, Inc. XFree86 4.4.0 source release. The

XFree86 Project, Inc., February 2004.

57

Appendix A

SimpleEdit source code

(* simple-edit.sml

* Based on str-edit.sml,

* COPYRIGHT (c) 1991 by AT&T Bell Laboratories See COPYRIGHT file for details.

*

* Simple string edit widget, spring 2005, Dusty deBoer, Kansas State University.

*)

signature SIMPLEEDIT =

sig

structure W : WIDGET

type simple_edit

val simpleEdit : (W.root * Widget.view * Widget.arg list) ->

string -> simple_edit

val setString : simple_edit -> string -> unit

val getString : simple_edit -> string

val setSelection : simple_edit -> (int * int * W.EXB.XTime.time) -> unit

val getSelection : simple_edit -> string

val widgetOf : simple_edit -> W.widget

val takeFocus : simple_edit * W.EXB.XTime.time -> unit

val focusableOf : simple_edit -> Shell.focusable

end (* SIMPLEEDIT *)

structure SimpleEdit : SIMPLEEDIT =

struct

58

structure EXB = EXeneBase

structure W = Widget

structure S = Shell

open CML Geometry EXeneWin Interact Drawing EXeneBase

val attrs = [

([], Attrs.attr_font, Attrs.AT_Font, Attrs.AV_Str "9x15"),

([], Attrs.attr_background, Attrs.AT_Color, Attrs.AV_Str "white"),

([], Attrs.attr_foreground, Attrs.AT_Color, Attrs.AV_Str "black")

]

val min = Int.min

val max = Int.max

datatype rqst

= GetString

| GetBounds

| SetString of string

| SetSelection of (int * int * W.EXB.XTime.time)

| GetSelection

| DoRealize of {

env : Interact.in_env,

win : EXB.window,

sz : size

}

| TakeFocus of EXB.XTime.time

datatype reply

= Bnds of W.bounds

| BndsExn

| Str of string

datatype simple_edit = SimpleEdit of (W.widget * rqst chan * reply chan

* S.focusable_msg chan)

fun simpleEdit (root,view as (name,style),args) initval =

let

val view as (name,style) = (Styles.extendView (name,"simpleedit"),style)

val fattrs = W.findAttr (W.attrs(view,attrs,args))

val font = Attrs.getFont (fattrs Attrs.attr_font)

val backc = Attrs.getColor (fattrs Attrs.attr_background)

val forec = Attrs.getColor (fattrs Attrs.attr_foreground)

val penn = newPen [PV_Foreground forec, PV_Background backc]

val penb = newPen [PV_Foreground backc, PV_Background backc]

val pens = newPen [PV_Foreground backc, PV_Background forec]

59

val reqChan = channel () and repChan = channel ()

val focChan : S.focusable_msg chan = channel ()

val {ascent=fonta,descent=fontd} = Font.fontHt font

val fonth = fonta + fontd

val Font.CharInfo{left_bearing=lb,char_wid=fontw,...} =

Font.charInfoOf font (Char.ord #"A")

fun bound (x,y,z) = max(x,min(y,z))

fun pttopos (str,PT{x,y}) = bound(0, x div fontw, String.size str)

fun getbnds slen =

let

val wid = slen*fontw

in {x_dim=W.DIM{base=0,incr=1,min=wid,nat=wid,max=NONE},

y_dim=W.fixDim fonth} end

fun realizeSimpEdit {env=InEnv{m,k,ci,co},win,sz=SIZE{wid,ht}}

{str,selpos,sellen,seltime} =

let

val rq = recvEvt reqChan

val dst = drawableOfWin win

fun setsel (str,ss,sl) xt =

let

val str = String.substring (str,ss,sl)

in if sl>0 then (case

(ICCC.acquireSelection (win,ICCC.Sel_PRIMARY,xt,

(ICCC.convertString str))) of

SOME sh => ((ICCC.releaseEvt sh),

(fn () => (ICCC.releaseSelection sh)))

| NONE => (alwaysEvt (), (fn () => ())))

else (never, (fn () => ())) end

val (initsre,initsrf) =

case seltime of

SOME xt => (setsel (str,selpos,sellen) xt)

| _ => (never,fn () => ())

