
Formal Language Theory
Integrating Experimentation and Proof

Alley Stoughton

Draft of September 2012

Copyright c© 2012 Alley Stoughton

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts.

The LATEX source of this book is part of the Forlan distribution, which is
available on the Web at http://alleystoughton.us/forlan. A copy of the
GNU Free Documentation License is included in the Forlan distribution.

http://alleystoughton.us/forlan

Contents

Preface xi

1 Mathematical Background 1
1.1 Basic Set Theory . 1

1.1.1 Describing Sets by Listing Their Elements 1
1.1.2 Sets of Numbers . 1
1.1.3 Relationships between Sets 2
1.1.4 Set Formation . 3
1.1.5 Operations on Sets . 4
1.1.6 Relations and Functions 6
1.1.7 Set Cardinality . 9
1.1.8 Data Structures . 13
1.1.9 Notes . 15

1.2 Induction . 15
1.2.1 Mathematical Induction 15
1.2.2 Strong Induction . 16
1.2.3 Well-founded Induction 19
1.2.4 Notes . 22

1.3 Inductive Definitions and Recursion 22
1.3.1 Inductive Definition of Trees 23
1.3.2 Recursion . 26
1.3.3 Paths in Trees . 30
1.3.4 Notes . 32

2 Formal Languages 33
2.1 Symbols, Strings, Alphabets and (Formal) Languages 33

2.1.1 Symbols . 33
2.1.2 Strings . 34
2.1.3 Alphabets . 37
2.1.4 Languages . 37
2.1.5 Notes . 38

2.2 Using Induction to Prove Language Equalities 39
2.2.1 String Induction Principles 39

iii

iv CONTENTS

2.2.2 Proving Language Equalities 42
2.2.3 Notes . 47

2.3 Introduction to Forlan . 48
2.3.1 Invoking Forlan . 48
2.3.2 The SML Core of Forlan 49
2.3.3 Symbols . 55
2.3.4 Sets . 56
2.3.5 Sets of Symbols . 57
2.3.6 Strings . 58
2.3.7 Sets of Strings . 60
2.3.8 Relations on Symbols . 61
2.3.9 Notes . 64

3 Regular Languages 65
3.1 Regular Expressions and Languages 65

3.1.1 Operations on Languages 65
3.1.2 Regular Expressions . 69
3.1.3 Processing Regular Expressions in Forlan 75
3.1.4 Notes . 78

3.2 Equivalence and Correctness of Regular Expressions 79
3.2.1 Equivalence of Regular Expressions 79
3.2.2 Proving the Correctness of Regular Expressions 84
3.2.3 Notes . 92

3.3 Simplification of Regular Expressions 92
3.3.1 Regular Expression Complexity 92
3.3.2 Weak Simplification . 99
3.3.3 Local and Global Simplification 106
3.3.4 Notes . 120

3.4 Finite Automata and Labeled Paths 120
3.4.1 Finite Automata . 120
3.4.2 Labeled Paths and FA Meaning 124
3.4.3 Design of Finite Automata 128
3.4.4 Notes . 129

3.5 Isomorphism of Finite Automata 130
3.5.1 Definition and Algorithm 130
3.5.2 Isomorphism Finding/Checking in Forlan 135
3.5.3 Notes . 136

3.6 Checking Acceptance and Finding Accepting Paths 136
3.6.1 Processing a String from a Set of States 137
3.6.2 Checking String Acceptance and Finding Accepting Paths 139
3.6.3 Notes . 141

3.7 Simplification of Finite Automata 142
3.7.1 Notes . 147

CONTENTS v

3.8 Proving the Correctness of Finite Automata 147
3.8.1 Definition of Λ . 147
3.8.2 Proving that Enough is Accepted 149
3.8.3 Proving that Everything Accepted is Wanted 151
3.8.4 Notes . 153

3.9 Empty-string Finite Automata 153
3.9.1 Definition of EFAs . 154
3.9.2 Converting FAs to EFAs 154
3.9.3 Processing EFAs in Forlan 156
3.9.4 Notes . 158

3.10 Nondeterministic Finite Automata 158
3.10.1 Definition of NFAs . 158
3.10.2 Converting EFAs to NFAs 158
3.10.3 Converting EFAs to NFAs, and Processing NFAs in Forlan 162
3.10.4 Notes . 164

3.11 Deterministic Finite Automata 164
3.11.1 Definition of DFAs . 164
3.11.2 Proving the Correctness of DFAs 167
3.11.3 Simplification of DFAs . 169
3.11.4 Converting NFAs to DFAs 172
3.11.5 Processing DFAs in Forlan 176
3.11.6 Notes . 179

3.12 Closure Properties of Regular Languages 179
3.12.1 Converting Regular Expressions to FAs 180
3.12.2 Converting FAs to Regular Expressions 187
3.12.3 Characterization of Regular Languages 197
3.12.4 More Closure Properties/Algorithms 198
3.12.5 Notes . 212

3.13 Equivalence-testing and Minimization of DFAs 212
3.13.1 Testing the Equivalence of DFAs 212
3.13.2 Minimization of DFAs . 216
3.13.3 Notes . 223

3.14 The Pumping Lemma for Regular Languages 223
3.14.1 Experimenting with the Pumping Lemma Using Forlan . 226
3.14.2 Notes . 228

3.15 Applications of Finite Automata and Regular Expressions 228
3.15.1 Representing Character Sets and Files 228
3.15.2 Searching for Regular Expression in Files 229
3.15.3 Lexical Analysis . 229
3.15.4 Notes . 242

vi CONTENTS

4 Context-free Languages 243
4.1 Grammars, Parse Trees and Context-free Languages 243

4.1.1 Grammars . 243
4.1.2 Parse Trees and Grammar Meaning 245
4.1.3 Grammar Synthesis . 251
4.1.4 Notes . 251

4.2 Isomorphism of Grammars . 252
4.2.1 Definition and Algorithm 252
4.2.2 Isomorphism Finding/Checking in Forlan 253
4.2.3 Notes . 254

4.3 A Parsing Algorithm . 255
4.3.1 Algorithm . 255
4.3.2 Parsing in Forlan . 258
4.3.3 Notes . 259

4.4 Simplification of Grammars . 259
4.4.1 Definition and Algorithm 260
4.4.2 Simplification in Forlan 263
4.4.3 Notes . 264

4.5 Proving the Correctness of Grammars 264
4.5.1 Preliminaries . 265
4.5.2 Proving that Enough is Generated 266
4.5.3 Proving that Everything Generated is Wanted 268
4.5.4 Notes . 270

4.6 Ambiguity of Grammars . 270
4.6.1 Definition . 270
4.6.2 Disambiguating Grammars of Operators 271
4.6.3 Top-down Parsing . 273
4.6.4 Notes . 275

4.7 Closure Properties of Context-free Languages 275
4.7.1 Operations on Grammars 275
4.7.2 Operations on Grammars in Forlan 279
4.7.3 Notes . 282

4.8 Converting Regular Expressions and FA to Grammars 282
4.8.1 Converting Regular Expressions to Grammars 282
4.8.2 Converting Finite Automata to Grammars 283
4.8.3 Notes . 284

4.9 Chomsky Normal Form . 284
4.9.1 Removing %-Productions 285
4.9.2 Removing Unit Productions 285
4.9.3 Chomsky Normal Form 288
4.9.4 Notes . 289

4.10 The Pumping Lemma for Context-free Languages 289
4.10.1 Statement, Application and Proof of Pumping Lemma . . 290

CONTENTS vii

4.10.2 Experimenting with the Pumping Lemma Using Forlan . 292
4.10.3 Consequences of Pumping Lemma 296
4.10.4 Notes . 297

5 Recursive and Recursively Enumerable Languages 299
5.1 Programs and Recursive and RE Languages 299

5.1.1 Programs . 300
5.1.2 Program Meaning . 306
5.1.3 Programs as Data . 321
5.1.4 Recursive and Recursively Enumerable Languages 324
5.1.5 Notes . 328

5.2 Closure Properties of Recursive and R.E. Languages 329
5.2.1 Closure Properties of Recursive Languages 329
5.2.2 Closure Properties of Recursively Enumerable Languages 330
5.2.3 Notes . 331

5.3 Diagonalization and Undecidable Problems 331
5.3.1 Diagonalization . 331
5.3.2 Undecidability of the Halting Problem 334
5.3.3 Other Undecidable Problems 335
5.3.4 Notes . 336

Bibliography 337

Index 341

List of Figures

1.1 Example Diagonalization Table for Cardinality Proof 12

3.1 DFA Accepting AllLongStutter 242

5.1 Example Diagonalization Table 332

ix

Preface

Background

Since the 1930s, the subject of formal language theory, also known as automata
theory, has been developed by computer scientists, linguists and mathemati-
cians. Formal languages (or simply languages) are sets of strings over finite
sets of symbols, called alphabets, and various ways of describing such languages
have been developed and studied, including regular expressions (which “gener-
ate” languages), finite automata (which “accept” languages), grammars (which
“generate” languages) and Turing machines (which “accept” languages). For
example, the set of identifiers of a given programming language is a formal
language—one that can be described by a regular expression or a finite automa-
ton. And, the set of all strings of tokens that are generated by a programming
language’s grammar is another example of a formal language.

Because of its applications to computer science, most computer science pro-
grams offer both undergraduate and graduate courses in this subject. Perhaps
the best known applications are to compiler construction. For example, regu-
lar expressions and finite automata are used when specifying and implementing
lexical analyzers, and grammars are used to specify and implement parsers. Fi-
nite automata are used when designing hardware and network protocols. And
Turing machines—or other machines/programs of equivalent power—are used
to formalize the notion of algorithm, which in turn makes possible the study of
what is, and is not, computable.

Formal language theory is largely concerned with algorithms, both ones that
are explicitly presented, and ones implicit in theorems that are proved con-
structively. In typical courses on formal language theory, students apply these
algorithms to toy examples by hand, and learn how they are used in applica-
tions. Although much can be achieved by a paper-and-pencil approach to the
subject, students would obtain a deeper understanding of the subject if they
could experiment with the algorithms of formal language theory using computer
tools.

Consider, e.g., a typical exercise of a formal language theory class in which
students are asked to synthesize a deterministic finite automaton that accepts
some language, L. With the paper-and-pencil approach, the student is obliged

xi

xii Preface

to build the machine by hand, and then (hopefully) prove it correct. But, given
the right computer tools, another approach would be possible. First, the student
could try to express L in terms of simpler languages, making use of various lan-
guage operations (e.g., union, intersection, difference, concatenation, closure).
The student could then synthesize automata accepting the simpler languages,
enter these machines into the system, and then combine these machines using
operations corresponding to the language operations used to express L. Finally,
the resulting machine could be minimized. With some such exercises, a student
could solve the exercise in both ways, and could compare the results. Other
exercises of this type could only be solved with machine support.

Integrating Experimentation and Proof

To support experimentation with formal languages, I designed and implemented
a computer toolset called Forlan [Sto05, Sto08]. Forlan is implemented in the
functional programming language Standard ML (SML) [MTHM97, Pau96], a
language whose notation and concepts are similar to those of mathematics. For-
lan is a library on top of the Standard ML of New Jersey (SML/NJ) imple-
mentation of SML [AM91]. It’s used interactively, and users are able to extend
Forlan by defining SML functions.

In Forlan, the usual objects of formal language theory—finite automata,
regular expressions, grammars, labeled paths, parse trees, etc.—are defined as
abstract types, and have concrete syntax. Instead of Turing machines, Forlan
implements a simple functional programming language of equivalent power, but
which has the advantage of being much easier to program in than Turing ma-
chines. Programs are also abstract types, and have concrete syntax. Although
mainly not graphical in nature, Forlan includes the Java program JForlan, a
graphical editor for finite automata and regular expression, parse and program
trees. It can be invoked directly, or via Forlan.

Numerous algorithms of formal language theory are implemented in For-
lan, including conversions between regular expressions and different kinds of
automata, the usual operations (e.g., union) on regular expressions, automata
and grammars, equivalence testing and minimization of deterministic finite au-
tomata, a general parser for grammars, etc. Forlan provides support for regular
expression simplification, although the algorithms used are works in progress. It
also implements the functional programming language used as a substitute for
Turing machines.

This introductory textbook and Forlan were designed and developed to-
gether. I have attempted to keep the conceptual and notational distance between
the textbook and toolset as small as possible. The book treats most concepts
and algorithms both theoretically, especially using proof, and through experi-
mentation, using Forlan. In contrast to some books on formal language theory,
the book emphasizes the concrete over the abstract, providing numerous, fully

Preface xiii

worked-out examples of how regular expressions, finite automata, grammars and
programs can be designed and proved correct. In my view, students are most
able to learn how to write proofs—and to see the benefit of doing so—if their
proofs are about things that they have designed.

Readers of this book are assumed to have significant experience reading and
writing informal mathematical proofs, of the kind one finds in mathematics
books. This experience could have been gained, e.g., in courses on discrete
mathematics, logic or set theory. The book assumes no previous knowledge of
Standard ML. In order to understand and extend the implementation of Forlan,
though, one must have a good working knowledge of Standard ML, as could be
obtained by working through [Pau96] or [Ull98].

Drafts of this book were successfully used at Kansas State University in a
semester long, undergraduate course on formal language theory.

Outline of the Book

The book consists of five chapters. Chapter 1, Mathematical Background, con-
sists of the material on set theory, induction and recursion, and trees and induc-
tive definitions that is required in the remaining chapters.

In Chapter 2, Formal Languages, we say what symbols, strings, alphabets
and (formal) languages are, show how to use various induction principles to
prove language equalities, and give an introduction to the Forlan toolset. The
remaining three chapters introduce and study more restricted sets of languages.

In Chapter 3, Regular Languages, we study regular expressions and lan-
guages, five kinds of finite automata, algorithms for processing and converting
between regular expressions and finite automata, properties of regular languages,
and applications of regular expressions and finite automata to searching in text
files, lexical analysis, and the design of finite state systems.

In Chapter 4, Context-free Languages, we study context-free grammars and
languages, algorithms for processing grammars and for converting regular ex-
pressions and finite automata to grammars, top-down (recursive descent) pars-
ing, and properties of context-free languages. We prove that the set of context-
free languages is a proper superset of the set of regular languages.

Finally, in Chapter 5, Recursive and Recursively Enumerable Languages, we
study the functional programming language that we use instead of Turing ma-
chines to define the recursive and recursively enumerable languages. We study
algorithms for processing programs and for converting grammars to programs,
and properties of recursive and recursively enumerable languages. We prove
that the set of context-free languages is a proper subset of the set of recursive
languages, that the set of recursive languages is a proper subset of the set of
recursively enumerable languages, and that there are languages that are not re-
cursively enumerable. Furthermore, we show that there are problems, like the

xiv Preface

halting problem (the problem of determining whether a program halts when run
on a given input), that can’t be solved by programs.

Further Reading and Related Work

This book covers most of the material that is typically presented in an un-
dergraduate course on formal language theory. On the other hand, typical
textbooks on formal language theory cover much more of the subject than
we do. Readers who are interested in learning more, or who would like to
be exposed to alternative presentations of some of the material in this book,
should consult one of the many fine books on formal language theory, such as
[HMU01, Koz97, LP98, Mar91, Lin01].

Neil Jones [Jon97] pioneered the use of a programming language with struc-
tured data as an alternative to Turing machines for studying the limits of what
is computable. In Chapter 5, we have followed Jones’s approach in some ways.
On the other hand, our programming language is functional, not imperative
(assignment-oriented), and it has explicit support for the symbols and strings of
formal language theory.

The existing formal languages toolsets fit into two categories. In the first
category are tools, like JFLAP [BLP+97, HR00, Rod06], Pâté [BLP+97, HR00],
the Java Computability Toolkit [RHND99], and Turing’s World [BE93], that are
graphically oriented and help students work out relatively small examples. The
books [Rod06] (on JFLAP) and [Lin01] (an introduction to formal language the-
ory) are intended to be used in conjunction with each other. The second category
consists of toolsets that, like Forlan, are embedded in programming languages,
and so support sophisticated experimentation with formal languages. Toolsets in
this category include Automata [Sut92], Grail+ [RW94, Yu02], HaLeX [Sar02],
Leiß’s Automata Library [Lei00] and Vaucanson [LRGS04]. I am not aware
of other textbook/toolset packages whose toolsets are members of this second
category.

Notes, Exercises and Website

In the “notes” subsections that conclude most sections of the book, I have
restricted myself to describing how the book’s approach differs from stan-
dard practice. Readers interested in the history of the subject can consult
[HMU01, Koz97, LP98].

The book contains numerous fully worked-out examples, many of which con-
sist of designing and proving the correctness of regular expressions, finite au-
tomata, grammars and programs. Similar exercises, as well as other kinds of
exercises, are scattered throughout the book.

