
EasyCrypt’s Probabilistic Relational Hoare
Logic and Probabilistic Noninterference

These slides are an example-based introduction to EasyCrypt’s
Probabilistic Relational Hoare Logic (pRHL), focusing on how it
can be used to prove probabilistic noninterference results.

When we have been using EasyCrypt’s Relational Hoare Logic,
we’ve already been using pRHL—but just not the probabilistic
aspects of the while language or logic.
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Datatype, Axioms and Lemmas for Our Examples

The examples (prob-noninter.ec) that follow use the following
datatype, a type mybool with elements tt (“true”) and ff

(“false”):

type mybool = [tt | ff].

Sometimes we need to use these lemmas when smt gets confused:

lemma not_tt (x : mybool) :
x <> tt <=> x = ff.

proof. smt(). qed.

lemma not_ff (x : mybool) :
x <> ff <=> x = tt.

proof. smt(). qed.
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Datatype, Axioms and Lemmas for Our Examples

We introduce and axiomatize the exclusive or operator as follows:

op (^^) : mybool -> mybool -> mybool.

axiom nosmt xor_tt_tt : tt ^^ tt = ff.
axiom nosmt xor_tt_ff : tt ^^ ff = tt.
axiom nosmt xor_ff_tt : ff ^^ tt = tt.
axiom nosmt xor_ff_ff : ff ^^ ff = ff.

Here we are saying that smt may not use these axioms. Because
tt is an alias for the value () of type unit, you’ll sometimes see
Top.tt in goals, meaning the version of tt that we have
introduced.
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Datatype, Axioms and Lemmas for Our Examples

We can then prove the following lemmas by hand (not using smt),
which we will allow smt to use:

(* false on the right *)
lemma xor_ff (x : mybool) : x ^^ ff = x.

(* canceling *)
lemma xorK (x : mybool) : x ^^ x = ff.

(* commutativity *)
lemma xorC (x y : mybool) : x ^^ y = y ^^ x.

(* associativity *)
lemma xorA (x y z : mybool) : (x ^^ y) ^^ z = x ^^ (y ^^ z).
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(Sub-)Distributions

To make use of (sub-)distributions in EasyCrypt, we

require import Distr.

This gives us types ’a distr, consisting of sub-distributions over
the type ’a. This means that the sum of the values of the
elements of ’a in the sub-distribution may be strictly less than the
real number 1 (which is written 1%r).

We can then declare dmybool to be a sub-distribution on our
datatype mybool by:

op dmybool : mybool distr.

To say that dmybool is a distribution, we introduce the axiom:

axiom dmybool_ll : is_lossless dmybool.

This says that the sum of the values of tt and ff in dmybool is
1%r.
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(Sub-)Distributions

If d is a sub-distribution on type ’a, and E is an event (i.e., a
predicate) on ’a (i.e., E is a function from ’a to bool), then
mu d E is the probability that choosing a value from d will satisfy
E (the sum of the values in d of the elements of ’a satisfying E ).

If d is a sub-distribution on type ’a, and x is a value of type ’a,
then mu1 d x is the probability that choosing a value from d will
result in x .

mu1 is defined by

mu1 d x = mu d (pred1 x)

where pred1 x is the predicate that is only satisfied by x .
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(Sub-)Distributions

Thus we can axiomatize that tt and ff both have probability one
half in dmybool via:

axiom dmybool1E (b : mybool) :
mu1 dmybool b = 1%r / 2%r.

We can then prove that dmybool is full, i.e., that its support (the
values of the type given non-zero probabilities by the distribution)
is all of dmybool:

lemma dmybool_fu : is_full dmybool.
proof.
rewrite /is_full => x.
by rewrite /support dmybool1E StdOrder.RealOrder.divr_gt0.
qed.

(It takes a little digging through the Distr theory to understand
this proof.)
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Random Assignment

If x is a program variable of type ’a, and d is sub-distribution on
’a, i.e., a value of type ’a distr, then

x <$ d ;

means to assign to x a value from ’a, where the probability that a
given value v in ’a is chosen is equal to v ’s value in d . If d is not
not a distribution, there is some probability the random assignment
will cause the program to abort.
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First Example

For our first probabilistic noninterference example, consider the
program

module M1 = {
var x : mybool (* private *)
var y : mybool (* public *)

proc f() : unit = {
var b : mybool;
b <$ dmybool;
y <- x ^^ b;

}
}.

The procedure M1.f exclusive or’s the private variable M1.x of type
mybool with a randomly chosen value b, updating the public
variable M1.y with the result.
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First Example

We state and begin our noninterference proof as usual:

lemma lem1 :
equiv[M1.f ~ M1.f : ={M1.y} ==> ={M1.y}].

proof.
proc.
wp.

taking us to the goal
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First Example

Type variables: <none>

--------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = ={M1.y}

(1) b <$ dmybool

post = M1.x{1} ^^ b{1} = M1.x{2} ^^ b{2}

Because both programs end with random assignments (the same in
this case), we can apply the

rnd.

tactic, which pushes the two random assignments into the
postcondition, giving us the goal
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First Example

Type variables: <none>

--------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = ={M1.y}

post =
(forall (bR : mybool),

bR \in dmybool => bR = bR) &&
(forall (bR : mybool),

bR \in dmybool =>
mu1 dmybool bR = mu1 dmybool bR) &&

forall (bL : mybool),
bL \in dmybool =>
(bL \in dmybool) &&
bL = bL && M1.x{1} ^^ bL = M1.x{2} ^^ bL

12 / 36



First Example

Unfortunately, a crucial part of the postcondition requires us to
prove

M1.x{1} ^^ bL = M1.x{2} ^^ bL

for a universally quantified bL, which is impossible, given that we
don’t know the relationship between M1.x in the two memories.