fun redraw {str,selpos=ss,sellen=sl,selre,selrf,wid,ht} =

let

val (x,y) = (0,fonta)

val cx = x+(fontw*ss)

val se = ss+sl

val ll = (String.size str)-se

val (p1,s1) = (PT{x=x,y=y},String.substring (str,0,ss))

val (p2,s2) = (PT{x=(x+(fontw*ss)),y=y},String.substring (str,ss,sl))

val (p3,s3) = (PT{x=(x+(fontw*se)),y=y},String.substring (str,se,ll))

in (* clearDrawable dst; *)

fillRect dst pens (RECT{x=0,y=0,wid=wid,ht=ht});

imageString dst penn font (p1,s1);

if (sl > 0)

then (imageString dst pens font (p2,s2)) else ();

60

imageString dst penn font (p3,s3);

if (sl = 0)

then drawSeg dst penn (LINE(PT{x=cx,y=0},PT{x=cx,y=fonth})) else ()

end

fun handleMse (MOUSE_FirstDown {pt,but,time,...},

me as {str,selpos,sellen,selrf,selre,wid,ht}) =

let

val _ = selrf()

in send (focChan, (S.Assign time));

{str=str,selpos=(pttopos (str,pt)),sellen=0,selrf=(fn ()=>()),

selre=never,wid=wid,ht=ht} end

| handleMse (MOUSE_LastUp {pt,but,time,...}, {str,selpos=ss,wid,ht,...}) =

let

val se = pttopos (str,pt)

val (ss,sl) = if (se<ss) then (se,ss-se) else (ss,se-ss)

val (sre,srf) = (setsel (str,ss,sl) time)

val me’ = {str=str,selpos=ss,sellen=sl,selrf=srf,selre=sre,wid=wid,ht=ht}

in (redraw me’; me’) end

| handleMse (_,me) = me

fun handleKey (KEY_Press key, me as {str,selpos=ss,sellen=sl,selrf,selre,wid,ht}) =

(case key of

(KEYSYM(65289),_,xt) => (* tab *)

(send(focChan,S.Next xt); me)

| (KEYSYM(65056),_,xt) => (* shift+tab *)

(send(focChan,S.Previous xt); me)

| _ => let

val s1 = String.substring (str,0,ss)

val s2 = lookupString defaultTranslation key

handle KeysymNotFound => ""

val s3 = String.substring (str,ss+sl,(String.size str)-ss-sl)

val (s1,s2,ss) = if (s2 = "\^H") then (* backspace *)

(String.substring (s1,0,max((String.size s1)-1,0)),"",

max(ss-1,0))

else if (s2 = "\^X") then (* kill *)

(s1,"",ss) else (s1,s2,ss)

val me = {str=(s1^s2^s3),selpos=ss+(String.size s2),sellen=0,

selre=never,selrf=(fn ()=>()),wid=wid,ht=ht}

val _ = selrf() (* release the current selection if we have one *)

in redraw me; me end

)

| handleKey (_,me) = me

fun handleCI (CI_Resize (RECT{wid,ht,...}),

{str,selpos,sellen,selre,selrf,wid=ow,ht=oh}) =

let

val me’ = {str=str,selpos=selpos,sellen=sellen,selre=selre,

selrf=selrf,wid=wid,ht=ht}

61

in (redraw me’; me’) end

| handleCI (CI_Redraw _, me) = (redraw me; me)

| handleCI (CI_FocusIn, me) = (CML.send(focChan,S.FocusIn); me)

| handleCI (CI_FocusOut, me) = (CML.send(focChan,S.FocusOut); me)

| handleCI (_, me) = me

fun handleReq (GetString, me as {str,...}) =

(send(repChan, Str str); me)

| handleReq (GetSelection, me as {str,selpos=ss,sellen=sl,...}) =

(send(repChan, Str (String.substring (str,ss,sl))); me)

| handleReq (GetBounds, me) =

(send(repChan, BndsExn); me) (* bounds function should not be called now *)

| handleReq (SetString s, {selrf,wid,ht,...}) =

let

val _ = selrf()