The Forlan website

Preface xv

http://alleystoughton.us/forlan

contains:

• instructions for downloading and installing the Forlan toolset, and JForlan;

• the Forlan manual;

• the book’s errata, and instructions for reporting errors or making sugges-
tions; and

• the Forlan distribution, including the source for Forlan and JForlan, as
well as the LATEX source for this book.

Acknowledgments

Leonard Lee and Jessica Sherrill designed and implemented graphical editors
for Forlan finite automata (JFA), and regular expression and parse trees (JTR),
respectively. Their work was unified and enhanced (of particular note was the
addition of support for program trees) by Srinivasa Aditya Uppu, resulting in
an initial version of JForlan. Subsequently, Kenton Born carried out a major
redevelopment of JForlan, resulting in JForlan Version 1.0. A further revision,
by the author, led to JForlan Version 2.0.

It is a pleasure to acknowledge helpful discussions relating to the Forlan
project with Eli Fox-Epstein, Brian Howard, Rod Howell, John Hughes, Nathan
James, Patrik Jansson, Jace Kohlmeier, Dexter Kozen, Matthew Miller, Aarne
Ranta, Ryan Stejskal, Colin Stirling, Lucio Torrico and Lyn Turbak. Much of
this work was done while I was employed by Kansas State University, and some
of the work was done while I was on sabbatical at the Department of Computing
Science of Chalmers University of Technology.

http://alleystoughton.us/forlan

Chapter 1

Mathematical Background

This chapter consists of the material on set theory, induction, trees, inductive
definitions and recursion that is required in the remaining chapters.

1.1 Basic Set Theory

In this section, we will cover the material on sets, relations, functions and data
structures that will be needed in what follows. Much of this material should be
at least partly familiar.

1.1.1 Describing Sets by Listing Their Elements

We write ∅ for the empty set—the set with no elements. Finite sets can be
described by listing their elements inside set braces: {x1, . . . , xn}. E.g., {3} is
the singleton set whose only element is 3, and {1, 3, 5, 7} is the set consisting of
the first four odd numbers.

1.1.2 Sets of Numbers

We write:

• N for the set {0, 1, . . .} of all natural numbers;

• Z for the set {. . . ,−1, 0, 1, . . .} of all integers;

• R for the set of all real numbers.

Note that, for us, 0 is a natural number. This has many pleasant consequences,
e.g., that the size of a finite set or the length of a list will always be a natural
number.

1

2 Mathematical Background

1.1.3 Relationships between Sets

As usual, we write x ∈ Y to mean that x is one of the elements (members) of
the set Y . Sets A and B are equal (A = B) iff (if and only if) they have the
same elements, i.e., for all x, x ∈ A iff x ∈ B.

Suppose A and B are sets. We say that:

• A is a subset of B (A ⊆ B) iff, for all x ∈ A, x ∈ B;

• A is a proper subset of B (A (B) iff A ⊆ B but A 6= B.

In other words: A is a subset of B iff every everything in A is also in B, and
A is a proper subset of B iff everything in A is in B, but there is at least one
element of B that is not in A.

For example, ∅ (N, N ⊆ N and N (Z. The definition of ⊆ gives us the
most common way of showing that A ⊆ B: we suppose that x ∈ A, and show
(with no additional assumptions about x) that x ∈ B. Similarly, if we want
to show that A = B, it will suffice to show that A ⊆ B and B ⊆ A, i.e., that
everything in A is in B, and everything in B is in A. Of course, we can also
use the usual properties of equality to show set equalities. E.g., if A = B and
B = C, we have that A = C.

Note that, for all sets A, B and C:

• if A ⊆ B ⊆ C, then A ⊆ C;

• if A ⊆ B (C, then A (C;

• if A (B ⊆ C, then A (C;

• if A (B (C, then A (C.

Given sets A and B, we say that:

• A is a superset of B (A ⊇ B) iff, for all x ∈ B, x ∈ A;

• A is a proper superset of B (A) B) iff A ⊇ B but A 6= B.

Of course, for all sets A and B, we have that: A = B iff A ⊇ B ⊇ A; and A ⊆ B
iff B ⊇ A. Furthermore, for all sets A, B and C:

• if A ⊇ B ⊇ C, then A ⊇ C;

• if A ⊇ B) C, then A) C;

• if A) B ⊇ C, then A) C;

• if A) B) C, then A) C.

1.1 Basic Set Theory 3

1.1.4 Set Formation

We will make extensive use of the { · · · | · · · } notation for forming sets. Let’s
consider two representative examples of its use.

For the first example, let

A = {n | n ∈ N and n2 ≥ 20 } = {n ∈ N | n2 ≥ 20 }.

(where the third of these expressions abbreviates the second one). Here, n is
a bound variable and is universally quantified—changing it uniformly to m, for
instance, wouldn’t change the meaning of A. By the definition of A, we have
that, for all n,

n ∈ A iff n ∈ N and n2 ≥ 20

Thus, e.g.,

5 ∈ A iff 5 ∈ N and 52 ≥ 20.

Since 5 ∈ N and 52 = 25 ≥ 20, it follows that 5 ∈ A. On the other hand,
5.5 6∈ A, since 5.5 6∈ N, and 4 6∈ A, since 42 6≥ 20.

For the second example, let

B = {n3 +m2 | n,m ∈ N and n,m ≥ 1 }.

Note that n3 +m2 is a term (expression), rather than a variable. The variables
n and m are existentially quantified, rather than universally quantified, so that,
for all l,

l ∈ B iff l = n3 +m2, for some n,m such that n,m ∈ N and n,m ≥ 1

iff l = n3 +m2, for some n,m ∈ N such that n,m ≥ 1.

Thus, to show that 9 ∈ B, we would have to show that

9 = n3 +m2 and n,m ∈ N and n,m ≥ 1,

for some values of n,m. And, this holds, since 9 = 23 + 12 and 2, 1 ∈ N and
2, 1 ≥ 1.

We use set formation in the following definition. Given n,m ∈ Z, we write
[n : m] for { l ∈ Z | l ≥ n and l ≤ m }. Thus [n : m] is all of the integers that
are at least n and no more than m. For example, [−2 : 1] is {−2,−1, 0, 1} and
[3 : 2] is ∅.

4 Mathematical Background

1.1.5 Operations on Sets

Next, we consider some standard operations on sets. Recall the following oper-
ations on sets A and B:

A ∪B = {x | x ∈ A or x ∈ B } (union)

A ∩B = {x | x ∈ A and x ∈ B } (intersection)

A−B = {x ∈ A | x 6∈ B } (difference)

A×B = { (x, y) | x ∈ A and y ∈ B } (product)

P A = {X | X ⊆ A } (power set).

Of course, union and intersection are both commutative and associative (A∪
B = B∪A, (A∪B)∪C = A∪(B∪C), A∩B = B∩A and (A∩B)∩C = A∩(B∩C),
for all sets A,B,C). Furthermore, we have that union is idempotent (A∪A = A,
for all sets A), and that ∅ is the identity for union (∅∪A = A = A∪∅, for all sets
A). Also, intersection is idempotent (A∩A = A, for all sets A), and ∅ is the zero
for intersection (∅∩A = ∅ = A∩∅, for all sets A). A−B is formed by removing
the elements of B from A, if necessary. For example, {0, 1, 2} − {1, 4} = {0, 2}.

A×B consists of all ordered pairs (x, y), where x comes from A and y comes
from B. For example, {0, 1} × {1, 2} = {(0, 1), (0, 2), (1, 1), (1, 2)}. Remember
that an ordered pair (x, y) is different from {x, y}, the set containing just x and
y. In particular, we have that, for all x, x′, y, y′, (x, y) = (x′, y′) iff x = x′ and
y = y′, whereas {1, 2} = {2, 1}. If A and B have n and m elements, respectively,
for n,m ∈ N, then A × B will have nm elements. Finally, P A consists of all
of the subsets of A. For example, P {0, 1} = {∅, {0}, {1}, {0, 1}}. If A has n
elements, for n ∈ N, then P A will have 2n elements.

We let × associate to the right, so that, e.g., A×B×C = A× (B×C). And,
we abbreviate (x1, (x2, · · · (xn−1, xn) · · ·)) to (x1, x2, . . . , xn−1, xn), thinking of
it as an ordered n-tuple. For example (x, (y, z)) is abbreviated to (x, y, z), and
we think of it as an ordered triple.

As an example of a proof involving sets, let’s prove the following simple
proposition, which says that intersections may be distributed over unions:

Proposition 1.1.1
Suppose A, B and C are sets.

(1) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(2) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Proof. We show (1), the proof of (2) being similar. We must show that
A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

(A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C)) Suppose x ∈ A∩(B∪C). We must show
that x ∈ (A ∩B) ∪ (A ∩ C). By our assumption, we have that x ∈ A and
x ∈ B ∪ C. Since x ∈ B ∪ C, there are two cases to consider.

1.1 Basic Set Theory 5

• Suppose x ∈ B. Then x ∈ A ∩ B ⊆ (A ∩ B) ∪ (A ∩ C), so that
x ∈ (A ∩B) ∪ (A ∩C).

• Suppose x ∈ C. Then x ∈ A ∩ C ⊆ (A ∩ B) ∪ (A ∩ C), so that
x ∈ (A ∩B) ∪ (A ∩C).

((A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C)) Suppose x ∈ (A∩B)∪(A∩C). We must
show that x ∈ A ∩ (B ∪ C). There are two cases to consider.

• Suppose x ∈ A ∩ B. Then x ∈ A and x ∈ B ⊆ B ∪ C, so that
x ∈ A ∩ (B ∪C).

• Suppose x ∈ A ∩ C. Then x ∈ A and x ∈ C ⊆ B ∪ C, so that
x ∈ A ∩ (B ∪C).

✷

Exercise 1.1.2
Suppose A, B and C are sets. Prove that union distributes over intersection,
i.e., for all sets A, B and C:

(1) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

(2) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).

Next, we consider generalized versions of union and intersection that work
on sets of sets. If X is a set of sets, then the generalized union of X (

⋃

X) is

{ a | a ∈ A, for some A ∈ X }.

Thus, to show that a ∈
⋃

X, we must show that a is in at least one element A
of X. For example

⋃

{{0, 1}, {1, 2}, {2, 3}} = {0, 1, 2, 3} = {0, 1} ∪ {1, 2} ∪ {2, 3},
⋃

∅ = ∅.

If X is a nonempty set of sets, then the generalized intersection of X (
⋂

X)
is

{ a | a ∈ A, for all A ∈ X }.

Thus, to show that a ∈
⋂

X, we must show that a is in every element A of X.
For example

⋂

{{0, 1}, {1, 2}, {2, 3}} = ∅ = {0, 1} ∩ {1, 2} ∩ {2, 3}.

If we allowed
⋂

∅, then it would contain all elements a of our universe that
are in all of the nonexistent elements of ∅, i.e., it would contain all elements of
our universe. It turns out, however, that there is no such set, which is why we
may only take generalized intersections of non-empty sets.

6 Mathematical Background

1.1.6 Relations and Functions

Next, we consider relations and functions. A relation R is a set of ordered pairs.
The domain of a relation R (domainR) is {x | (x, y) ∈ R, for some y }, and
the range of R (rangeR) is { y | (x, y) ∈ R, for some x }. We say that R is a
relation from a set X to a set Y iff domainR ⊆ X and rangeR ⊆ Y , and that
R is a relation on a set A iff domainR ∪ rangeR ⊆ A. We often write x R y
for (x, y) ∈ R.

Consider the relation

R = {(0, 1), (1, 2), (0, 2)}.

Then, domainR = {0, 1}, rangeR = {1, 2}, R is a relation from {0, 1} to
{1, 2}, and R is a relation on {0, 1, 2}. Of course, R is also, e.g., a relation
between N and R, as well as relation on R.

We often form relations using set formation. For example, suppose φ(x, y) is
a formula involving variables x and y. Then we can let R = { (x, y) | φ(x, y) },
and it is easy to show that, for all x, y, (x, y) ∈ R iff φ(x, y).

Given a set A, the identity relation on A (idA) is { (x, x) | x ∈ A }. For
example, id{1,3,5} is {(1, 1), (3, 3), (5, 5)}. Given relations R and S, the compo-
sition of S and R (S ◦ R) is { (x, z) | (x, y) ∈ R and (y, z) ∈ S, for some y }.
Intuitively, it’s the relation formed by starting with a pair (x, y) ∈ R, follow-
ing it with a pair (y, z) ∈ S (one that begins where the pair from R left off),
and supressing the intermediate value y, leaving us with (x, z). For example, if
R = {(1, 1), (1, 2), (2, 3)} and S = {(2, 3), (2, 4), (3, 4)}, then from (1, 2) ∈ R and
(2, 3) ∈ S, we can conclude (1, 3) ∈ S ◦ R. There are two more pairs in S ◦ R,
giving us S ◦ R = {(1, 3), (1, 4), (2, 4)}. For all sets A, B and C, and relations
R and S, if R is a relation from A to B, and S is a relation from B to C, then
S ◦R is a relation from A to C.

It is easy to show that ◦ is associative and has the identity relations as its
identities:

(1) For all sets A and B, and relations R from A to B, idB ◦R = R = R◦idA.

(2) For all sets A, B, C and D, and relations R from A to B, S from B to C,
and T from C to D, (T ◦ S) ◦R = T ◦ (S ◦R).

Because of (2), we can write T ◦S ◦R, without worrying about how it is paren-
thesized.

The inverse of a relation R (R−1) is the relation { (y, x) | (x, y) ∈ R }, i.e.,
it is the relation obtained by reversing each of the pairs in R. For example, if
R = {(0, 1), (1, 2), (1, 3)}, then the inverse of R is {(1, 0), (2, 1), (3, 1)}. So for
all sets A and B, and relations R, if R is a relation from A to B, then R−1 is a
relation from B to A.

A relation R is:

1.1 Basic Set Theory 7

• reflexive on a set A iff, for all x ∈ A, (x, x) ∈ R;

• transitive iff, for all x, y, z, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R;

• symmetric iff, for all x, y, if (x, y) ∈ R, then (y, x) ∈ R;

• antisymmetric iff, for all x, y, if (x, y) ∈ R and (y, x) ∈ R, then x = y;

• total on a set A iff, for all x, y ∈ A, either (x, y) ∈ R or (y, x) ∈ R;

• a function iff, for all x, y, z, if (x, y) ∈ R and (x, z) ∈ R, then y = z.

Note that being antisymmetric is not the same as not being symmetric.
Suppose, e.g., that R = {(0, 1), (1, 2), (0, 2)}. Then:

• R is not reflexive on {0, 1, 2}, since (0, 0) 6∈ R.

• R is transitive, since whenever (x, y) and (y, z) are in R, it follows that
(x, z) ∈ R. Since (0, 1) and (1, 2) are in R, we must have that (0, 2) is in
R, which is indeed true.

• R is not symmetric, since (0, 1) ∈ R, but (1, 0) 6∈ R.

• R is antisymmetric, since there are no x, y such that (x, y) and (y, x) are
both in R. (If we added (1, 0) to R, then R would not be antisymmetric,
since then R would contain (0, 1) and (1, 0), but 0 6= 1.)

• R is not total on {0, 1, 2}, since (0, 0) 6∈ R.

• R is not a function, since (0, 1) ∈ R and (0, 2) ∈ R. Intuitively, given an
input of 0, it’s not clear whether R’s output is 1 or 2.

We say that R is a total ordering on a set A iff R is a transitive, antisymmetric
and total relation on A. It is easy to see that such an R will also be reflexive on
A. Futhermore, if R is a total ordering on A, then R−1 is also a total ordering
on A.

We often use a symbol like ≤ to stand for a total ordering on a set A, which
lets us use its mirror image, ≥, for its inverse, as well as to write < for the
relation on A defined by: for all x, y ∈ A, x < y iff x ≤ y but x 6= y. < is a strict
total ordering on A, i.e., a transitive relation on A such that, for all x, y ∈ A,
exactly one of x < y, x = y and y < x holds. We write > for the inverse of <.
We can also start with a strict total ordering < on A, and then define a total
ordering ≤ on A by: x ≤ y iff x < y or x = y. The relations ≤ and < on the
natural numbers are examples of such relations.

The relation

f = {(0, 1), (1, 2), (2, 0)}

8 Mathematical Background

is a function. We think of it as sending the input 0 to the output 1, the input 1
to the output 2, and the input 2 to the output 0.

If f is a function and x ∈ domain f , we write f x for the application of f
to x, i.e., the unique y such that (x, y) ∈ f . We say that f is a function from a
set X to a set Y iff f is a function, domain f = X and range f ⊆ Y . We write
X → Y for the set of all functions from X to Y . If A has n elements and B has
m elements, for n,m ∈ N, then A→B will have mn elements.