Thankfully, though, the rnd tactic takes, as an optional argument,
an isomorphism h between the distributions of the two random
assignments. (See below for exactly what being such an
isomorphism means; by default, rnd uses the identity function
when the types are the same.) In the above part of the
postcondition, the right occurrence of bL will be replaced by h bL,
and we should choose h so as to make the resulting equality
provable (and still, hopefully, be an isomorphism).
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First Example

Consequently, we should run

rnd (fun z => M1.x{1} ^^ M1.x{2} ^^ z).

(“fun z => ...” is an anonymous function that takes in an
argument z and returns ...) which gives us a postcondition where
the previously problematic part is

M1.x{1} ^^ bL = M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bL)

This is provable using

smt(xorA xorC xorK xor_ff).
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First Example

To understand the rest of the postcondition generated by our use
of rnd, we can follow it with

skip; progress.

which gives us five subgoals. The first subgoal is

Type variables: <none>

&1: {b : mybool}
&2: {b : mybool}
bR: mybool
H: bR \in dmybool
------------------------------------------------------
bR = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bR)

which makes us prove that, for all bR (“R” for chosen from the
right-hand distribution) in the support of dmybool (all of
mybool), running our argument to rnd twice gets us back to
where we started. This can be proved by

smt(xorA xorC xorK xor_ff).
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First Example

The second subgoal is

Type variables: <none>

&1: {b : mybool}
&2: {b : mybool}
H: forall (bR0 : mybool),

bR0 \in dmybool =>
bR0 =
M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bR0)

bR: mybool
H0: bR \in dmybool
------------------------------------------------------
mu1 dmybool bR = mu1 dmybool (M1.x{1} ^^ M1.x{2} ^^ bR)

This gives us the conclusion of the first subgoal (H), and makes us
prove that for all bR in the support of dmybool, the value of bR in
dmybool is the same as the value of the result of applying our
argument to rnd to bR. This can be solved with

smt(dmybool1E).
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First Example

The third subgoal is

Type variables: <none>

&1: {b : mybool}
&2: {b : mybool}
H: forall (bR : mybool),

bR \in dmybool =>
bR = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bR)

H0: forall (bR : mybool),
bR \in dmybool =>
mu1 dmybool bR =
mu1 dmybool (M1.x{1} ^^ M1.x{2} ^^ bR)

bL: mybool
H1: bL \in dmybool
------------------------------------------------------
M1.x{1} ^^ M1.x{2} ^^ bL \in dmybool
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First Example

This makes us prove that for all bL in the support of the left
distribution, the result of applying our argument to rnd to bL is in
the support of the right distribution (both distributions are the
same in our case). This can be solved with

smt(dmybool_fu).
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First Example

The fourth subgoal is

Type variables: <none>

&1: {b : mybool}
&2: {b : mybool}
H: forall (bR : mybool),

bR \in dmybool =>
bR = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bR)

H0: forall (bR : mybool),
bR \in dmybool =>
mu1 dmybool bR =
mu1 dmybool (M1.x{1} ^^ M1.x{2} ^^ bR)

bL: mybool
H1: bL \in dmybool
H2: M1.x{1} ^^ M1.x{2} ^^ bL \in dmybool
------------------------------------------------------
bL = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bL)
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First Example

This is the same as H, except starting from the left distribution
instead of the right one. Consequently, we can solve this goal in
our case by

by apply H.
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First Example

Finally, the fifth subgoal is

Type variables: <none>

&1: {b : mybool}
&2: {b : mybool}
H: forall (bR : mybool),

bR \in dmybool =>
bR = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bR)

H0: forall (bR : mybool),
bR \in dmybool =>
mu1 dmybool bR =
mu1 dmybool (M1.x{1} ^^ M1.x{2} ^^ bR)

bL: mybool
H1: bL \in dmybool
H2: M1.x{1} ^^ M1.x{2} ^^ bL \in dmybool
H3: bL = M1.x{1} ^^ M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bL)
------------------------------------------------------
M1.x{1} ^^ bL = M1.x{2} ^^ (M1.x{1} ^^ M1.x{2} ^^ bL)

As we noted before, this can be solved by

smt(xorA xorC xorK xor_ff).
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First Example

Putting it all together, the complete probabilistic noninterference
proof for our first example is:

lemma lem1 :
equiv[M1.f ~ M1.f : ={M1.y} ==> ={M1.y}].