val me’ = {str=s,selpos=(String.size s),sellen=0,

selrf=(fn ()=>()),selre=never,wid=wid,ht=ht}

in redraw me’; me’ end

| handleReq (SetSelection (a,b,xt), {str,selrf,wid,ht,...}) =

let

val _ = selrf()

val mx = String.size str

val a = bound(0,a,mx)

val (ss,sl) = (a,bound(0,b-a,mx-a))

val (sre,srf) = (setsel (str,ss,sl) xt)

val me’ = {str=str,selpos=ss,sellen=sl,selre=sre,

selrf=srf,wid=wid,ht=ht}

in redraw me’; me’ end

| handleReq (DoRealize _, me) =

(raise W.AlreadyRealized; me)

| handleReq (TakeFocus(xt), me) =

(EXeneWin.setInputFocus(win,xt); me)

fun handleSelRel {str,selpos=ss,sellen,selrf,selre,wid,ht} =

let

val me’ = {str=str,selpos=ss,sellen=0,selre=never,selrf=(fn ()=>()),

wid=wid,ht=ht}

in redraw me’; me’ end

fun loop (me as {selre,...}) =

loop (select [

wrap (m, fn evt => handleMse (msgBodyOf evt,me)),

wrap (k, fn evt => handleKey (msgBodyOf evt,me)),

wrap (ci, fn evt => handleCI (msgBodyOf evt,me)),

wrap (rq, fn evt => handleReq (evt,me)),

wrap (selre, fn () => (handleSelRel me))

])

in

loop {str=str,selpos=selpos,sellen=sellen,selre=initsre,selrf=initsrf,

62

wid=wid,ht=ht}

end

fun initLoop (me as {str,selpos,sellen,seltime}) =

case recv reqChan of

GetString =>

(send(repChan, Str str); initLoop me)

| GetSelection =>

(send(repChan, Str (String.substring (str,selpos,sellen))); initLoop me)

| GetBounds =>

(send(repChan, Bnds (getbnds (size str))); initLoop me)

| SetString str’ =>

(initLoop {str=str’,selpos=(String.size str’),sellen=0,seltime=seltime})

| SetSelection (ss,se,xt) =>

let

val mx = String.size str

val ss = bound(0,ss,mx)

val sl = bound(0,(se-ss),(mx-ss))

in (initLoop {str=str,selpos=ss,sellen=sl,seltime=SOME xt}) end

| DoRealize arg =>

(realizeSimpEdit arg me)

| TakeFocus(xt) =>

(initLoop me) (* should perhaps set flag for taking focus upon realization. *)

in

spawn (fn () =>

(initLoop {str=initval,selpos=(String.size initval),sellen=0,seltime=NONE};

()));

SimpleEdit (

W.mkWidget{

root=root,

args= fn () => {background = NONE},

boundsOf = fn () => (

send (reqChan, GetBounds);

case recv repChan of

Bnds b => b

| BndsExn => raise W.BoundsFunctionAlreadyCalled

| Str _ => raise LibBase.Impossible "StrEdit.mkStrEdit"

),

realize = (fn arg => (send (reqChan, DoRealize arg)))

},

reqChan,

repChan,

focChan

)

end

fun widgetOf (SimpleEdit(widget,_,_,_)) = widget

63

fun setString (SimpleEdit(_,reqc,_,_)) arg = (send (reqc, SetString arg))

fun setSelection (SimpleEdit(_,reqc,_,_)) arg = (send (reqc, SetSelection arg))

fun getString (SimpleEdit(_,reqc,repc,_)) = (

send (reqc, GetString);

case recv repc of

Str s => s

| _ => raise LibBase.Impossible "SimpleEdit.getString"

)

fun getSelection (SimpleEdit(_,reqc,repc,_)) = (

send (reqc, GetSelection);

case recv repc of

Str s => s

| _ => raise LibBase.Impossible "SimpleEdit.getSelection"

)

(* added ddeboer, spring 2005 *)

fun takeFocus (SimpleEdit(_,reqc,_,_),xt) = (send (reqc,TakeFocus(xt)))

fun focusableOf (SimpleEdit(widget,reqc,_,fc)) =

S.Focusable {focusableEvt=(WidgetBase.wrapQueue (recvEvt fc)),

takefocus=(fn xt => (send (reqc,TakeFocus(xt))))}

end (* StrEdit *)

64

Appendix B

Widget Conventions Demo source code

(*

* Dusty deBoer, Kansas State University.