For the f defined above, we have that f 0 = 1, f 1 = 2, f 2 = 0, f is a
function from {0, 1, 2} to {0, 1, 2}, and f ∈ {0, 1, 2} → {0, 1, 2}. Of course, f is
also in {0, 1, 2} → N, but it is not in N→{0, 1, 2}.

We let → associate to the right and have lower precedence than ×, so that,
e.g., A × B → C × D → E × F means (A × B) → ((C × D) → (E × F)). An
element of this set takes in a pair (a, b) in A × B, and returns a function that
takes in a pair (c, d) in C ×D, and returns an element of E × F .

Suppose f, g ∈ A → B. It is easy to show that f = g iff, for all x ∈ A,
f x = g x. This is the most common way of showing the equality of functions.

Given a set A, it is easy to see that idA, the identity relation on A, is a
function from A to A, and we call it the identity function on A. It is the
function that returns its input. Given sets A, B and C, if f is a function from
A to B, and g is a function from B to C, then the composition g ◦ f of (the
relations) g and f is the function h from A to C such that hx = g(f x), for all
x ∈ A. In other words, g ◦ f is the function that runs f and then g, in sequence.
Because of how composition of relations works, we have that ◦ is associative and
has the identity functions as its identities:

(1) For all sets A and B, and functions f from A to B, idB ◦f = f = f ◦ idA.

(2) For all sets A, B, C and D, and functions f from A to B, g from B to C,
and h from C to D, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Because of (2), we can write h ◦ g ◦ f , without worrying about how it is paren-
thesized. It is the function that runs f , then g, then h, in sequence.

Given f ∈ X → Y and a subset A of X, we write f(A) for the image of
A under f , { f x | x ∈ A }. And given f ∈ X → Y and a subset B of Y ,
we write f−1(B) for the inverse image of B under f , {x ∈ X | f x ∈ B }.
For example, if f ∈ N → N is the function that doubles its argument, then
f({3, 5, 7}) = {6, 10, 14} and f−1({1, 2, 3, 4}) = {1, 2}.

Given a function f and a set X ⊆ domain f , we write f |X for the restriction
of f to X, { (x, y) ∈ f | x ∈ X }. Hence domain(f |X) = X. For example, if f
is the function over Z that increases its argument by 2, then f |N is the function
over N that increases its argument by 2. Given a function f and elements
x, y of our universe, we write f [x 7→ y] for the updating of f to send x to y,
(f |(domain f − {x})) ∪ {(x, y)}. This function is the same as f , except that it
sends x to y. For example, if f = {(0, 1), (1, 2)}, then f [1 7→ 0] = {(0, 1), (1, 0)},
and f [2 7→ 3] = {(0, 1), (1, 2), (2, 3)}.

1.1 Basic Set Theory 9

We often define a function by saying how an element of its domain is trans-
formed into an element of its range. E.g., we might say that f ∈ N→ Z is the
unique function such that, for all n ∈ N,

f n =

{

−(n/2), if n is even,
(n + 1)/2, if n is odd.

This is shorthand for saying that f is the set of all (n,m) such that

• n ∈ N,

• if n is even, then m = −(n/2), and

• if n is odd, then m = (n+ 1)/2.

Then f 0 = 0, f 1 = 1, f 2 = −1, f 3 = 2, f 4 = −2, etc.

Exercise 1.1.3
There are three things wrong with the following “definition”—what are they?
Let f ∈ N→ N be the unique function such that, for all n ∈ N,

f n =

{

n− 2, if n ≥ 1 and n ≤ 10,
n+ 2, if n ≥ 10.

If the domain of f is a product X1×· · ·×Xn, for n ≥ 1 and sets X1, . . . ,Xn,
we often abbreviate f((x1, . . . , xn)) to f(x1, . . . , xn). We write ♯iX1,...,Xn

(or just
♯i, if n and the Xi are clear from the context) for the i-th projection function,
which selects the i-th component of a tuple, i.e., transforms an input (x1, . . . , xn)
to xi.

1.1.7 Set Cardinality

Next, we see how we can use functions to compare the sizes (or cardinalities) of
sets. A bijection f from a set X to a set Y is a function from X to Y such that,
for all y ∈ Y , there is a unique x ∈ X such that (x, y) ∈ f . For example,

f = {(0, 5.1), (1, 2.6), (2, 0.5)}

is a bijection from {0, 1, 2} to {0.5, 2.6, 5.1}. We can visualize f as a one-to-one
correspondence between these sets:

1

0

2

0.5

5.1

2.6

f

10 Mathematical Background

A function f is an injection (or is injective) iff, for all x, y and z, if (x, z) ∈ f
and (y, z) ∈ f , then x = y, i.e., for all x, y ∈ domain f , if f x = f y, then x = y.
In other words, a function is injective iff it never sends two different elements of
its domain to the same element of its range. For example, the function

{(0, 1), (1, 2), (2, 3), (3, 0)}

is injective, but the function

{(0, 1), (1, 2), (2, 1)}

is not injective (both 0 and 2 are sent to 1).
It is easy to see that:

• For all sets A, idA is injective.

• For all sets A, B and C, functions f from A to B, and functions g from B
to C, if f and g are injective, then so is g ◦ f .

Exercise 1.1.4
Suppose A and B are sets. Show that for all f , f is a bijection from A to B iff

• f is a function from A to B;

• range f = B; and

• f is injective.

Consequently, if f is an injection from A to B, then f is a bijection from A
to range f ⊆ B.

Exercise 1.1.5
Show that:

(1) For all sets A, idA is a bijection from A to A.

(2) For all sets A, B and C, bijections f from A to B, and bijections g from
B to C, g ◦ f is a bijection from A to C.

(3) For all sets A and B, and bijections f from A to B, f−1 is a bijection
from B to A.

We say that a set X has the same size as a set Y (X ∼= Y) iff there is a
bijection from X to Y . By Exercise 1.1.5, we have that, for all sets A,B,C:

(1) A ∼= A;

(2) If A ∼= B ∼= C, then A ∼= C; and

(3) If A ∼= B, then B ∼= A.

1.1 Basic Set Theory 11

We say that a set X is:

• finite iff X ∼= [1 : n], for some n ∈ N;

• infinite iff it is not finite;

• countably infinite iff X ∼= N;

• countable iff X is either finite or countably infinite; and

• uncountable iff X is not countable.

Every set X has a size or cardinality (|X|) and we have that, for all sets X
and Y , |X| = |Y | iff X ∼= Y . The sizes of finite sets are natural numbers.

We have that:

• The sets ∅ and {0.5, 2.6, 5.1} are finite, and are thus also countable;

• The sets N, Z, R and P N are infinite;

• The set N is countably infinite, and is thus countable; and

• The set Z is countably infinite, and is thus countable, because of the
existence of the following bijection:

· · · · · ·024 3

· · · · · ·0 1−1−2 2

· · ·· · ·

1

• The sets R and P N are uncountable.

To prove that R and P N are uncountable, we can use an important technique
called “diagonalization”, which we will see again in Chapter 5. Let’s consider
the proof that P N is uncountable.

We proceed using proof by contradiction. Suppose P N is countable. If we
can obtain a contradiction, it will follow that P N is uncountable. Since P N is
not finite, it follows that there is a bijection f from N to P N. Our plan is to
define a subset X of N such that X 6∈ range f , thus obtaining a contradiction,
since this will show that f is not a bijection from N to P N.

Consider the infinite table in which both the rows and the columns are
indexed by the elements of N, listed in ascending order, and where a cell (m,n)
(m is the row, n is the column) contains 1 iff m ∈ f n, and contains 0 iff m 6∈ f n.
Thus the nth column of this table represents the set f n of natural numbers.

Figure 1.1 shows how part of this table might look, where i, j and k are
sample elements of N. Because of the table’s data, we have, e.g., that i ∈ f i
and j 6∈ f i.

To define our X ⊆ N, we work our way down the diagonal of the table,
putting n into our set just when cell (n, n) of the table is 0, i.e., when n 6∈ f n.
This will ensure that, for all n ∈ N, f n 6= X. With our example table:

12 Mathematical Background

1 1 0

0 0 1

0 1 1

i j k· · · · · · · · · · · ·

..

.

...

...

...

i

j

k

Figure 1.1: Example Diagonalization Table for Cardinality Proof

• since i ∈ f i, but i 6∈ X, we have that f i 6= X;

• since j 6∈ f j, but j ∈ X, we have that f j 6= X; and

• since k ∈ f k, but k 6∈ X, we have that f k 6= X.

Next, we turn the above ideas into a shorter, but more opaque, proof that:

Proposition 1.1.6
P N is uncountable.

Proof. Suppose, toward a contradiction, that P N is countable. Thus, there is
a bijection f from N to P N. Define X ∈ {n ∈ N | n 6∈ f n }, so that X ∈ P N.
By the definition of f , it follows that X = f n, for some n ∈ N. There are two
cases to consider.

• Suppose n ∈ X. By the definition of X, it follows that n 6∈ f n = X—
contradiction.

• Suppose n 6∈ X. Because X = f n, we have that n 6∈ f n. Thus, since
n ∈ N and n 6∈ f n, it follows that n ∈ X—contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction.
Thus P N is uncountable. ✷

1.1 Basic Set Theory 13

We have seen how bijections may be used to determine whether sets have the
same size. But how can we compare the relative sizes of sets, i.e., say whether
one set is smaller or larger than another? The answer is to make use of injective
functions. We say that a set X is no bigger than a set Y (X � Y) iff there is an
injection from X to Y , i.e., an injective function whose domain is X and whose
range is a subset of Y . For example, the injection idN shows that N � R. This
definition makes sense, because X is no bigger than Y iff X has the same size as
a subset of Y . We say that X is strictly smaller than Y iff X � Y and X 6∼= Y .

Using our observations about injections, we have that, for all sets A, B and
C:

(1) A � A;

(2) If A � B � C, then A � C.

Clearly, for all sets A and B, if A ∼= B, then A � B � A. And, a famous result
of set theory, the Schröder-Bernstein Theorem, says that the converse holds, i.e.,
for all sets A and B, if A � B � A, then A ∼= B. This give us a powerful method
for proving that two sets have the same size.

Exercise 1.1.7
Use the Schröder-Bernstein Theorem to show that N ∼= N × N. Hint: use the
following consequence of the Fundamental Theorem of Arithmetic: if two finite,
ascending (each element is ≤ the next) sequences of prime numbers (natural
numbers that are at least 2 and have no divisors other than 1 and themselves)
have the same product (the product of the empty sequence is 1), then they are
equal.

One of the forms of the Axiom of Choice says that, for all sets A and B, either
A � B or B � A, i.e., either A is no bigger than B, or B is no bigger than A.
Furthermore, the sizes of sets are ordered in such a way that, for all sets A and
B, |A| ≤ |B| iff A � B, which tells us that, given sets A and B, either |A| ≤ |B|
or |B| ≤ |A|. Given the above machinery, one can strengthen Proposition 1.1.6
into: for all sets X, X is strictly smaller than P X, i.e., |X| < |P X|.

1.1.8 Data Structures

We conclude this section by introducing some data structures that are built out
of sets. We write Bool for the set of booleans, {true, false}. (We can actually
let true = 1 and false = 0, although we’ll never make use of these equalities.)
We define the negation function not ∈ Bool→Bool by:

not true = false, not false = true.

And the conjunction and disjunction operations on the booleans are defined by:

true and true = true,

true and false = false and true = false and false = false,

14 Mathematical Background

and

true or true = true or false = false or true = true,

false or false = false.

Given a set X, we write OptionX for {none} ∪ { some x | x ∈ X }, where
we define none = (0, 0) and some x = (1, x), which guarantees that none =
some x can’t hold, and that some x = some y only holds when x = y. (We
won’t make use of the particular way we’ve defined none and somex.) For
example, OptionBool = {none, some true, some false}.

The idea is that an element of OptionX is an optional element of X. E.g.,
when a function needs to either return an element of X or indicate that an error
has occurred, it could return an element of OptionX, using none to indicate
an error, and returning somex to indicate success with value x.

Finally, we consider lists. A list is a function with domain [1 : n], for some
n ∈ N. (Recall that [1 : n] is all of the natural numbers that are at least 1 and no
more than n.) For example ∅ is a list, as it is a function with domain ∅ = [1 : 0].
And {(1, 3), (2, 5), (3, 7)} is a list, as it is a function with domain [1 : 3]. Note
that, if x is a list, then |x|, the size of the set x, doubles as the length of x.

We abbreviate a list {(1, x1), (2, x2), . . . , (n, xn)} to [x1, x2, . . . , xn]. Thus
∅ and {(1, 3), (2, 5), (3, 7)} are abbreviated to [] and [3, 5, 7], respectively. If
[x1, x2, . . . , xn] = [y1, y2, . . . , ym], it is easy to see that n = m and xi = yi, for
all i ∈ [1 : n].

Given lists f and g, the concatenation of f and g (f @ g) is the list

f ∪ { (m+ |f |, y) | (m, y) ∈ g }.

For example,

[2, 3] @ [4, 5, 6] = {(1, 2), (2, 3)} @ {(1, 4), (2, 5), (3, 6)}

= {(1, 2), (2, 3)} ∪ { (m+ 2, y) | (m, y) ∈ {(1, 4), (2, 5), (3, 6)} }

= {(1, 2), (2, 3)} ∪ {(1 + 2, 4), (2 + 2, 5), (3 + 2, 6)}

= {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

= [2, 3, 4, 5, 6].

Given lists f and g, it is easy to see that |f @ g| = |f | + |g|. And, given
n ∈ [1 : |f @ g|], we have that

(f @ g)n =

{

f n, if n ∈ [1 : |f |],
g(n − |f |), if n > |f |.

Using this fact, it is easy to prove that:

• [] is the identity for concatenation: for all lists f ,

[] @ f = f = f @ [].

1.2 Induction 15

• Concatenation is associative: for all lists f , g, h,

(f @ g) @ h = f @ (g @ h).

Because concatenation is associative, we can write f @ g @ h without worrying
where the parentheses go.

Given a set X, we write ListX for the set of all X-lists, i.e., lists whose
ranges are subsets of X, i.e., all of whose elements come from X. E.g., [] and
[3, 5, 7] are elements of ListN, the set of all lists of natural numbers. It is easy
to see that [] ∈ ListX, for all sets X, and that, for all sets X and f, g ∈ ListX,
f @ g ∈ ListX.

1.1.9 Notes

In a traditional treatment of set theory, e.g., [End77], the natural numbers,
integers, real numbers and ordered pairs (x, y) are encoded as sets. But for our
purposes, it is clearer to supress this detail.

Furthermore, in the traditional approach, N is not a subset of Z, and Z is not
a subset of R. On the other hand, there are proper subsets of R corresponding
to N and Z, and these are what we take N and Z to be, so that N (Z (R.

1.2 Induction

In the section, we consider several induction principles, i.e., methods for proving
that every element x of some set A has a property P (x).

1.2.1 Mathematical Induction

We begin with the familiar principle of mathematical induction, which is a basic
result of set theory.

Theorem 1.2.1 (Principle of Mathematical Induction)
Suppose P (n) is a property of a natural number n. If

(basis step)

P (0) and

(inductive step)

for all n ∈ N, if (†) P (n), then P (n+ 1),

then,

for all n ∈ N, P (n).

16 Mathematical Background

We refer to the formula (†) as the inductive hypothesis. To use the principle
to show that that every natural number has property P , we carry out two steps.
In the basis step, we show that 0 has property P . In the inductive step, we
assume that n is a natural number with property P . We then show that n + 1
has property P , without making any more assumptions about n.

Next we give an example of a mathematical induction.

Proposition 1.2.2
For all n ∈ N, 3n2 + 3n+ 6 is divisible by 6.

Proof. We proceed by mathematical induction.

(Basis Step) We have that 3 · 02 + 3 · 0 + 6 = 0 + 0 + 6 = 6 = 6 · 1. Thus
3 · 02 + 3 · 0 + 6 is divisible by 6.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
3n2 +3n+6 is divisible by 6. Hence 3n2 +3n+6 = 6m, for some m ∈ N.
Thus, we have that

3(n + 1)2 + 3(n + 1) + 6 = 3(n2 + 2n+ 1) + 3n+ 3 + 6

= 3n2 + 6n+ 3 + 3n + 3 + 6

= (3n2 + 3n+ 6) + (6n + 6)

= 6m+ 6(n + 1)

= 6(m+ (n+ 1)),

showing that 3(n+ 1)2 + 3(n+ 1) + 6 is divisible by 6.