proof.
proc.
wp.
rnd (fun z => M1.x{1} ^^ M1.x{2} ^^ z).
skip; progress.
smt(xorA xorC xorK xor_ff).
smt(dmybool1E).
smt(dmybool_fu).
by apply H.
smt(xorA xorC xorK xor_ff).
qed.
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Second Example

For our second probabilistic noninterference example, consider the
program

module M2 = {
var x : mybool (* private *)
var y : mybool (* public *)

proc f() : unit = {
var b : mybool;
if (x = tt) {
b <$ dmybool;
if (b = tt) {

y <- y ^^ tt;
}

}
else {
b <- ff;

}
y <- y ^^ b;

}
}.
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Second Example

Because the procedure M2.f is branching on the value of the
private variable M2.x, we will have to use the one-sided if tactics.
In fact, we can begin our proof by running

proc; wp; if{1}; if{2}.

which gives us four subgoals, corresponding to the four
combinations of whether the conditional’s boolean expression holds
or does not hold in the two memories.
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Second Example

The first subgoal is

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} = Top.tt) /\ M2.x{2} = Top.tt

(1--) b <$ dmybool
(2--) if (b = Top.tt) {
(2.1) M2.y <-
( ) M2.y ^^ Top.tt
(2--) }

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}

We can solve this goal by running auto, which correctly guesses
that rnd should be applied using the identity isomorphism.
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Second Example

But it’s instructive to see how we could prove it by first running

seq 1 1 : (={M2.y, b}).

giving us two sub-subgoals, the first of which is

Type variables: <none>

--------------------------------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} = Top.tt) /\ M2.x{2} = Top.tt

(1) b <$ dmybool

post = ={M2.y, b}

We can solve this goal with

rnd; auto.
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Second Example

This leaves us with

Type variables: <none>

--------------------------------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = ={M2.y, b}

(1--) if (b = Top.tt) {
(1.1) M2.y <-
( ) M2.y ^^ Top.tt
(1--) }

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}

which auto will solve.
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Second Example

The second subgoal is

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool}
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} = Top.tt) /\ M2.x{2} <> Top.tt

b <$ (1--) b <- ff
dmybool ( -)

if (b = (2--)
Top.tt) { ( -)

M2.y <- (2.1)
M2.y ^^ ( )
Top.tt ( )

} (2--)

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}
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Second Example

Again, it’s instructive to start with using seq, this time to pick off
just the random assignment in the left program:

seq 1 0 : (={M2.y}).

giving us two sub-subgoals, the first of which is

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool}
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} = Top.tt) /\ M2.x{2} <> Top.tt

b <$ (1)
dmybool ( )

post = ={M2.y}
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Second Example

Here, only the first program ends with a random assignment, and
so we can’t run rnd. We can however run the one-sided version

rnd{1}.

which gives us
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Second Example

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} = Top.tt) /\ M2.x{2} <> Top.tt

post =
is_lossless dmybool &&
forall (b0 : mybool), b0 \in dmybool => ={M2.y}

The postcondition of this goal makes us prove that the distribution
we are choosing from in the left program is lossless (is a
distribution, not just a sub-distribution).
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Second Example

The postcondition also makes us prove that for all values b0 in the
support of the distribution, the original postcondition holds, where
b0 would have been substituted for any occurrences of b{1} (there
are none, though). We can solve this goal with

skip; smt(dmybool_ll).
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Second Example

This leaves us with the sub-subgoal

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool}
&2 (right) : {b : mybool}

pre = ={M2.y}

if (b = (1--) b <- ff
Top.tt) { ( -)

M2.y <- (1.1)
M2.y ^^ ( )
Top.tt ( )

} (1--)

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}

which can be solved using techniques we’ve already studied, using
not tt.
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Second Example

The third subgoal is symmetric to the second one

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool}
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} <> Top.tt) /\ M2.x{2} = Top.tt

b <- ff (1--) b <$
( -) dmybool
(2--) if (b =
( -) Top.tt) {
(2.1) M2.y <-
( ) M2.y ^^
( ) Top.tt
(2--) }

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}
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Second Example

And the fourth and final subgoal is

Type variables: <none>

------------------------------------------------------
&1 (left ) : {b : mybool} [programs are in sync]
&2 (right) : {b : mybool}

pre = (={M2.y} /\ M2.x{1} <> Top.tt) /\ M2.x{2} <> Top.tt

(1) b <- ff

post = M2.y{1} ^^ b{1} = M2.y{2} ^^ b{2}

which can be solved by

auto.
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Second Example

Putting it all together, and simplifying a bit, the complete
probabilistic noninterference proof for our second example is:

lemma lem2’ :
equiv[M2.f ~ M2.f : ={M2.y} ==> ={M2.y}].

proof.
proc; if{1}; if{2}; wp.
(* first case *)
auto.
(* second case *)
auto; progress.
smt(dmybool_ll).
smt(xorA xorK).
rewrite not_tt in H2; smt().
(* third case *)
auto; progress.
smt(dmybool_ll).
smt(xorA xorK).
rewrite not_tt in H2; smt().
(* fourth case *)
auto.
qed.
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