*

* Based on basicwin.sml, (C) 1990 J.H. Reppy; and goodbye.sml, (C) 1990 AT&T.

*)

structure XDEMO : sig

val doit : string option * string list -> OS.Process.status

val main : (string * string list) -> OS.Process.status

end = struct

structure EXB = EXeneBase

fun init (dpyOpt,args) =

let

val root = Widget.mkRoot(GetDpy.getDpy(dpyOpt))

handle EXB.BadAddr s =>

(TextIO.print s; RunCML.shutdown OS.Process.failure)

val styleView = Styles.mkView{name = Styles.styleName["democonv"],aliases = nil}

val view = (styleView, (Widget.styleOf root))

fun quit () = (Widget.delRoot root; RunCML.shutdown OS.Process.success)

val quitBttn1 = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Handle Quit")])

val quitEvt1 = Button.evtOf quitBttn1

val quitBttn2 = Button.textBtn (root, view,

65

[([], Attrs.attr_label, Attrs.AV_Str "Ignore Quit")])

val quitEvt2 = Button.evtOf quitBttn2

val slowBttn = TestButton.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Slowly Quit")])

val slowEvt = TestButton.evtOf slowBttn

val layout =

Box.layout (root, view, []) (Box.VtCenter[

Box.WBox(Button.widgetOf quitBttn1),

Box.WBox(Button.widgetOf quitBttn2),

Box.WBox(Button.widgetOf slowBttn)

])

val shellArgs =

[([], Attrs.attr_title, Attrs.AV_Str "eXene Conventions Demo"),

([], Attrs.attr_iconName, Attrs.AV_Str "demo-conv")]

val shell = Shell.shell (root, view, shellArgs) (Box.widgetOf layout)

val hints = Shell.mkHints{size_hints=[],wm_hints=[ICCC.HINT_Input(true)]}

val _ = Shell.setWMHints shell hints

val cmEvt = Shell.deletionEvent shell

fun loop():unit =

let

fun handleQuit (Button.BtnUp _) = (TextIO.print " [demo-conv quitting]\n";

quit())

| handleQuit (_) = (loop())

in CML.select

[CML.wrap(quitEvt1, handleQuit),

(* Events from the second quit button shall be ignored:

* CML.wrap(quitEvt2, handleQuit),*)

CML.wrap(cmEvt, quit),

(* events from the slow button will be handled when received. *)

CML.wrap(slowEvt, handleQuit)

]

end

in

Shell.init shell;

loop()

end

fun doit (dpyOpt,args) =

(RunCML.doit (fn () => (init (dpyOpt,args)), NONE))

fun main (prog, "-display"::(server::args)) =

((TextIO.print ("display="^server)); doit(SOME server,args))

66

| main (prog, args) = doit(NONE,args)

end

67

Appendix C

Input Focus Demo source code

(*

* Dusty deBoer, Kansas State University.

*

* Based on basicwin.sml, (C) 1990 J.H. Reppy; and goodbye.sml, (C) 1990 AT&T.

*)

structure XDEMO : sig

val doit : string option * string list -> OS.Process.status

val main : (string * string list) -> OS.Process.status

end = struct

structure EXB = EXeneBase

fun init (dpyOpt,args) =

let

val root = Widget.mkRoot(GetDpy.getDpy(dpyOpt))

handle EXB.BadAddr s =>

(TextIO.print s; RunCML.shutdown OS.Process.failure)

val styleView = Styles.mkView{name = Styles.styleName["demofocus"],aliases = nil}

val view = (styleView, (Widget.styleOf root))

fun quit () = (Widget.delRoot root; RunCML.shutdown OS.Process.success)

val quitBttn1 = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Handle Quit")])

val quitEvt1 = Button.evtOf quitBttn1

val smplEdit1 = SimpleEdit.simpleEdit (root, view, []) "111"