✷

Exercise 1.2.3
Use Proposition 1.2.2 to prove, by mathematical induction, that, for all n ∈ N,
n(n2 + 5) is divisible by 6.

1.2.2 Strong Induction

Next, we consider the principle of strong induction.

Theorem 1.2.4 (Principle of Strong Induction)
Suppose P (n) is a property of a natural number n. If

for all n ∈ N,
if (†) for all m ∈ N, if m < n, then P (m),
then P (n),

then

for all n ∈ N, P (n).

1.2 Induction 17

We refer to the formula (†) as the inductive hypothesis. To use the principle
to show that every natural number has property P , we assume that n is a
natural number, and that every natural number that is strictly smaller than n
has property P . We then show that n has property P , without making any more
assumptions about n.

It turns out that we can use mathematical induction to prove the validity of
the principle of strong induction, by using a property Q(n) derived from P (n).

Proof. Suppose P (n) is a property, and assume

(*) for all n ∈ N,
if for all m ∈ N, if m < n, then P (m),
then P (n).

Let the property Q(n) be

for all m ∈ N, if m < n, then P (m).

First, we use mathematical induction to show that, for all n ∈ N, Q(n).

(Basis Step) We must show Q(0). Suppose m ∈ N and m < 0. We must
show that P (m). Sincem < 0 is a contradiction, we are allowed to conclude
anything. So, we conclude P (m).

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
Q(n). We must show that Q(n + 1). Suppose m ∈ N and m < n+ 1. We
must show that P (m). Since m ≤ n, there are two cases to consider.

• Suppose m < n. Because Q(n), we have that P (m).

• Suppose m = n. We must show that P (n). By Property (*), it will
suffice to show that

for all m ∈ N, if m < n, then P (m).

But this formula is exactly Q(n), and so were are done.

Now, we use the result of our mathematical induction to show that, for all
n ∈ N, P (n). Suppose n ∈ N. By our mathematical induction, we have Q(n).
By Property (*), it will suffice to show that

for all m ∈ N, if m < n, then P (m).

But this formula is exactly Q(n), and so we are done. ✷

As an example use of the principle of strong induction, we will prove a
proposition that we would normally take for granted:

Proposition 1.2.5
Every nonempty set of natural numbers has a least element.

18 Mathematical Background

Proof. Let X be a nonempty set of natural numbers.
We begin by using strong induction to show that, for all n ∈ N,

if n ∈ X, then X has a least element.

Suppose n ∈ N, and assume the inductive hypothesis: for all m ∈ N, if m < n,
then

if m ∈ X, then X has a least element.

We must show that

if n ∈ X, then X has a least element.

Suppose n ∈ X. It remains to show that X has a least element. If n is
less-than-or-equal-to every element of X, then we are done. Otherwise, there is
an m ∈ X such that m < n. By the inductive hypothesis, we have that

if m ∈ X, then X has a least element.

But m ∈ X, and thus X has a least element. This completes our strong induc-
tion.

Now we use the result of our strong induction to prove that X has a least
element. Since X is a nonempty subset of N, there is an n ∈ N such that n ∈ X.
By the result of our induction, we can conclude that

if n ∈ X, then X has a least element.

But n ∈ X, and thus X has a least element. ✷

We conclude this subsection with one more proof using strong induction.
Recall that a natural number is prime iff it is at least 2 and has no divisors
other than 1 and itself.

Proposition 1.2.6
For all n ∈ N,

if n ≥ 2, then there are m, l ∈ N such that n = ml and m is prime.

Proof. We proceed by strong induction. Suppose n ∈ N, and assume the
inductive hypothesis: for all i ∈ N, if i < n, then

if i ≥ 2, then there are m, l ∈ N such that i = ml and m is prime.

We must show that

if n ≥ 2, then there are m, l ∈ N such that n = ml and m is prime.

Suppose n ≥ 2. We must show that

there are m, l ∈ N such that n = ml and m is prime.

There are two cases to consider.

1.2 Induction 19

• Suppose n is prime. Then n, 1 ∈ N, n = n1 and n is prime.

• Suppose n is not prime. Since n ≥ 2, it follows that n = ij for some
i, j ∈ N such that 1 < i < n. Thus, by the inductive hypothesis, we have
that

if i ≥ 2, then there are m, l ∈ N such that i = ml and m is prime.

But i ≥ 2, and thus there are m, l ∈ N such that i = ml and m is prime.
Thus m, lj ∈ N, n = ij = (ml)j = m(lj) and m is prime.

✷

Exercise 1.2.7
Use strong induction to prove that, for all n ∈ N, if n ≥ 1, then there are i, j ∈ N

such that n = 2i(2j + 1).

1.2.3 Well-founded Induction

We can also do induction over a well-founded relation. A relation R on a set
A is well-founded iff every nonempty subset X of A has an R-minimal element,
where an element x ∈ X is R-minimal in X iff there is no y ∈ X such that
y R x. Given x, y ∈ A, we say that y is a predecessor of x in R iff y R x. Thus
x ∈ X is R-minimal in X iff none of x’s predecessors in R (there may be none)
are in X.

For example, in Proposition 1.2.5, we proved that the strict total ordering
< on N is well-founded. On the other hand, the strict total ordering < on Z is
not well-founded, as Z itself lacks a <-minimal element.

Theorem 1.2.8 (Principle of Well-founded Induction)
Suppose A is a set, R is a well-founded relation on A, and P (x) is a property of
an element x ∈ A. If

for all x ∈ A,
if (†) for all y ∈ A, if y R x, then P (y),
then P (x),

then

for all x ∈ A, P (x).

We refer to the formula (†) as the inductive hypothesis. When A = N and
R = <, this is the same as the principle of strong induction. But it’s much more
generally applicable than strong induction.

Proof. Suppose A is a set, R is a well-founded relation on A, P (x) is a
property of an element x ∈ A, and

20 Mathematical Background

(‡) for all x ∈ A,
if for all y ∈ A, if y R x, then P (y),
then P (x).

We must show that, for all x ∈ A, P (x).
Suppose, toward a contradiction, that it is not the case that, for all x ∈ A,

P (x). Hence there is an x ∈ A such that P (x) is false. Let X = {x ∈ A | P (x)
is false }. Thus x ∈ X, showing that X is non-empty. Because R is well-founded
on A, it follows that there is a z ∈ X that is R-minimal in X, i.e., such that
there is no y ∈ X such that y R z.

By (‡), we have that

if for all y ∈ A, if y R z, then P (y),
then P (z).

Because z ∈ X, we have that P (z) is false. Thus, to obtain a contradiction, it
will suffice to show that

for all y ∈ A, if y R z, then P (y).

Suppose y ∈ A, and y R z. We must show that P (y). Because z is R-minimal
in X, it follows that y 6∈ X. Thus P (y).

Because we obtained our contradiction, we have that, for all x ∈ A, P (x), as
required. ✷

We conclude this subsection by considering three ways of building well-
founded relations. The first is by taking a subset of a well-founded relation:

Proposition 1.2.9
Suppose R is a well-founded relation on a set A. If S ⊆ R, then S is also a
well-founded relation on A.

Proof. Suppose R is a well-founded relation on A, and S ⊆ R. Let X be
a nonempty subset of A. Let x ∈ X be R-minimal in X. Suppose, toward a
contradiction, that x is not S-minimal in X. Thus there is a y ∈ X such that
y S x. But S ⊆ R, and thus y R x—contradiction. Thus x is S-minimal in X,
as required. ✷

Let the predecessor relation predN on N be { (n, n + 1) | n ∈ N }. Thus, for
all n,m ∈ N, m predN n iff m is exactly one less than n. Because predN ⊆ <,
and < is well-founded on N, Proposition 1.2.9 tells us that predN is well-founded
on N. Since 0 has no predecessors in predN, and, for all n ∈ N, n is the only
predecessor of n + 1 in predN, a proof by well-founded induction on predN is
essentially the same as a proof by mathematical induction.

Suppose A and B are sets, S is a relation on B, and f ∈ A→ B. Then the
inverse image of the relation S under f , f−1(S), is the relation R on A defined
by: for all x, y ∈ A, x R y iff f x S f y.

1.2 Induction 21

Proposition 1.2.10
Suppose A and B are sets, S is a well-founded relation on B, and f ∈ A→ B.
Then f−1(S) is a well-founded relation on A.

Proof. Let R = f−1(S). To see that R is well-founded on A, suppose X is a
nonempty subset of A. We must show that there is an R-minimal element of X.
Let Y = f(X) = { f x | x ∈ X }. Thus Y is a nonempty subset of B. Because
S is well-founded on B, it follows that there is an S-minimal element y of Y .
Hence y = f x for some x ∈ X. Suppose, toward a contradiction, that x is not
R-minimal in X. Thus there is an x′ ∈ X such that x′ R x. Hence f x′ ∈ Y and
f x′ S f x = y, contradicting the S-minimality of y in Y . Thus x is R-minimal
in X. ✷

For example, let R be the relation on Z such that, for all n,m ∈ Z, n R m
iff |n| < |m| (where we’re writing | · | for the absolute value of an integer). Since
< is well-founded on N, Proposition 1.2.10 tells us that R is well-founded on Z.
If we do a well-founded induction on R, when proving P (n), for n ∈ Z, we can
make use of P (m) for any m ∈ Z whose absolute value is strictly less than the
absolute value of n. E.g., when proving P (−10), we could make use of P (5) or
P (−9).

If R and S are relations on sets A and B, respectively, then the lexicographic
relation of R and then S, R ⊲ S, is the relation on A×B defined by: (x, y) R ⊲ S
(x′, y′) iff

• x R x′, or

• x = x′ and y S y′.

Proposition 1.2.11
Suppose R and S are well-founded relations on sets A and B, respectively. Then
R ⊲ S is a well-founded relation on A×B.

Proof. Suppose T is a nonempty subset of A× B. We must show that there
is an R ⊲ S-minimal element of T . By our assumption, T is a relation from A to
B. Because T is nonempty, it follows that domain T is a nonempty subset of
A. Since R is a well-founded relation on A, it follows that there is an R-minimal
x ∈ domainT . Let Y = { y ∈ B | (x, y) ∈ T }. Because Y is a nonempty
subset of B, and S is well-founded on B, there exists an S-minimal y ∈ Y . Thus
(x, y) ∈ T .

Suppose, toward a contradiction, that (x, y) is not R ⊲ S-minimal in T .
Thus there are x′ ∈ A and y′ ∈ B such that (x′, y′) ∈ T and (x′, y′) R ⊲ S (x, y).
Hence, there are two cases to consider.

• Suppose x′ R x. Because x′ ∈ domain T , this contradicts the R-
minimality of x in domainT .

22 Mathematical Background

• Suppose x′ = x and y′ S y. Thus (x, y′) = (x′, y′) ∈ T , so that y′ ∈ Y .
But this contradicts the S-minimality of y in Y .

Because we obtained a contradiction in both cases, we have an overall contra-
diction. Thus (x, y) is R ⊲ S-minimal in T . ✷

For example, if we consider the strict total ordering < on N, then < ⊲ < is
a well-founded relation on N × N. If we do a well-founded induction on < ⊲ <,
when proving that P ((x, y)) holds, we can use P ((x′, y′)), whenever x′ < x or
x = x′ but y′ < y.

Just as we abbreviate A× (B ×C) to A×B ×C, and abbreviate (x, (y, z))
to (x, y, z), we abbreviate R ⊲ (S ⊲ T) to R ⊲ S ⊲ T . If R, S and T are
well-founded relations on sets A, B and C, respectively, then R ⊲ S ⊲ T is the
well-founded relation on A×B × C such that, for all x ∈ A, y ∈ B and z ∈ C:
(x, y, z) R ⊲ S ⊲ T (x′, y′, z′) iff

• x R x′, or

• x = x′ and y S y′, or

• x = x′, y = y′ and z T z′.

And we can do the analogous thing with four or more well-founded relations.

1.2.4 Notes

A typical book on formal language theory doesn’t introduce well-founded re-
lations and induction. But this material, and our treatment of well-founded
recursion in the next section, will prove to be useful in subsequent chapters.

1.3 Inductive Definitions and Recursion

In this section, we will introduce and study ordered trees of arbitrary (finite)
arity, whose nodes are labeled by elements of some set. In later chapters, we
will define regular expressions (in Chapter 3), parse trees (in Chapter 4) and
programs (in Chapter 5) as restrictions of the trees we consider here.

The definition of the set of all trees over a set of labels is our first example
of an inductive definition—a definition in which we collect together all of the
values that can be constructed using a set of rules. We will see many examples
of inductive definitions in the book. In this section, we will also see how to
define functions by recursion.

1.3 Inductive Definitions and Recursion 23

1.3.1 Inductive Definition of Trees

Suppose X is a set. The set TreeX of X-trees is the least set such that, for
all x ∈ X and trs ∈ List(TreeX), (x, trs) ∈ TreeX. Recall that saying
trs ∈ List(TreeX) simply means that trs is a list all of whose elements come
from TreeX.

Ignoring the adjective “least” for the moment, some example elements of
TreeN (the case when the set X of tree labels is N) are:

• Since 3 ∈ N and [] ∈ List(TreeN), we have that (3, []) ∈ TreeN. For
similar reasons, (1, []), (6, []) and all pairs of the form (n, []), for n ∈ N,
are in TreeN.

• Because 4 ∈ N, and [(3, []), (1, []), (6, [])] ∈ List(TreeN), we have that
(4, [(3, []), (1, []), (6, [])]) ∈ TreeN.

• And we can continue like this forever.

Trees are often easier to comprehend if they are drawn. We draw the X-tree
(x, [tr 1, . . . , trn]) as

x

tr1 · · · trn

For example,

4

3 1 6

is the drawing of the N-tree (4, [(3, []), (1, []), (6, [])]). And

4

3 1 6

9

2

is the N-tree (2, [(4, [(3, []), (1, []), (6, [])]), (9, [])]). Consider the tree

x

tr1 · · · trn

again. We say that the root label of this tree is x, and tr1 is the tree’s first
child, etc. We write rootLabel tr for the root label of tr . We often write a tree
(x, [tr 1, . . . , trn]) in a more compact, linear syntax:

• x(tr 1, . . . , trn), when n ≥ 1, and

24 Mathematical Background

• x, when n = 0.

Thus (2, [(4, [(3, []), (1, []), (6, [])]), (9, [])]) can be written as 2(4(3, 1, 6), 9).
Consider the definition of TreeX again: the set TreeX of X-trees is the

least set such that, (†) for all x ∈ X and trs ∈ List(TreeX), (x, trs) ∈ TreeX.
Let’s call a set U X-closed iff it satisfies property (†), where we have replaced
TreeX by U : for all x ∈ X and trs ∈ ListU , (x, trs) ∈ U . Thus the definition
says that TreeX is the least X-closed set, where we’ve yet to say just what
“least” means.

First we address the concern that there might not be any X-closed sets. A
easy result of set theory says that:

Lemma 1.3.1
For all sets X, there is a set U such that X ⊆ U , U × U ⊆ U and ListU ⊆ U .

In other words, the lemma says that, given any set X, there exists a superset
U of X such that every pair of elements of U is already an element of U, and
every list of elements of U is already an element of U . Now, suppose X is a set,
and let U be as in the lemma. To see that U is X-closed, suppose x ∈ X and
trs ∈ ListU . Thus x ∈ U and trs ∈ U , so that (x, trs) ∈ U , as required.

E.g., we know that there is an Z-closed set U . But N ⊆ Z, and thus U is
also N-closed. But if TreeN turned out to be U , it would have elements like
(−5, []), which are not wanted.

To keep TreeX from having junk, we say that TreeX is the set U such
that:

• U is X-closed, and

• for all X-closed sets V , U ⊆ V .

This is what we mean by saying that TreeX is the least X-closed set. It is our
first example of an inductive definition, the least (relative to ⊆) set satisfying a
given set of rules saying that if some elements are already in the set, then some
other elements are also in the set.

To see that there is a unique least X-closed set, we first prove the following
lemma.

Lemma 1.3.2
Suppose X is a set and W is a nonempty set of X-closed sets. Then

⋂

W is an
X-closed set.

Proof. Suppose X is a set and W is a nonempty set of X-closed sets. Because
W is nonempty,

⋂

W is well-defined. To see that
⋂

W is X-closed, suppose
x ∈ X and trs ∈ List

⋂

W. We must show that (x, trs) ∈
⋂

W, i.e., that
(x, trs) ∈ W , for allW ∈ W. SupposeW ∈ W. We must show that (x, trs) ∈ W .
Because W ∈ W, we have that

⋂

W ⊆ W , so that List
⋂

W ⊆ ListW . Thus,

1.3 Inductive Definitions and Recursion 25

since trs ∈ List
⋂

W, it follows that trs ∈ ListW . But W is X-closed, and
thus (x, trs) ∈ W , as required. ✷

As explained above, we have that there is an X-closed set, V . Let W be
the set of all subsets of V that are X-closed. Thus W is a nonempty set of
X-closed sets, since V ∈ W. Let U =

⋂

W. By Lemma 1.3.2, we have that U is
X-closed. To see that U ⊆ T for all X-closed sets T , suppose T is X-closed. By
Lemma 1.3.2, we have that V ∩ T =

⋂

{V, T} is X-closed. And V ∩ T ⊆ V , so
that V ∩ T ∈ W. Hence U =

⋂

W ⊆ V ∩ T ⊆ T , as required. Finally, suppose
that U ′ is also an X-closed set such that, for all X-closed sets T , U ′ ⊆ T . Then
U ⊆ U ′ ⊆ U , showing that U ′ = U . Thus U is the least X-closed set.

Suppose X is a set, x, x′ ∈ X and trs , trs ′ ∈ List (TreeX). It is easy to
see that (x, trs) = (x′, trs ′) iff x = x′, |trs | = |trs ′| and, for all i ∈ [1 : |trs |],
trs i = trs ′ i.

Because trees are defined via an inductive definition, we get an induction
principle for trees almost for free:

Theorem 1.3.3 (Principle of Induction on Trees)
Suppose X is a set and P (tr) is a property of an element tr ∈ TreeX. If

for all x ∈ X and trs ∈ List(TreeX),
if (†) for all i ∈ [1 : |trs |], P (trs i),
then P ((x, trs)),

then

for all tr ∈ TreeX, P (tr).

We refer to (†) as the inductive hypothesis.

Proof. Suppose X is a set, P (tr) is a property of an element tr ∈ TreeX,
and

(‡) for all x ∈ X and trs ∈ List(TreeX),
if for all i ∈ [1 : |trs |], P (trs i),
then P ((x, trs)).

We must show that

for all tr ∈ TreeX, P (tr).

Let U = { tr ∈ TreeX | P (tr) }. We will show that U is X-closed. Suppose
x ∈ X and trs ∈ ListU . We must show that (x, trs) ∈ U . It will suffice to show
that P ((x, trs)). By (‡), it will suffice to show that, for all i ∈ [1 : |trs |], P (trs i).
Suppose i ∈ [1 : |trs |]. We must show that P (trs i). Because trs ∈ ListU , we
have that trs i ∈ U . Hence P (trs i), as required.

Because U is X-closed, we have that TreeX ⊆ U , as TreeX is the least
X-closed set. Hence, for all tr ∈ TreeX, tr ∈ U , so that, for all tr ∈ TreeX,
P (tr). ✷

26 Mathematical Background

Using our induction principle, we can now prove that every X-tree can be
“destructed” into an element of X paired with a list of X-trees:

Proposition 1.3.4
SupposeX is a set. For all tr ∈ TreeX, there are x ∈ X and trs ∈ List(TreeX)
such that tr = (x, trs).

Proof. Suppose X is a set. We use induction on trees to prove that, for all
tr ∈ TreeX, there are x ∈ X and trs ∈ List(TreeX) such that tr = (x, trs).
Suppose x ∈ X, trs ∈ List(TreeX), and assume the inductive hypothesis:
for all i ∈ [1 : |trs |], there are x′ ∈ X and trs ′ ∈ List(TreeX) such that
trs i = (x′, trs ′). We must show that there are x′ ∈ X and trs ′ ∈ List(TreeX)
such that (x, trs) = (x′, trs ′). And this holds, since x ∈ X, trs ∈ List(TreeX)
and (x, trs) = (x, trs). ✷

Note that the preceding induction makes no use of its inductive hypothesis,
and yet the induction is still necessary.

Suppose X is a set. Let the predecessor relation predTreeX on TreeX be
the set of all pairs of X-trees (tr , tr ′) such that there are x ∈ X and trs ′ ∈
List(TreeX) such that tr ′ = (x, trs ′) and trs ′ i = tr for some i ∈ [1 : |trs ′|],
i.e., such that tr is one of the children of tr ′. Thus the predecessors of a tree
(x, [tr 1, . . . , trn]) are its children tr1, . . . , trn.

Proposition 1.3.5
If X is a set, then predTreeX is a well-founded relation on TreeX.

Proof. Suppose X is a set and Y is a nonempty subset of TreeX. Mimicking
Proposition 1.2.5, we can use the principle of induction on trees to prove that, for
all tr ∈ TreeX, if tr ∈ Y , then Y has a predTreeX-minimal element. Because
Y is nonempty, we can conclude that Y has a predTreeX -minimal element. ✷

Exercise 1.3.6
Do the induction on trees used by the preceding proof.

1.3.2 Recursion

Suppose R is a well-founded relation on a set A. We can define a function f
from A to a set B by well-founded recursion on R. The idea is simple: when
f is called with an element x ∈ A, it may call itself recursively on any of the
predecessors of x in R. Typically, such a definition will be concrete enough that
we can regard it as defining an algorithm as well as a function.

If R is a well-founded relation on a set A, and B is a set, then we write
RecA,R,B for

{ (x, f) | x ∈ A and f ∈ { y ∈ A | y R x } →B } →B.

1.3 Inductive Definitions and Recursion 27

An element F of RecA,R,B may only be called with a pair (x, f) such that x ∈ A
and f is a function from the predecessors of x in R to B. Intutively, F ’s job is
to transform x into an element of B, using f to carry out recursive calls.

Theorem 1.3.7 (Well-Founded Recursion)
Suppose R is a well-founded relation on a set A, B is a set, and F ∈ RecA,R,B .
There is a unique f ∈ A→B such that, for all x ∈ A,

f x = F (x, f |{ y ∈ A | y R x }).

The second argument to F in the definition of f is the restriction of f to the
predecessors of x in R, i.e., it’s the subset of f whose domain is { y ∈ A | y R x }.

If we can understand F as an algorithm, then we can understand the defi-
nition of f as an algorithm. If we call f with an x ∈ A, then F may return an
element of B without consulting its second argument. Alternatively, it may call
this second argument with a predecessor of x in R. This is a recursive call of f ,
which must complete before F continues. Once it does complete, F may make
more recursive calls, but must eventually return an element of B.

Proof. We start with an inductive definition: let f be the least subset of A×B
such that, for all x ∈ A and g ∈ { y ∈ A | y R x } →B,

if g ⊆ f, then (x, F (x, g)) ∈ f.

We say that a subset U of A × B is closed iff, for all x ∈ A and g ∈ { y ∈ A |
y R x } →B,

if g ⊆ U, then (x, F (x, g)) ∈ U.

Thus, we are saying that f is the least closed subset of A× B. This definition
is well-defined because A × B is closed, and if W is a nonempty set of closed
subsets of A×B, then

⋂

W is also closed. Thus we can let f be the intersection
of all closed subsets of A×B.

Thus f is a relation from A to B. An easy well-founded induction on R
suffices to show that, for all x ∈ A, x ∈ domain f . Suppose x ∈ A, and assume
the inductive hypothesis: for all y ∈ A, if y R x, then y ∈ domain f . We must
show that x ∈ domain f . By the inductive hypothesis, we have that for all
y ∈ { y ∈ A | y R x }, there is a z ∈ B such that (y, z) ∈ f . Thus there is a
subset g of f such that g ∈ { y ∈ A | y R x }→B. (Since we don’t know at this
point that f is a function, we are using the Axiom of Choice in this last step.)
Hence (x, F (x, g)) ∈ f , showing that x ∈ domain f . Thus domain f = A.

Next we show that f is a function. Let h be

{ (x, y) ∈ f | for all y′ ∈ B, if (x, y′) ∈ f, then y = y′ }.

28 Mathematical Background

If we can show that h is closed, then we will have that f ⊆ h, because f is
the least closed set, and thus we’ll be able to conclude that f is a function.
To show that h is closed, suppose x ∈ A, g ∈ { y ∈ A | y R x } → B and
g ⊆ h. We must show that (x, F (x, g)) ∈ h. It will suffice to show that, for
all y′ ∈ B, if (x, y′) ∈ f , then F (x, g) = y′. Suppose y′ ∈ B and (x, y′) ∈ f .
We must show that F (x, g) = y′. Because (x, y′) ∈ f , and f is the least closed
subset of A × B, there must be a g′ ∈ { y ∈ A | y R x } → B such that
g′ ⊆ f and y′ = F (x, g′). Thus it will suffice to show that F (x, g) = F (x, g′),
which will follow from showing that g = g′, i.e., for all z ∈ { y ∈ A | y R x },
g z = g′ z. Suppose z ∈ { y ∈ A | y R x }. We must show that g z = g′ z. Since
z ∈ { y ∈ A | y R x }, we have that z ∈ A and z R x. Because (z, g z) ∈ g ⊆ h,
we have that (z, g z) ∈ h. Since (z, g′ z) ∈ g′ ⊆ f , we have that (z, g′ z) ∈ f .
Hence, by the definition of h, we have that g z = g′ z, as required.

Summarizing, we know that f ∈ A → B. Next, we must show that, for all
x ∈ A,

f x = F (x, f |{ y ∈ A | y R x }).

Suppose x ∈ A. Because f |{ y ∈ A | y R x } ∈ { y ∈ A | y R x } → B, we have
that (x, F (x, f |{ y ∈ A | y R x })) ∈ f , so that f x = F (x, f |{ y ∈ A | y R x }).

Finally, suppose that f ′ ∈ A→B and for all x ∈ A,

f ′ x = F (x, f ′|{ y ∈ A | y R x }).

To see that f = f ′, it will suffice to show that, for all x ∈ A, f x = f ′ x.
We proceed by well-founded induction on R. Suppose x ∈ A and assume the
inductive hypothesis: for all y ∈ A, if y R x, then f y = f ′ y. We must show
that f x = f ′ x. By the inductive hypothesis, we have that f |{ y ∈ A | y R x } =
f ′|{ y ∈ A | y R x }. Thus

f x = F (x, f |{ y ∈ A | y R x })

= F (x, f ′|{ y ∈ A | y R x })

= f ′ x,

as required. ✷

Here are some examples of well-founded recursion:

• If we define f ∈ N → B by well-founded recursion on <, then, when f
is called with n ∈ N, it may call itself recursively on any strictly smaller
natural numbers. In the case n = 0, it can’t make any recursive calls.

• If we define f ∈ N→B by well-founded recursion on the predecessor rela-
tion predN, then when f is called with n ∈ N, it may call itself recursively
on n− 1, in the case when n ≥ 1, and may make no recursive calls, when
n = 0.

Thus, such a definition can be split into two parts:

1.3 Inductive Definitions and Recursion 29

– f 0 = · · · ;

– for all n ∈ N, f(n+ 1) = · · · f n · · · .

• If we define f ∈ TreeX→B by well-founded recursion on the predecessor
relation predTreeX , then when f is called on an X-tree (x, [tr 1, . . . , trn]),
it may call itself recursively on any of tr1, . . . , trn. When n = 0, it may
make no recursive calls. We say that such a definition is by structural
recursion.

• We may define the size of an X-tree (x, [tr 1, . . . , trn]) by summing the
recursively computed sizes of tr 1, . . . , trn, and then adding 1. (When
n = 0, the sum of no sizes is 0, and so we get 1.) Then, e.g., the size of

4

3 1 6

9

2

is 6. This defines a function size ∈ TreeX → N.

• We may define the number of leaves of an X-tree (x, [tr 1, . . . , trn]) as

– 1, when n = 0, and

– the sum of the recursively computed numbers of leaves of tr1, . . . ,
trn, when n ≥ 1.

Then, e.g., the number of leaves of

4

3 1 6

9

2

is 4. This defines a function numLeaves ∈ TreeX → N.

• We may define the height of an X-tree (x, [tr 1, . . . , trn]) as

– 0, when n = 0, and

– 1 plus the maximum of the recursively computed heights of tr 1, . . . ,
trn, when n ≥ 1.

E.g., the height of

30 Mathematical Background

4

3 1 6

9

2

is 2. This defines a function height ∈ TreeX → N.

• Given a set X, we can define a well-founded relation sizeTreeX on TreeX
by: for all tr , tr ′ ∈ TreeX, tr sizeTreeX tr ′ iff size tr < size tr ′. (This
is an application of Proposition 1.2.10.)

If we define a function f ∈ TreeX → B by well-founded recursion on
sizeTreeX , when f is called with an X-tree tr , it may call itself recursively
on any X-trees with strictly smaller sizes.

• Given a set X, we can define a well-founded relation heightTreeX on
TreeX by: for all tr , tr ′ ∈ TreeX, tr heightTreeX tr ′ iff height tr <
height tr ′.

If we define a function f ∈ TreeX → B by well-founded recursion on
heightTreeX , when f is called with an X-tree tr , it may call itself recur-
sively on any X-trees with strictly smaller heights.

• Given a set X, we can define a well-founded relation lengthListX on
ListX by: for all xs , ys ∈ ListX, xs lengthListX ys iff |xs | < |ys |.

If we define a function f ∈ ListX → B by well-founded recursion on
lengthListX , when f is called with an X-list xs , it may call itself recur-
sively on any X-lists with strictly smaller lengths.

1.3.3 Paths in Trees

We can think of an N−{0}-list [n1, n2, . . . , nm] as a path through an X-tree tr :
one starts with tr itself, goes to the n1-th child of tr , selects the n2-th child of
that tree, etc., stopping when the list is exhausted.

Consider the N-tree

4

3 1 6

9

2

Then:

• [] takes us to the whole tree.

• [1] takes us to the tree 4(3, 1, 6).

1.3 Inductive Definitions and Recursion 31

• [1, 3] takes us to the tree 6.

• [1, 4] takes us to no tree.

We define the valid paths of an X-tree via a function definition. For a set X,
we define validPathsX ∈ TreeX→List(N−{0}) (we often drop the subscript
X, when it’s clear from the context) by: for all x ∈ X and trs ∈ List(TreeX),
validPaths(x, trs) is

{[]} ∪ { [i] @ xs | i ∈ [1 : |trs |] and xs ∈ validPaths(trs i) }.

We say that xs ∈ List(N − {0}) is a valid path for an X-tree tr iff xs ∈
validPaths tr . For example, validPaths(3(4, 1(7), 6)) = {[], [1], [2], [2, 1], [3]}.
Thus, e.g., [2, 1] is a valid path for 3(4, 1(7), 6), whereas [2, 2] and [4] are not
valid paths for this tree.

Now, we define a function select that takes in an X-tree tr and a valid path
xs for tr , and returns the subtree of tr pointed to by xs . Let YX be

{ (tr , xs) ∈ TreeX × List(N− {0}) | xs is a valid path for tr }.

Let the relation R on YX be

{ ((tr , xs), (tr ′, xs ′)) ∈ YX × YX | |xs | < |xs ′| }.

By Proposition 1.2.10, we have that R is well-founded, and so we can use well-
founded recursion on R to define a function selectX (we often drop the subscript
X) from YX to TreeX. Suppose, we are given an input ((x, trs), xs) ∈ Y . If
xs is [], then we return (x, trs). Otherwise, xs = [i] @ xs ′, for some i ∈ N− {0}
and xs ′ ∈ List(N − {0}). Because ((x, trs), xs) ∈ Y , it follows that i ∈ [1 : |trs |]
and xs ′ is a valid path for trs i. Thus (trs i, xs ′) is in Y , and is a predecessor of
((x, trs), xs) in R, so that we can call ourselves recursively on (trs i, xs ′) and re-
turn the resulting tree. For example select(4(3(2, 1(7)), 6), []) = 4(3(2, 1(7)), 6)
and select(4(3(2, 1(7)), 6), [1, 2]) = 1(7).

We say that an X-tree tr ′ is a subtree of an X-tree tr iff there is a valid
path xs for tr such that tr ′ = select(tr , xs). And tr ′ is a leaf of tr iff tr ′ is a
subtree of tr and tr ′ has no children.

Finally, we can define a function that takes in a X-tree tr , a valid path xs
for tr , and an X-tree tr ′, and returns the result of replacing the subtree of tr
pointed to by xs with tr ′. Let YX be

{ (tr , xs , tr ′) ∈ TreeX × List(N − {0})×TreeX | xs is a valid path for tr }.