68

val smplEdit2 = SimpleEdit.simpleEdit (root, view, []) "222"

val smplEdit3 = SimpleEdit.simpleEdit (root, view, []) "333"

val smplEdit4 = SimpleEdit.simpleEdit (root, view, []) "444"

val smplEdit5 = SimpleEdit.simpleEdit (root, view, []) "555"

val ff1 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit1),(SimpleEdit.focusableOf smplEdit1))

val ff2 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit2),(SimpleEdit.focusableOf smplEdit2))

val ff3 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit3),(SimpleEdit.focusableOf smplEdit3))

val ff4 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit4),(SimpleEdit.focusableOf smplEdit4))

val ff5 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit5),(SimpleEdit.focusableOf smplEdit5))

val layout =

Box.layout (root, view, []) (Box.VtCenter[

Box.WBox(Button.widgetOf quitBttn1),

Box.WBox(FocusFrame.widgetOf ff1),

Box.WBox(FocusFrame.widgetOf ff2),

Box.WBox(FocusFrame.widgetOf ff3),

Box.WBox(FocusFrame.widgetOf ff4),

Box.WBox(FocusFrame.widgetOf ff5)

])

val shellArgs =

[([], Attrs.attr_title, Attrs.AV_Str "eXene Focus Demo"),

([], Attrs.attr_iconName, Attrs.AV_Str "demo-focus")]

val shell = Shell.shell (root, view, shellArgs) (Box.widgetOf layout)

val id1 = Shell.addFocusableFirst shell (FocusFrame.focusableOf ff1)

val id2 = Shell.addFocusableAfter shell (id1,FocusFrame.focusableOf ff2)

val id3 = Shell.addFocusableAfter shell (id2,FocusFrame.focusableOf ff3)

val id4 = Shell.addFocusableAfter shell (id3,FocusFrame.focusableOf ff4)

val id5 = Shell.addFocusableAfter shell (id4,FocusFrame.focusableOf ff5)

val hints = Shell.mkHints{size_hints=[],wm_hints=[ICCC.HINT_Input(true)]}

val _ = Shell.setWMHints shell hints

val cmEvt = Shell.deletionEvent shell

fun loop():unit =

let

fun handleQuit (Button.BtnUp _) = (TextIO.print " [demo-focus quitting]\n";

quit())

| handleQuit (_) = (loop())

in CML.select

69

[CML.wrap(quitEvt1, handleQuit),

CML.wrap(cmEvt, quit)

]

end

in

Shell.init shell;

loop()

end

fun doit (dpyOpt,args) =

(RunCML.doit (fn () => (init (dpyOpt,args)), NONE))

fun main (prog, "-display"::(server::args)) =

((TextIO.print ("display="^server)); doit(SOME server,args))

| main (prog, args) = doit(NONE,args)

end

70

Appendix D

Resource Demo source code

(*

* Dusty deBoer, Kansas State University.

*

* Based on basicwin.sml, (C) 1990 J.H. Reppy; and goodbye.sml, (C) 1990 AT&T.

*)

structure XDEMO : sig

val doit : string option * string list -> OS.Process.status

val main : (string * string list) -> OS.Process.status

end = struct

structure EXB = EXeneBase

(* set up the option spec table. *)

val optSpec =

[(Styles.OPT_NAMED("help"), "-help", Styles.OPT_NOARG("on"), Attrs.AT_Bool),

(Styles.OPT_NAMED("help"), "-nohelp", Styles.OPT_NOARG("off"), Attrs.AT_Bool),

(Styles.OPT_NAMED("x"), "-x=", Styles.OPT_STICKYARG, Attrs.AT_Real),

(Styles.OPT_NAMED("y"), "-y=", Styles.OPT_STICKYARG, Attrs.AT_Real),

(Styles.OPT_NAMED("res"), "-res", Styles.OPT_RESARG, Attrs.AT_Str),

(Styles.OPT_NAMED("skip"), "-skip", Styles.OPT_SKIPARG, Attrs.AT_Str),

(Styles.OPT_NAMED("ign"), "-ignore", Styles.OPT_SKIPLINE, Attrs.AT_Str),

(Styles.OPT_RESSPEC("*background"), "-background", Styles.OPT_SEPARG, Attrs.AT_Str),

(Styles.OPT_RESSPEC("*background"), "-bg", Styles.OPT_SEPARG, Attrs.AT_Str),

(Styles.OPT_RESSPEC("*foreground"), "-foreground", Styles.OPT_SEPARG, Attrs.AT_Str),