We use well-founded recursion on the size of the second components (the paths)
of the elements of YX to define a function updateX (we often drop the subscript)
from YX to TreeX. Suppose, we are given an input ((x, trs), xs , tr ′) ∈ Y . If
xs is [], then we return tr ′. Otherwise, xs = [i] @ xs ′, for some i ∈ N − {0}

32 Mathematical Background

and xs ′ ∈ List(N − {0}). Because ((x, trs), xs , tr ′) ∈ Y , it follows that
i ∈ [1 : |trs |] and xs ′ is a valid path for trs i. Thus (trs i, xs ′, tr ′) is in
Y , and |xs ′| < |xs |. Hence, we can let tr ′′ be the result of calling our-
selves recursively on (trs i, xs ′, tr ′). Finally, we can return (x, trs ′), where
trs ′ = trs [i 7→ tr ′′] (which is the same as trs , excepts that its ith ele-
ment is tr ′′. For example update(4(3(2, 1(7)), 6), [], 3(7, 8)) = 3(7, 8) and
update(4(3(2, 1(7)), 6), [1, 2], 3(7, 8)) = 4(3(2, 3(7, 8)), 6).

1.3.4 Notes

Our treatment of trees, inductive definition, and well-founded recursion is more
formal than what one finds in typical books on formal language theory. But those
with a background in set theory will find nothing surprising in this section, and
our foundational approach will serve the reader well in later chapters.

Chapter 2

Formal Languages

In this chapter we say what symbols, strings, alphabets and (formal) languages
are, show how to use various induction principles to prove language equalities,
and give an introduction to the Forlan toolset. In subsequent chapters, we will
study four more restricted kinds of languages: the regular (Chapter 3), context-
free (Chapter 4), recursive and recursively enumerable (Chapter 5) languages.

2.1 Symbols, Strings, Alphabets and (Formal) Lan-
guages

In this section, we define the basic notions of the subject: symbols, strings,
alphabets and (formal) languages. In most presentations of formal language
theory, the “symbols” that make up strings are allowed to be arbitrary elements
of the mathematical universe. This is convenient in some ways, but it means
that, e.g., the collection of all strings is too “big” to be a set. Furthermore,
if we were to adopt this convention, we wouldn’t be able to have notation in
Forlan for all strings and symbols. These considerations lead us to the following
definition.

2.1.1 Symbols

The set Char of symbol characters consists of the following 65 elements:

• the comma (“,”);

• the digits 0–9;

• the letters a–z and A–Z; and

• the angle brackets (“〈” and “〉”).

We order Char as follows:

, < 0 < · · · < 9 < a < · · · z < A < · · ·Z < 〈 < 〉.

33

34 Formal Languages

The set Sym of symbols is the least subset of ListChar such that:

• for all digits and letters c, [c] ∈ Sym; and

• for all n ∈ N and x1, . . . , xn ∈ {[,]} ∪ Sym,

[〈]@x1@ · · ·@xn@[〉] ∈ Sym.

For example, [9], [〈, 〉], [〈, i, d, 〉] and [〈, 〈, a, , , 〉, b, 〉] are symbols. On the
other hand, [〈, 〉, 〉] is not a symbol.

It is easy to see that, for x, y ∈ ListChar, if x @ y ∈ Sym, then exactly
one of x and y is []. In other words, a symbol never starts or ends with another
symbol.

We normally abbreviate a symbol [c1, . . . , cn] to c1 · · · cn, so that 9, 〈 〉, 〈id〉
and 〈〈a, 〉b〉 are symbols. And if x and y are elements of ListChar, we typically
abbreviate x@ y to xy.

Whenever possible, we will use the mathematical variables a, b and c to
name symbols. We order Sym first by length, and then lexicographically (in
dictionary order). So, we have that

0 < · · · < 9 < A < · · · < Z < a < · · · < z,

and, e.g.,

z < 〈be〉 < 〈by〉 < 〈on〉 < 〈can〉 < 〈con〉.

Obviously, Sym is infinite, but is it countably infinite? The answer is “yes”,
because we can enumerate the symbols in order.

2.1.2 Strings

A string is a list of symbols. Whenever possible, we will use the mathematical
variables u, v, w, x, y and z to name strings.

We typically abbreviate the empty string [] to %, and abbreviate [a1, . . . , an]
to a1 · · · an, when n ≥ 1. For example [0, 〈0〉, 1, 〈〈, 〉〉] is abbreviated to 0〈0〉1〈〈, 〉〉.
We name the empty string by %, instead of following convention and using ǫ,
since this symbol can also be used in Forlan.

We write Str for List Sym, the set of all strings. We order Str first by
length and then lexicographically, using our order on Sym. Thus, e.g.,

% < ab < a〈be〉 < a〈by〉 < 〈can〉〈be〉 < abc.

Since every string can be written as a finite sequence of ASCII characters, it
follows that Str is countably infinite.

Because strings are lists, we have that |x| is the length of a string x, and that
x@ y is the concatenation of strings x and y. We typically abbreviate x@ y to
xy. For example:

2.1 Symbols, Strings, Alphabets and (Formal) Languages 35

• |%| = |[]| = 0;

• |0〈0〉1〈〈 , 〉〉| = |[0, 〈0〉, 1, 〈〈 , 〉〉]| = 4; and

• (01)(00) = [0, 1] @ [0, 0] = [0, 1, 0, 0] = 0100.

From our study of lists, we know that:

• Concatenation is associative: for all x, y, z ∈ Str,

(xy)z = x(yz).

• % is the identify for concatenation: for all x ∈ Str,

%x = x = x%.

It is easy to see that, for all x, y, x′, y′ ∈ Str:

• xy = xy′ iff y = y′; and

• xy = x′y iff x = x′.

We define the string xn formed by raising a string x to the power n ∈ N by
recursion on n:

x0 = %, for all x ∈ Str; and

xn+1 = xxn, for all x ∈ Str and n ∈ N.

We assign this operation higher precedence than concatenation, so that xxn

means x(xn) in the above definition. For example, we have that

(ab)2 = (ab)(ab)1 = (ab)(ab)(ab)0 = (ab)(ab)% = abab.

Proposition 2.1.1
For all x ∈ Str and n,m ∈ N, xn+m = xnxm.

Proof. Suppose x ∈ Str and m ∈ N. We use mathematical induction to show
that, for all n ∈ N, xn+m = xnxm.

(Basis Step) We have that x0+m = xm = %xm = x0xm.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
xn+m = xnxm. We must show that x(n+1)+m = xn+1xm. We have that

x(n+1)+m = x(n+m)+1

= xxn+m (definition of x(n+m)+1)

= x(xnxm) (inductive hypothesis)

= (xxn)xm

= xn+1xm (definition of xn+1).

36 Formal Languages

✷

Thus, if x ∈ Str and n ∈ N, then

xn+1 = xxn (definition),

and

xn+1 = xnx1 = xnx (Proposition 2.1.1).

Next, we consider the prefix, suffix and substring relations on strings. Sup-
pose x and y are strings. We say that:

• x is a prefix of y iff y = xv for some v ∈ Str;

• x is a suffix of y iff y = ux for some u ∈ Str; and

• x is a substring of y iff y = uxv for some u, v ∈ Str.

In other words, x is a prefix of y iff x is an initial part of y, x is a suffix of y iff x
is a trailing part of y, and x is a substring of y iff x appears in the middle of y.
But note that the strings u and v can be empty in these definitions. Thus, e.g.,
a string x is always a prefix of itself, since x = x%. A prefix, suffix or substring
of a string other than the string itself is called proper.

For example:

• % is a proper prefix, suffix and substring of ab;

• a is a proper prefix and substring of ab;

• b is a proper suffix and substring of ab; and

• ab is a (non-proper) prefix, suffix and substring of ab.

Proposition 2.1.2
For all x, y, x′, y′ ∈ Str, xy = x′y′ iff either

• xu = x′ and y = uy′, for some u ∈ Str, or

• x′u = x and y′ = uy, for some u ∈ Str.

Proof. Straightforward. ✷

As a consequence of this proposition, we have that:

• For all x, x′, y′ ∈ Str, x is a prefix of x′y′ iff either

– x is a prefix of x′, or

– x = x′u, for some prefix u of y′.

2.1 Symbols, Strings, Alphabets and (Formal) Languages 37

• For all x, x′, y′ ∈ Str, x is a suffix of x′y′ iff either

– x is a suffix of y′, or

– x = uy′, for some suffix u of x′.

• For all x, x′, y′ ∈ Str, x is a substring of x′y′ iff either

– x is a substring of x′, or

– x = uv, for some u, v ∈ Str such that u is a suffix of x′ and v is a
prefix of y′, or

– x is a substring of y′.

2.1.3 Alphabets

Having said what symbols and strings are, we now come to alphabets. An
alphabet is a finite subset of Sym. We use Σ (upper case Greek letter sigma) to
name alphabets. For example, ∅, {0} and {0, 1} are alphabets. We write Alp
for the set of all alphabets. Alp is countably infinite.

We define alphabet ∈ Str→Alp by recursion on (the length of) strings:

alphabet% = ∅,

alphabet(ax) = {a} ∪ alphabetx, for all a ∈ Sym and x ∈ Str.

I.e., alphabetw consists of all of the symbols occurring in the string w. E.g.,
alphabet(01101) = {0, 1}. Because the string x appears on the right side of
ax in the rule alphabet(ax) = {a} ∪ alphabetx, we call this right recursion.
(Since ∪ is associative and commutative, it would have been equivalent to use
left recursion, alphabet(xa) = {a} ∪ alphabetx.) We say that alphabetx is
the alphabet of x.

If Σ is an alphabet, then we write Σ∗ for ListΣ. I.e., Σ∗ consists of all of
the strings that can be built using the symbols of Σ. For example, the elements
of {0, 1}∗ = List {0, 1} are:

%, 0, 1, 00, 01, 10, 11, 000, . . .

2.1.4 Languages

We say that L is a formal language (or just language) iff L ⊆ Σ∗, for some
Σ ∈ Alp. In other words, a language is a set of strings over some alphabet. If
Σ ∈ Alp, then we say that L is a Σ-language iff L ⊆ Σ∗.

Here are some example languages (all are {0, 1}-languages):

• ∅;

38 Formal Languages

• {0, 1}∗;

• {010, 1001, 1101};

• { 0n1n | n ∈ N } = {0010, 0111, 0212, . . .} = {%, 01, 0011, . . .}; and

• {w ∈ {0, 1}∗ | w is a palindrome }.

(A palindrome is a string that reads the same backwards and forwards, i.e.,
that is equal to its own reversal.) On the other hand, the set of strings X =
{〈〉, 〈0〉, 〈00〉, . . .}, is not a language, since it involves infinitely many symbols,
i.e., since there is no alphabet Σ such that X ⊆ Σ∗.

Since Str is countably infinite and every language is a subset of Str, it follows
that every language is countable. Furthermore, Σ∗ is countably infinite, as long
as the alphabet Σ is nonempty (∅∗ = {%}).

We write Lan for the set of all languages. It turns out that Lan is uncount-
able. In fact even P({0}∗), the set of all {0}-languages, has the same size as
P(N), and is thus uncountable.

Exercise 2.1.3
Show that P(N) has the same size as P({0}∗).

Given a language L, we write alphabetL for the alphabet
⋃

{alphabetw | w ∈ L }.

of L. I.e., alphabetL consists of all of the symbols occurring in the strings of
L. For example,

alphabet {011, 112} =
⋃

{alphabet(011),alphabet(112)}

=
⋃

{{0, 1}, {1, 2}} = {0, 1, 2}.

Note that, for all languages L, L ⊆ (alphabetL)∗.
If A is an infinite subset of Sym (and so is not an alphabet), we allow

ourselves to write A∗ for ListA. I.e., A∗ consists of all of the strings that can
be built using the symbols of A. For example, Sym∗ = Str.

2.1.5 Notes

In a traditional approach to the subject, symbols may be anything, real numbers,
sets, etc. But such a choice would mean that not all symbols could be expressed
in Forlan’s syntax, and would needlessly complicate the set theoretic foundations
of the subject. By working with a fixed, countably infinite set of symbols, all
symbols can be expressed in Forlan, and we have that that strings, regular
expressions, etc., are sets, not set-indexed families of sets.

Representing strings as lists of symbols, which in turn are represented as
functions, is nontraditional, but should seem a natural approach to those with
a background in set theory or functional programming.

2.2 Using Induction to Prove Language Equalities 39

2.2 Using Induction to Prove Language Equalities

In this section, we introduce three string induction principles, ways of showing
that every w ∈ A∗ has property P (w), where A is some set of symbols. Typically,
A will be an alphabet, i.e., a finite set of symbols. But when we want to prove
that all strings have some property, we can let A = Sym, so that A∗ = Str.
Each of these principles corresponds to an instance of well-founded induction.
We also look at how different kinds of induction can be used to show that two
languages are equal.

2.2.1 String Induction Principles

Suppose A is a set of symbols. We define well-founded relations rightA, leftA
and strongA on A∗ by:

• x rightA y iff y = ax for some a ∈ A (it’s called right because the string
x is on the right side of ax);

• x leftA y iff y = xa for some a ∈ A (it’s called left because the string x is
on the left side of xa);

• x strongA y iff x is a proper substring of y.

Thus, for all a ∈ A and x ∈ A∗, the only predecessor of ax in rightA is x, and
the only predecessor of xa in leftA is x. And, for all y ∈ A∗, the predecessors of
y in strongA are the proper substrings of y.

The well-foundedness of rightA, leftA and strongA follows by Proposi-
tion 1.2.9, since each of these relations is a subset of lengthListA, which is
a well-founded relation on ListA.

We now introduce string induction principles corresponding to well-founded
induction on each of these relations.

Theorem 2.2.1 (Principle of Right String Induction)
Suppose A ⊆ Sym and P (w) is a property of a string w. If

(basis step)

P (%) and

(inductive step)

for all a ∈ A and w ∈ A∗, if (†) P (w), then P (aw),

then,

for all w ∈ A∗, P (w).

40 Formal Languages

We refer to the formula (†) as the inductive hypothesis. According to the
induction principle, to show that every w ∈ A∗ has property P , we show that
the empty string has property P , and then assume that a ∈ A, w ∈ A∗ and that
(the inductive hypothesis) w has property P , and show that aw has property P .

Proof. Equivalent to well-founded induction on rightA. ✷

By switching aw to wa in the inductive step, we get the principle of left
string induction.

Theorem 2.2.2 (Principle of Left String Induction)
Suppose A ⊆ Sym and P (w) is a property of a string w. If

(basis step)

P (%) and

(inductive step)

for all a ∈ A and w ∈ A∗, if (†) P (w), then P (wa),

then,

for all w ∈ A∗, P (w).

We refer to the formula (†) as the inductive hypothesis.

Proof. Equivalent to well-founded induction on leftA. ✷

Theorem 2.2.3 (Principle of Strong String Induction)
Suppose A ⊆ Sym and P (w) is a property of a string w. If

for all w ∈ A∗,
if (†) for all x ∈ A∗, if x is a proper substring of w, then P (x),
then P (w),

then,

for all w ∈ A∗, P (w).

We refer to (†) as the inductive hypothesis. It says that all the proper
substrings of w have property P . According to the induction principle, to show
that every w ∈ A∗ has property P , we let w ∈ A∗, and assume (the inductive
hypothesis) that every proper substring of w has property P . Then we must
show that w has property P .

2.2 Using Induction to Prove Language Equalities 41

Proof. Equivalent to well-founded induction on strongA. ✷

The next subsection, on proving language equalities, contains two examples
of proofs by strong string induction. Before moving on to that subsection, we
give an example proof by right string induction.

We define the reversal xR ∈ Str of a string x by right recursion on strings:

%R = %;

(ax)R = xRa, for all a ∈ Sym and x ∈ Str.

E.g., we have that (021)R = 120. And, an easy calculation shows that, for all
a ∈ Sym, aR = a. We let the reversal operation have higher precedence than
string concatenation, so that, e.g., xxR = x(xR).

Proposition 2.2.4
For all x, y ∈ Str, (xy)R = yRxR.

As usual, we must start by figuring out which of x and y to do induction
on, as well as what sort of induction to use. Because we defined string reversal
using right recursion, it turns out that we should do right string induction on x.

Proof. Suppose y ∈ Str. Since Sym∗ = Str, it will suffice to show that, for
all x ∈ Sym∗, (xy)R = yRxR. We proceed by right string induction.

(Basis Step) We have that (%y)R = yR = yR% = yR%R.

(Inductive Step) Suppose a ∈ Sym and x ∈ Sym∗. Assume the inductive
hypothesis: (xy)R = yRxR. Then,

((ax)y)R = (a(xy))R

= (xy)Ra (definition of (a(xy))R)

= (yRxR)a (inductive hypothesis)

= yR(xRa)

= yR(ax)R (definition of (ax)R).

✷

Exercise 2.2.5
Use right string induction and Proposition 2.2.4 to prove that, for all x ∈ Str,
(xR)R = x.

Exercise 2.2.6
In Section 2.1, we used right recursion to define the function alphabet ∈ Str→
Alp. Use right string induction to show that, for all x, y ∈ Str, alphabet(xy) =
alphabetx ∪ alphabet y.