(Styles.OPT_RESSPEC("*foreground"), "-fg", Styles.OPT_SEPARG, Attrs.AT_Str),

(Styles.OPT_RESSPEC("*borderWidth"),"-border", Styles.OPT_SEPARG, Attrs.AT_Str)]

(* set up application resource defaults. *)

71

val appResources =

["*background: #ddd",

"*foreground: black"]

fun init (dpyOpt,args) =

let

val root = Widget.mkRoot(GetDpy.getDpy(dpyOpt))

handle EXB.BadAddr s =>

(TextIO.print s; RunCML.shutdown OS.Process.failure)

(* parse the command line arguments using the option spec table. *)

val (optDb,unargs) = Widget.parseCommand (optSpec) args

(* obtain the value of a named argument.

* note that in this case we let the last argument (the head of the returned list)

* override any previous arguments. *)

val help = (case (Widget.findNamedOpt optDb (Styles.OPT_NAMED("help")) root) of

[] => false (* application must supply default here. *)

| Attrs.AV_Bool(b)::_ => b) (* let the last argument override. *)

(* obtain the value of a OPT_STICKYARG argument.

* note that in this case, we use every argument value given. *)

val sumx = (List.foldl (fn (Attrs.AV_Real(r),s) => (r+s)) 0.0

(Widget.findNamedOpt optDb (Styles.OPT_NAMED("x")) root))

val sumy = (List.foldl (fn (Attrs.AV_Real(r),s) => (r+s)) 0.0

(Widget.findNamedOpt optDb (Styles.OPT_NAMED("y")) root))

(* create a style from the application default resource table. *)

val appStyle = Widget.styleFromStrings(root,appResources)

handle Styles.PRS.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* create a style from the properties stored by xrdb. *)

val xrdStyle = Widget.styleFromXRDB(root)

handle Styles.PRS.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* create a style from the resource options in the option db. *)

val argStyle = Widget.styleFromOptDb(root,optDb)

handle Styles.PRS.BadSpec (n,s) =>

(TextIO.print "bad resource specification: ";

TextIO.print(Int.toString n); TextIO.print (":"^s^"\n");

72

Widget.delRoot root; RunCML.shutdown OS.Process.failure)

(* Merge: xrdb strings with app style, overwriting any conflicting app styles.

* Then merge arg style with the result, giving priority to runtime args. *)

val mainStyle = Widget.mergeStyles(argStyle,Widget.mergeStyles(xrdStyle,appStyle))

val styleView = Styles.mkView{name = Styles.styleName["demores"],aliases = nil}

val view = (styleView, mainStyle)

(* widget setup. *)

fun quit () = (Widget.delRoot root; RunCML.shutdown OS.Process.success)

val quitBttn = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Handle Quit")])

val quitEvt = Button.evtOf quitBttn

val sumBttn = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Sum x+y")])

val sumEvt = Button.evtOf sumBttn

val editArgs = []

val smplEdit1 = SimpleEdit.simpleEdit (root, view, editArgs) (Real.toString sumx)

val smplEdit2 = SimpleEdit.simpleEdit (root, view, editArgs) (Real.toString sumy)

val smplEdit3 = SimpleEdit.simpleEdit (root, view, editArgs) ""

val ff1 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit1),(SimpleEdit.focusableOf smplEdit1))

val ff2 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit2),(SimpleEdit.focusableOf smplEdit2))

val ff3 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit3),(SimpleEdit.focusableOf smplEdit3))

val lbl1 = Label.label (root, view, [])

val _ = Label.setLabel lbl1 (Label.Text("sum(x): "))

val lbl2 = Label.label (root, view, [])

val _ = Label.setLabel lbl2 (Label.Text("sum(y): "))

val lbl3 = Label.label (root, view, [])

val _ = Label.setLabel lbl3 (Label.Text("sum(x)+sum(y): "))

val layout =

Box.layout (root, view, []) (Box.VtCenter[

Box.WBox(Button.widgetOf quitBttn),

Box.WBox(Button.widgetOf sumBttn),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl1),

73

Box.WBox(FocusFrame.widgetOf ff1)