42 Formal Languages

2.2.2 Proving Language Equalities

In this subsection, we show two examples of how strong string induction and
induction over inductively defined languages can be used to show that two lan-
guages are equal.

For the first example, let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X; and

(2) for all a ∈ {0, 1} and x ∈ X, axa ∈ X.

This is another example of an inductive definition: X consists of just those
strings of 0’s and 1’s that can be constructed using (1) and (2). For example,
by (1) and (2), we have that 00 = 0%0 ∈ X. Thus, by (2), we have that
1001 = 1(00)1 ∈ X. In general, we have that X contains the elements:

%, 00, 11, 0000, 0110, 1001, 1111, . . .

We will show that X = Y , where Y = {w ∈ {0, 1}∗ | w is a palindrome and
|w| is even }.

Lemma 2.2.7
Y ⊆ X.

Proof. Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction.
Supposew ∈ {0, 1}∗, and assume the inductive hypothesis: for all x ∈ {0, 1}∗,

if x is a proper substring of w, then

if x ∈ Y, then x ∈ X.

We must show that

if w ∈ Y, then w ∈ X.

Suppose w ∈ Y , so that w ∈ {0, 1}∗, w is a palindrome and |w| is even. It
remains to show that w ∈ X. If w = %, then w = % ∈ X, by Part (1) of the
definition of X. So, suppose w 6= %. Since |w| is even, we have that |w| ≥ 2, and
thus that w = axb for some a, b ∈ {0, 1} and x ∈ {0, 1}∗. Because |w| is even, it
follows that |x| is even. Furthermore, because w is a palindrome, it follows that
a = b and x is a palindrome. Thus w = axa and x ∈ Y . Since x is a proper
substring of w, the inductive hypothesis tells us that

if x ∈ Y, then x ∈ X.

But x ∈ Y , and thus x ∈ X. Thus, by Part (2) of the definition of X, we have
that w = axa ∈ X. ✷

2.2 Using Induction to Prove Language Equalities 43

We could also prove X ⊆ Y by strong string induction. But an alternative
approach is more elegant and generally applicable: we use the induction principle
that comes from the inductive definition of X.

Proposition 2.2.8 (Principle of Induction on X)
Suppose P (w) is a property of a string w. If

(1)

P (%), and

(2)

for all a ∈ {0, 1} and x ∈ X, if (†) P (x), then P (axa),

then,

for all w ∈ X, P (w).

We refer to (†) as the inductive hypothesis of Part (2). By Part (1) of the
definition of X, % ∈ X. Thus Part (1) of the induction principle requires us
to show P (%). By Part (2) of the definition of X, if a ∈ {0, 1} and x ∈ X,
then axa ∈ X. Thus in Part (2) of the induction principle, when proving that
the “new” element axa has property P , we’re allowed to assume that the “old”
element has property P .

Lemma 2.2.9
X ⊆ Y .

Proof. We use induction on X to show that, for all w ∈ X, w ∈ Y .
There are two steps to show.

(1) Since % ∈ {0, 1}∗, % is a palindrome and |%| = 0 is even, we have that
% ∈ Y .

(2) Let a ∈ {0, 1} and x ∈ X. Assume the inductive hypothesis: x ∈ Y . We
must show that axa ∈ Y . Since x ∈ Y , we have that x ∈ {0, 1}∗, x is a
palindrome and |x| is even. Because a ∈ {0, 1} and x ∈ {0, 1}∗, it follows
that axa ∈ {0, 1}∗. Since x is a palindrome, we have that axa is also a
palindrome. And, because |axa| = |x|+ 2 and |x| is even, it follows that
|axa| is even. Thus axa ∈ Y , as required.

✷

Proposition 2.2.10
X = Y .

44 Formal Languages

Proof. Follows immediately from Lemmas 2.2.7 and 2.2.9. ✷

We end this subsection by proving a more complex language equality. One
of the languages is defined using a “difference” function on strings, which we
will use a number of times in later chapters. Define diff ∈ {0, 1}∗ → Z by: for
all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − the number of 0’s in w.

Then:

• diff % = 0;

• diff 1 = 1;

• diff 0 = −1; and

• for all x, y ∈ {0, 1}∗, diff(xy) = diff x+ diff y.

Note that, for all w ∈ {0, 1}∗, diff w = 0 iff w has an equal number of 0’s
and 1’s. If we think of a 1 as representing the production of one unit of some
resource, and of a 0 as representing the consumption of one unit of that resource,
then a string will have a diff of 0 iff it is balanced in terms of production and
consumption. Note that such such a string may have prefixes with negative
diff’s, i.e., it may temporarily go “into the red”.

Let X (forget the previous definition of X) be the least subset of {0, 1}∗ such
that:

(1) % ∈ X;

(2) for all x, y ∈ X, xy ∈ X;

(3) for all x ∈ X, 0x1 ∈ X; and

(4) for all x ∈ X, 1x0 ∈ X.

Let Y = {w ∈ {0, 1}∗ | diff w = 0 }.
For example, since % ∈ X, it follows, by (3) and (4) that 01 = 0%1 ∈ X

and 10 = 1%0 ∈ X. Thus, by (2), we have that 0110 = (01)(10) ∈ X. And, Y
consists of all strings of 0’s and 1’s with an equal number of 0’s and 1’s.

Our goal is to prove that X = Y , i.e., that: (the easy direction) every string
that can be constructed using X’s rules has an equal number of 0’s and 1’s; and
(the hard direction) that every string of 0’s and 1’s with an equal number of 0’s
and 1’s can be constructed using X’s rules.

Because X was defined inductively, it gives rise to an induction principle,
which we will use to prove the following lemma. (Because of Part (2) of the
definition of X, we wouldn’t be able to prove this lemma using strong string
induction.)

2.2 Using Induction to Prove Language Equalities 45

Lemma 2.2.11
X ⊆ Y .

Proof. We use induction on X to show that, for all w ∈ X, w ∈ Y . There are
four steps to show, corresponding to the four rules of X’s definition.

(1) We must show % ∈ Y . Since % ∈ {0, 1}∗ and diff % = 0, we have that
% ∈ Y .

(2) Suppose x, y ∈ X, and assume the inductive hypothesis: x, y ∈ Y . We
must show that xy ∈ Y . Since x, y ∈ Y , we have that xy ∈ {0, 1}∗ and
diff(xy) = diff x+ diff y = 0 + 0 = 0. Thus xy ∈ Y .

(3) Suppose x ∈ X, and assume the inductive hypothesis: x ∈ Y . We must
show that 0x1 ∈ Y . Since x ∈ Y , we have that 0x1 ∈ {0, 1}∗ and
diff(0x1) = diff 0+ diff x+ diff 1 = −1 + 0 + 1 = 0. Thus 0x1 ∈ Y .

(4) Suppose x ∈ X, and assume the inductive hypothesis: x ∈ Y . We must
show that 1x0 ∈ Y . Since x ∈ Y , we have that 1x0 ∈ {0, 1}∗ and
diff(1x0) = diff 1+ diff x+ diff 0 = 1 + 0 +−1 = 0. Thus 1x0 ∈ Y .

✷

Lemma 2.2.12
Y ⊆ X.

Proof. Since Y ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ Y, then w ∈ X.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the
inductive hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ Y, then x ∈ X.

We must show that
if w ∈ Y, then w ∈ X.

Suppose w ∈ Y . We must show that w ∈ X. There are three cases to consider.

• Suppose w = %. Then w = % ∈ X, by Part (1) of the definition of X.

• Suppose w = 0t for some t ∈ {0, 1}∗. Since w ∈ Y , we have that −1 +
diff t = diff 0+ diff t = diff(0t) = diff w = 0, and thus that diff t = 1.

Let u be the shortest prefix of t such that diff u ≥ 1. (Since t is a prefix of
itself and diff t = 1 ≥ 1, it follows that u is well-defined.) Let z ∈ {0, 1}∗

be such that t = uz. Clearly, u 6= %, and thus u = yb for some y ∈ {0, 1}∗

46 Formal Languages

and b ∈ {0, 1}. Hence t = uz = ybz. Since y is a shorter prefix of t than
u, we have that diff y ≤ 0.

Suppose, toward a contradiction, that b = 0. Then diff y +−1 = diff y +
diff 0 = diff y + diff b = diff(yb) = diff u ≥ 1, so that diff y ≥ 2. But
diff y ≤ 0—contradiction. Hence b = 1.

Summarizing, we have that u = yb = y1, t = uz = y1z and w = 0t = 0y1z.
Since diff y + 1 = diff y + diff 1 = diff(y1) = diff u ≥ 1, it follows that
diff y ≥ 0. But diff y ≤ 0, and thus diff y = 0. Thus y ∈ Y . Since
1+diff z = 0+1+diff z = diff y+diff 1+diff z = diff(y1z) = diff t = 1,
it follows that diff z = 0. Thus z ∈ Y .

Because y and z are proper substrings of w, and y, z ∈ Y , the inductive
hypothesis tells us that y, z ∈ X. Thus, by Part (3) of the definition of X,
we have that 0y1 ∈ X. Hence, Part (2) of the definition of X tells us that
w = 0y1z = (0y1)z ∈ X.

• Suppose w = 1t for some t ∈ {0, 1}∗. Since w ∈ Y , we have that 1+diff t =
diff 1+ diff t = diff(1t) = diff w = 0, and thus that diff t = −1.

Let u be the shortest prefix of t such that diff u ≤ −1. (Since t is a
prefix of itself and diff t = −1 ≤ −1, it follows that u is well-defined.) Let
z ∈ {0, 1}∗ be such that t = uz. Clearly, u 6= %, and thus u = yb for some
y ∈ {0, 1}∗ and b ∈ {0, 1}. Hence t = uz = ybz. Since y is a shorter prefix
of t than u, we have that diff y ≥ 0.

Suppose, toward a contradiction, that b = 1. Then diff y + 1 = diff y +
diff 1 = diff y+diff b = diff(yb) = diff u ≤ −1, so that diff y ≤ −2. But
diff y ≥ 0—contradiction. Hence b = 0.

Summarizing, we have that u = yb = y0, t = uz = y0z and w = 1t = 1y0z.
Since diff y + −1 = diff y + diff 0 = diff(y0) = diff u ≤ −1, it follows
that diff y ≤ 0. But diff y ≥ 0, and thus diff y = 0. Thus y ∈ Y . Since
−1 + diff z = 0 + −1 + diff z = diff y + diff 0 + diff z = diff(y0z) =
diff t = −1, it follows that diff z = 0. Thus z ∈ Y .

Because y and z are proper substrings of w, and y, z ∈ Y , the inductive
hypothesis tells us that y, z ∈ X. Thus, by Part (4) of the definition of X,
we have that 1y0 ∈ X. Hence, Part (2) of the definition of X tells us that
w = 1y0z = (1y0)z ∈ X.

✷

In the proof of the preceding lemma we made use of all four rules of X’s
definition. If this had not been the case, we would have known that the unused
rules were redundant (or that we had made a mistake in our proof!).

Proposition 2.2.13
X = Y .

2.2 Using Induction to Prove Language Equalities 47

Proof. Follows immediately from Lemmas 2.2.11 and 2.2.12. ✷

Exercise 2.2.14
Define a function diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − the number of 0’s in w.

Thus diff % = 0, diff 0 = −1, diff 1 = 1, and for all x, y ∈ {0, 1}∗, diff(xy) =
diff x + diff y. Furthermore, for all w ∈ {0, 1}∗, diff w = 0 iff w has an equal
number of 0’s and 1’s. Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X;

(2) for all x ∈ X, 0x1 ∈ X; and

(3) for all x, y ∈ X, xy ∈ X.

Let Y = {w ∈ {0, 1}∗ | diff w = 0 and, for all prefixes v of w,diff v ≤ 0 }.
Prove that X = Y .

Exercise 2.2.15
Define a function diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − 2(the number of 0’s in w).

Thus diff % = 0, diff 0 = −2, diff 1 = 1, and for all x, y ∈ {0, 1}∗, diff(xy) =
diff x + diff y. Furthermore, for all w ∈ {0, 1}∗, diff w = 0 iff w has twice as
many 1’s as 0’s. Let X be the least subset of {0, 1}∗ such that:

(1) % ∈ X;

(2) 1 ∈ X;

(3) for all x, y ∈ X, 1x1y0 ∈ X; and

(4) for all x, y ∈ X, xy ∈ X.

Let Y = {w ∈ {0, 1}∗ | for all prefixes v of w,diff v ≥ 0 }. Prove that X = Y .

2.2.3 Notes

A novel feature of this book is the introduction and use of explicit string induc-
tion principles, as an alternative to doing proofs by induction (mathematical or
strong) on the length of strings. Also novel is our focus on languages defined
using “difference” functions.

48 Formal Languages

2.3 Introduction to Forlan

The Forlan toolset is an extension of the Standard ML of New Jersey (SML/NJ)
implementation of Standard ML (SML). It is implemented as a set of SML
modules. It is used interactively, and users can extend Forlan by definining
SML functions.

Instructions for installing and running Forlan on machines running Linux,
Mac OS X and Windows can be found on the Forlan website:

http://alleystoughton.us/forlan.

A manual for Forlan is available on the Forlan website, and describes Forlan’s
modules in considerably more detail than does this book. See the manual for
instructions for setting system parameters controlling such things as the search
path used for loading files, the line length used by Forlan’s pretty printer, and
the number of elements of a list that the Forlan top-level displays.

In the concrete syntax for describing Forlan objects—automata, grammars,
etc.—comments begin with a “#”, and run through the end of the line. Com-
ments and whitespace may be arbitrarily inserted into the descriptions of Forlan
objects without changing how the objects will be lexically analyzed and parsed.
For instance,

ab cd # this is a comment

efg h

describes the Forlan string abcdefgh. Forlan’s input functions prompt with “@”
when reading from the standard input, in which case the user signifies end-of-file
by typing a line consisting of a single dot (“.”).

We begin this section by showing how to invoke Forlan, and giving a quick in-
troduction to the SML core of Forlan. We then show how symbols, strings, finite
sets of symbols and strings, and finite relations on symbols can be manipulated
using Forlan.

2.3.1 Invoking Forlan

To invoke Forlan, type the command forlan to your shell (command processor):

% forlan

Forlan Version m (based on Standard ML of New Jersey Version n)
val it = () : unit

-

(m and n will be the Forlan and SML/NJ versions, respectively.) The identifier
it is normally bound to the value of the most recently evaluated expression.
Initially, though, its value is the empty tuple (), the single element of the type
unit. The value () is used in circumstances when a value is required, but it
makes no difference what that value is.

http://alleystoughton.us/forlan

2.3 Introduction to Forlan 49

Forlan’s primary prompt is “-”. To exit Forlan, type CTRL-d under Linux
and Mac OS X, and CTRL-z under Windows. To interrupt back to the Forlan
top-level, type CTRL-c.

On Windows, you may find it more convenient to invoke Forlan by double-
clicking on the Forlan icon. On all platforms, a much more flexible and satisfying
way of running Forlan is as a subprocess of an IDE (integrated development
environment). See the Forlan website for information about how to do this.

2.3.2 The SML Core of Forlan

This subsection gives a quick introduction to the SML core of Forlan. Let’s
begin by using Forlan as a calculator:

- 4 + 5;

val it = 9 : int

- it * it;

val it = 81 : int

- it - 1;

val it = 80 : int

- 5 div 2;

val it = 2 : int

- 5 mod 2;

val it = 1 : int

- ~4 + 2;

val it = ~2 : int

Forlan responds to each expression by printing its value and type (int is the
type of integers), and noting that the expression’s value has been bound to the
identifier it. Expressions must be terminated with semicolons. The operators
div and mod compute integer division and remainder, respectively, and negative
numbers begin with ~.

In addition to the type int of integers, SML has types string and bool,
product types t1 ∗ · · · ∗ tn, and list types t list.