]))),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl2),

Box.WBox(FocusFrame.widgetOf ff2)

]))),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl3),

Box.WBox(FocusFrame.widgetOf ff3)

])))

])

val shellArgs =

[([], Attrs.attr_title, Attrs.AV_Str "eXene Resources Demo"),

([], Attrs.attr_iconName, Attrs.AV_Str "demo-res")]

val shell = Shell.shell (root, view, shellArgs) (Box.widgetOf layout)

val id1 = Shell.addFocusableFirst shell (FocusFrame.focusableOf ff1)

val id2 = Shell.addFocusableAfter shell (id1,FocusFrame.focusableOf ff2)

val id3 = Shell.addFocusableAfter shell (id2,FocusFrame.focusableOf ff3)

val hints = Shell.mkHints{size_hints=[],wm_hints=[ICCC.HINT_Input(true)]}

val _ = Shell.setWMHints shell hints

val cmEvt = Shell.deletionEvent shell

fun loop():unit =

let

fun handleQuit (Button.BtnUp _) = (TextIO.print " [demo-res quitting]\n";

quit())

| handleQuit (_) = (loop())

fun handleSum (Button.BtnUp (b,t)) =

let

val r1 = (case (Real.fromString (SimpleEdit.getString smplEdit1)) of

SOME r => r | _ => 0.0)

val r2 = (case (Real.fromString (SimpleEdit.getString smplEdit2)) of

SOME r => r | _ => 0.0)

val rs = Real.toString (r1+r2)

val _ = SimpleEdit.setString smplEdit3 rs

in loop() end

| handleSum (_) = (loop())

in CML.select

[CML.wrap(quitEvt, handleQuit),

CML.wrap(sumEvt, handleSum),

CML.wrap(cmEvt, quit)

]

74

end

in

Shell.init shell;

loop()

end

fun doit (dpyOpt,args) =

(RunCML.doit (fn () => (init (dpyOpt,args)), NONE))

fun main (prog, "-display"::(server::args)) =

((TextIO.print ("display="^server)); doit(SOME server,args))

| main (prog, args) = doit(NONE,args)

end

75

Appendix E

Selections Demo source code

(*

* Dusty deBoer, Kansas State University.

*

* Based on basicwin.sml, (C) 1990 J.H. Reppy; and goodbye.sml, (C) 1990 AT&T.

*)

structure XDEMO : sig

val doit : string option * string list -> OS.Process.status

val main : (string * string list) -> OS.Process.status

end = struct

structure EXB = EXeneBase

fun init (dpyOpt,args) =

let

val root = Widget.mkRoot(GetDpy.getDpy(dpyOpt))

handle EXB.BadAddr s =>

(TextIO.print s; RunCML.shutdown OS.Process.failure)

val styleView = Styles.mkView{name = Styles.styleName["xdemo"],aliases = nil}

val view = (styleView, (Widget.styleOf root))

fun quit () = (Widget.delRoot root; RunCML.shutdown OS.Process.success)

val quitBttn = Button.textBtn (root, view,

[([], Attrs.attr_label, Attrs.AV_Str "Handle Quit")])

val quitEvt = Button.evtOf quitBttn

val getBttn = Button.textBtn (root, view,

76

[([], Attrs.attr_label, Attrs.AV_Str "Get PRIMARY Selection")])

val getEvt = Button.evtOf getBttn

val smplEdit1 = SimpleEdit.simpleEdit (root, view, []) ""

val smplEdit2 = SimpleEdit.simpleEdit (root, view, []) ""

val smplEdit3 = SimpleEdit.simpleEdit (root, view, []) ""

val smplEdit4 = SimpleEdit.simpleEdit (root, view, [])

"Fourscore and seven years ago..."

val ff1 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit1),(SimpleEdit.focusableOf smplEdit1))

val ff2 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit2),(SimpleEdit.focusableOf smplEdit2))

val ff3 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit3),(SimpleEdit.focusableOf smplEdit3))

val ff4 = FocusFrame.focusframe (root,view,[])

((SimpleEdit.widgetOf smplEdit4),(SimpleEdit.focusableOf smplEdit4))

val lbl1 = Label.label (root, view, [])

val _ = Label.setLabel lbl1 (Label.Text("Selection as STRING: "))

val lbl2 = Label.label (root, view, [])

val _ = Label.setLabel lbl2 (Label.Text("Selection as TIMESTAMP: "))

val lbl3 = Label.label (root, view, [])

val _ = Label.setLabel lbl3 (Label.Text("Selection as LENGTH: "))

val lbl4 = Label.label (root, view, [])

val _ = Label.setLabel lbl4 (Label.Text("Test text widget: "))

val layout =

Box.layout (root, view, []) (Box.VtCenter[

Box.WBox(Button.widgetOf quitBttn),

Box.WBox(Button.widgetOf getBttn),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl1),

Box.WBox(FocusFrame.widgetOf ff1)

]))),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl2),

Box.WBox(FocusFrame.widgetOf ff2)

]))),

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl3),

Box.WBox(FocusFrame.widgetOf ff3)

]))),

77

Box.WBox (Box.widgetOf (Box.layout (root,view,[])

(Box.HzCenter[

Box.WBox(Label.widgetOf lbl4),

Box.WBox(FocusFrame.widgetOf ff4)

])))

])

val shellArgs =

[([], Attrs.attr_title, Attrs.AV_Str "X Resources"),

([], Attrs.attr_iconName, Attrs.AV_Str "xres")]

val shell = Shell.shell (root, view, shellArgs) (Box.widgetOf layout)

val id1 = Shell.addFocusableFirst shell (FocusFrame.focusableOf ff1)

val id2 = Shell.addFocusableAfter shell (id1,FocusFrame.focusableOf ff2)

val id3 = Shell.addFocusableAfter shell (id2,FocusFrame.focusableOf ff3)

val id4 = Shell.addFocusableAfter shell (id3,FocusFrame.focusableOf ff4)

val hints = Shell.mkHints{size_hints=[],wm_hints=[ICCC.HINT_Input(true)]}

val _ = Shell.setWMHints shell hints

val cmEvt = Shell.deletionEvent shell

fun loop():unit =

let

fun handleQuit (Button.BtnUp _) = (TextIO.print " [xdemo quitting]\n";

quit())

| handleQuit (_) = (loop())

fun handleGet (Button.BtnUp (b,t)) =

let

fun rqs tgt = Shell.requestSelection shell (ICCC.Sel_PRIMARY,tgt,t)

fun recv ((ICCC.Val_STRING s)) =

SimpleEdit.setString smplEdit1 s

| recv ((ICCC.Val_COMPOUND_TEXT s)) =

SimpleEdit.setString smplEdit1 s

| recv ((ICCC.Val_TIMESTAMP t)) =

SimpleEdit.setString smplEdit2

(Real.toString (EXB.XTime.toReal t))

| recv ((ICCC.Val_LENGTH l)) =

SimpleEdit.setString smplEdit3 (Int.toString l)

| recv _ = ()

val _ = SimpleEdit.setString smplEdit1 ""

val _ = SimpleEdit.setString smplEdit2 ""

val _ = SimpleEdit.setString smplEdit3 ""

val _ = case (rqs (ICCC.Tgt_MULTIPLE [ICCC.Tgt_STRING,

ICCC.Tgt_TIMESTAMP,ICCC.Tgt_LENGTH])) of

(SOME (ICCC.Val_MULTIPLE (mv))) => List.app recv mv

| _ => (case (rqs ICCC.Tgt_STRING) of

SOME (ICCC.Val_STRING s) =>

78

(SimpleEdit.setString smplEdit1 s)

| SOME (ICCC.Val_COMPOUND_TEXT s) =>

(SimpleEdit.setString smplEdit1 s)

| _ => ())

in loop() end

| handleGet (_) = (loop())

in CML.select

[CML.wrap(quitEvt, handleQuit),

CML.wrap(getEvt, handleGet),

CML.wrap(cmEvt, quit)

]

end

in

Shell.init shell;

loop()

end

fun doit (dpyOpt,args) =

(RunCML.doit (fn () => (init (dpyOpt,args)), NONE))

fun main (prog, "-display"::(server::args)) =

((TextIO.print ("display="^server)); doit(SOME server,args))

| main (prog, args) = doit(NONE,args)

end

79