- "hello" ^ " " ^ "there";

val it = "hello there" : string

- true andalso (false orelse true);

val it = true : bool

- if 5 < 7 then "hello" else "bye";

val it = "hello" : string

- (3 + 1, 4 = 4, "a" ^ "b");

val it = (4,true,"ab") : int * bool * string

- #2 it;

val it = true : bool

- [1, 3, 5] @ [7, 9, 11];

val it = [1,3,5,7,9,11] : int list

- rev it;

val it = [11,9,7,5,3,1] : int list

50 Formal Languages

- length it;

val it = 6 : int

- null[];

val it = true : bool

- null[1, 2];

val it = false : bool

- hd[1, 2, 3];

val it = 1 : int

- tl[1, 2, 3];

val it = [2,3] : int list

The operator ^ is string concatenation. The conjunction andalso evaluates its
left-hand side first, and yields false without evaluating its right-hand side, if the
value of the left-hand side is false. Similarly, the disjunction orelse evaluates
its left-hand side first, and yields true without evaluating its right-hand side, if
the value of the left-hand side is true. A conditional (if-then-else) is evaluated
by first evaluating its boolean expression, and then evaluating its then-part, if
the boolean expression’s value is true, and evaluating its else-part, if its value
is false. Tuples are evaluated from left to right, and the function #n selects
the nth (starting from 1) element of a tuple. The operator @ appends lists. The
function rev reverses a list, the function length computes the length of a list,
and the function null tests whether a list is empty. Finally, the functions hd

and tl return the head (first element) and tail (all but the first element) of a
list.

nil and :: (pronounced “cons”, for “constructor”), which have types
’a list and ’a * ’a list -> ’a list, respectively, are the constructors for
type ’a list. These constructors are polymorphic, having all of the types that
can be formed by instantiating the type variable ’a with a type. E.g., nil has
type int list, bool list, (int * bool)list, etc. :: is an infix operator,
i.e., one writes x :: xs for the list whose first element is x and remaining elements
are those in the list xs .

- nil;

val it = [] : ’a list

- 1 :: nil;

val it = [1] : int list

- 1 :: 2 :: nil;

val it = [1,2] : int list

- 3 :: [5, 7, 9];

val it = [3,5,7,9] : int list

Lists are implemented as linked-lists, so that doing a cons involves the creation
of a single list node.

SML also has option types t option, whose values are built using the type’s
two constructors: NONE of type ’a option, and SOME of type ’a -> ’a option.
This is a predefined datatype, declared by

2.3 Introduction to Forlan 51

datatype ’a option = NONE | SOME of ’a

E.g., NONE, SOME 1 and SOME ~6 are three of the values of type int option, and
NONE, SOME true and SOME false are the only values of type bool option.

- NONE;

val it = NONE : ’a option

- SOME 3;

val it = SOME 3 : int option

- SOME true;

val it = SOME true : bool option

Instead of using <, <=, > and >= for comparing integers, SML offers a function
Int.compare of type int * int -> order, where the order type contains three
elements: LESS, EQUAL and GREATER.

- Int.compare(3, 4);

val it = LESS : order

- Int.compare(4, 4);

val it = EQUAL : order

- Int.compare(4, 3);

val it = GREATER : order

It is possible to bind the value of an expression to an identifier using a value
declaration:

- val x = 3 + 4;

val x = 7 : int

- val y = x + 1;

val y = 8 : int

- val x = 5 * x;

val x = 35 : int

- y;

val it = 8 : int

In the first declaration of x, its right-hand side is first evaluated, resulting in
7, and then x is bound to this value. Note that the redeclaration of x doesn’t
change the value of the previous declaration of x, it just makes that declaration
inaccessible.

One can use a value declaration to give names to the components of a tuple,
or give a name to the data of a non-NONE optional value:

- val (x, y, z) = (3 + 1, 4 = 4, "a" ^ "b");

val x = 4 : int

val y = true : bool

val z = "ab" : string

- val SOME n = SOME(4 * 25);

val n = 100 : int

52 Formal Languages

This last declaration uses pattern matching: SOME(4 * 25) is evaluated to
SOME 100, and is then matched against the pattern SOME n. Because the con-
structors match, the pattern matching succeeds, and n becomes bound to 100.

One can use a let expression to carry out some declarations in local environ-
ment, evaluate an expression in that environment, and yield the result of that
evaluation:

- val x = 3;

val x = 3 : int

- val z = 10;

val z = 10 : int

- let val x = 4 * 5

= val y = x * z

= in (x, y, x + y) end;

val it = (20,200,220) : int * int * int

- x;

val it = 3 : int

When a declaration or expression spans more than one line, Forlan uses its
secondary prompt, =, on all of the lines except for the first one. Forlan doesn’t
process a declaration or expression until it is terminated with a semicolon.

One can declare functions, and apply those functions to arguments:

- fun f n = n * 2;

val f = fn : int -> int

- f 3;

val it = 6 : int

- f(4 + 5);

val it = 18 : int

- f 4 + 5;

val it = 13 : int

- fun g(x, y) = (x ^ y, y ^ x);

val g = fn : string * string -> string * string

- val (u, v) = g("a", "b");

val u = "ab" : string

val v = "ba" : string

The function f doubles its argument. All function values are printed as fn.
A type t1 -> t2 is the type of all functions taking arguments of type t1 and
producing results (if they terminate without raising exceptions) of type t2. SML
infers the types of functions. The function application f(4 + 5) is evaluated
as follows. First, the argument 4 + 5 is evaluated, resulting in 9. Then a local
envionment is created in which n is bound to 9, and f’s body is evaluated in
that environment, producing 18. Function application has higher precedence
than operators like +.

Technically, the function g matches its single argument, which must be a
pair, against the pair pattern (x, y), binding x and y to the left and right sides
of this argument, and then evaluates its body. But we can think such a function

2.3 Introduction to Forlan 53

as having multiple arguments. The type operator * has higher precedence than
the operator ->.

Except for basic entities like integers and booleans, all values in SML are
represented by pointers, so that passing such a value to a function, or putting
it in a datastructure, only involves copying a pointer.

Given functions f and g of types t1 -> t2 and t2 -> t3, respectively, g o f is
the composition of g and f , the function of type t1 -> t3 that, when given an
argument x of type t1, evaluates the expression g(f x). For example, we have
that:

- fun f x = x >= 1 andalso x <= 10;

val f = fn : int -> bool

- fun g x = if x then "inside" else "outside";

val g = fn : bool -> string

- val h = g o f;

val h = fn : int -> string

- h ~5;

val it = "outside" : string

- h 6;

val it = "inside" : string

- h 14;

val it = "outside" : string

SML also has anonymous functions, which may also be given names using
value declarations:

- (fn x => x + 1)(3 + 4);

val it = 8 : int

- val f = fn x => x + 1;

val f = fn : int -> int

- f(3 + 4);

val it = 8 : int

The anonymous function fn x => x + 1 has type int -> int and adds one to
its argument.

Functions are data: they may be passed to functions, returned from functions
(a function that returns a function is called curried), be components of tuples
or lists, etc. For example,

val map : (’a -> ’b) -> ’a list -> ’b list

is a polymorphic, curried function. The type operator -> associates to the right,
so that map’s type is

val map : (’a -> ’b) -> (’a list -> ’b list)

map takes in a function f of type ’a -> ’b, and returns a function that when
called with a list of elements of type ’a, transforms each element using f , forming
a list of elements of type ’b.

54 Formal Languages

- val f = map(fn x => x + 1);

val f = fn : int list -> int list

- f[2, 4, 6];

val it = [3,5,7] : int list

- f[~2, ~1, 0];

val it = [~1,0,1] : int list

- map (fn x => x mod 2 = 1) [3, 4, 5, 6, 7];

val it = [true,false,true,false,true] : bool list

In the last use of map, we are using the fact that function application associates
to the left, so that f x y means (f x)y, i.e., apply f to x, and then apply the
resulting function to y.

The following example shows that local envionments are kept alive as as long
as there are accessible function values referring to them:

- val f =

= let val x = 2 * 10

= in fn y => y * x end;

val f = fn : int -> int

- f 4;

val it = 80 : int

- f 7;

val it = 140 : int

If the local environment containing the binding of x was discarded, then calling
f would fail.

It’s also possible to declare recursive functions, like the factorial func-
tion:

- fun fact n =

= if n = 0

= then 1

= else n * fact(n - 1);

val fact = fn : int -> int

- fact 4;

val it = 24 : int

One can load the contents of a file into Forlan using the function

val use : string -> unit

For example, if the file fact.sml contains the declaration of the factorial func-
tion, then this declaration can be loaded into the system as follows:

- use "fact.sml";

[opening fact.sml]

val fact = fn : int -> int

val it = () : unit

- fact 4;

val it = 24 : int

fact.sml

2.3 Introduction to Forlan 55

The factorial function can also be defined using pattern matching, either by
using a case expression in the body of the function, or by using multiple clauses
in the function’s definition:

- fun fact n =

= case n of

= 0 => 1

= | n => n * fact(n - 1);

val fact = fn : int -> int

- fact 3;

val it = 6 : int

- fun fact 0 = 1

= | fact n = n * fact(n - 1);

val fact = fn : int -> int

- fact 4;

val it = 24 : int

The order of the clauses of a case expression or function definition is signifi-
cant. If the clauses of either the case expression or the function definition were
reversed, the function being defined would never return.

Pattern matching is especially useful when doing list processing. E.g., we
can define the list reversal function like this:

- fun rev nil = nil

= | rev (x :: xs) = rev xs @ [x];

val rev = fn : ’a list -> ’a list

Calling rev with the empty list will result in the empty list being returned. And
calling it with a nonempty list will temporarily bind x to the list’s head, bind
xs to its tail, and then evaluate the expression rev xs @ [x].

2.3.3 Symbols

The Forlan module Sym defines the abstract type sym of Forlan symbols, as well
as some functions for processing symbols, including:

val input : string -> sym

val output : string * sym -> unit

val compare : sym * sym -> order

val equal : string * string -> bool

Symbols are expressed in Forlan’s syntax as sequences of symbol characters, i.e.,
as a or 〈id〉, rather than [a] or [〈, i, d, 〉]. The above functions behave as follows:

• inputfil reads a symbol from file fil ; if fil = "", then the symbol is read
from the standard input;

• output(fil, a) writes the symbol a to the file fil ; if fil = "", then the string
is written to the standard output;

56 Formal Languages

• compare implements our total ordering on symbols; and

• equal tests whether two symbols are equal.

All of Forlan’s input functions read from the standard input when called with
"", and all of Forlan’s output functions write to the standard output when given
"" instead of a file.

The type sym is bound in the top-level environment. On the other hand, one
must write Sym.f to select the function f of module Sym. As described above,
interactive input is terminated by a line consisting of a single “.” (dot), and
Forlan’s input prompt is “@”.

The module Sym also provides the functions

val fromString : string -> sym

val toString : sym -> string

where fromString is like input, except that it takes its input from a string,
and toString is like output, except that it writes its output to a string. These
functions are especially useful when defining functions. In the sequel, whenever
a module/type has input and output functions, you may assume that it also
has fromString and toString functions.

Here are some example uses of the functions of Sym:

- val a = Sym.input "";

@ <i

@ d>

@ .

val a = - : sym

- val b = Sym.fromString "<num>";

val b = - : sym

- Sym.output("", a);

<id>

val it = () : unit

- Sym.compare(a, b);

val it = LESS : order

- Sym.equal(a, b);

val it = false : bool

- Sym.equal(a, Sym.fromString "<id>");

val it = true : bool

Values of abstract types (like sym) are printed as “-”.

2.3.4 Sets

The module Set defines the abstract type

type ’a set

2.3 Introduction to Forlan 57

of finite sets of elements of type ’a. It is bound in the top-level environment.
E.g., sym set is the type of sets of symbols.

Each set has an associated total ordering, and some of the functions of Set
take total orderings as arguments. See the Forlan manual for the details. In the
book, we won’t have to work with such functions explicitly.

Set provides various constants and functions for processing sets, but we will
only make direct use of a few of them:

val toList : ’a set -> ’a list

val size : ’a set -> int

val empty : ’a set

val sing : ’a -> ’a set

val filter : (’a -> bool) -> ’a set -> ’a set

These values are polymorphic: ’a can be int, sym, etc. The function toList

returns the elements of a set, listing them in ascending order, according to the
set’s total ordering. The function size returns the size of a set. The value
empty is the empty set. The function sing makes a value x into the singleton
set {x}. And filter goes through the elements of a set, keeping those elements
on which the supplied predicate function returns true.

2.3.5 Sets of Symbols

The module SymSet defines various functions for processing finite sets of symbols
(elements of type sym set; alphabets), including:

val input : string -> sym set

val output : string * sym set -> unit

val fromList : sym list -> sym set

val memb : sym * sym set -> bool

val subset : sym set * sym set -> bool

val equal : sym set * sym set -> bool

val union : sym set * sym set -> sym set

val inter : sym set * sym set -> sym set

val minus : sym set * sym set -> sym set

val genUnion : sym set list -> sym set

val genInter : sym set list -> sym set

The total ordering associated with sets of symbols is our total ordering on sym-
bols. Sets of symbols are expressed in Forlan’s syntax as sequences of symbols,
separated by commas.

The function fromList returns a set with the same elements of the list of
symbols it is called with. The function memb tests whether a symbol is a member
(element) of a set of symbols, subset tests whether a first set of symbols is
a subset of a second one, and equal tests whether two sets of symbols are
equal. The functions union, inter and minus compute the union, intersection
and difference of two sets of symbols. The function genUnion computes the

58 Formal Languages

generalized intersection of a list of sets of symbols xss , returning the set of all
symbols appearing in at least one element of xss . And, the function genInter

computes the generalized intersection of a nonempty list of sets of symbols xss ,
returning the set of all symbols appearing in all elements of xss .

Here are some example uses of the functions of SymSet:

- val bs = SymSet.input "";

@ a, <id>, 0, <num>

@ .

val bs = - : sym set

- SymSet.output("", bs);

0, a, <id>, <num>

val it = () : unit

- val cs = SymSet.input "";

@ a, <char>

@ .

val cs = - : sym set

- SymSet.subset(cs, bs);

val it = false : bool

- SymSet.output("", SymSet.union(bs, cs));

0, a, <id>, <num>, <char>

val it = () : unit

- SymSet.output("", SymSet.inter(bs, cs));

a

val it = () : unit

- SymSet.output("", SymSet.minus(bs, cs));

0, <id>, <num>

val it = () : unit

- val ds = SymSet.fromString "<char>, <>";

val ds = - : sym set

- SymSet.output("", SymSet.genUnion[bs, cs, ds]);

0, a, <>, <id>, <num>, <char>

val it = () : unit

- SymSet.output("", SymSet.genInter[bs, cs, ds]);

val it = () : unit

2.3.6 Strings

We will be working with two kinds of strings:

• SML strings, i.e., elements of type string;

• The strings of formal language theory, which we call “formal language
strings”, when necessary.

The module Str defines the type str of formal language strings, which is
bound in the top-level environment, and is equal to sym list, the type of lists of
symbols. Because strings are lists, we can use SML’s list processing functions on

2.3 Introduction to Forlan 59

them. Strings are expressed in Forlan’s syntax as either a single % or a nonempty
sequence of symbols.

The module Str also defines some functions for processing strings, including:

val input : string -> str

val output : string * str -> unit

val alphabet : str -> sym set

val compare : str * str -> order

val equal : str * str -> bool

val prefix : str * str -> bool

val suffix : str * str -> bool

val substr : str * str -> bool

val power : str * int -> str

val last : str -> sym

val allButLast : str -> str

The function alphabet returns the alphabet of a string, and compare imple-
ments our total ordering on strings. prefix(x, y) tests whether x is a prefix
of y, and suffix and substring work similarly. power(x, n) raises x to the
power n. And last and allButLast return the last symbol and all but the last
symbol of a string, respectively.

Here are some example uses of the functions of Str:

- val x = Str.input "";

@ hello<there>

@ .

val x = [-,-,-,-,-,-] : str

- length x;

val it = 6 : int

- Str.output("", x);

hello<there>

val it = () : unit

- SymSet.output("", Str.alphabet x);

e, h, l, o, <there>

val it = () : unit

- Str.output("", Str.power(x, 3));

hello<there>hello<there>hello<there>

val it = () : unit

- val y = Str.fromString "ello";

val y = [-,-,-,-] : str

- Str.compare(y, x);

val it = LESS : order

- Str.equal(y, x);

val it = false : bool

- Str.prefix(y, x);

val it = false : bool

- Str.substr(y, x);

val it = true : bool

- val z = Str.fromString "h" @ y;

60 Formal Languages

val z = [-,-,-,-,-] : sym list

- Str.prefix(z, x);

val it = true : bool

- val x = Str.fromString "hellothere";

val x = [-,-,-,-,-,-,-,-,-,-] : str

- null x;

val it = false : bool

- Sym.output("", hd x);

h

val it = () : unit

- Str.output("", tl x);

ellothere

val it = () : unit

- Sym.output("", Str.last x);

e

val it = () : unit

- Str.output("", Str.allButLast x);

hellother

val it = () : unit

2.3.7 Sets of Strings

The module StrSet defines various functions for processing finite sets of strings
(elements of type str set; finite languages), including:

val input : string -> str set

val output : string * str set -> unit

val fromList : str list -> str set

val memb : str * str set -> bool

val subset : str set * str set -> bool

val equal : str set * str set -> bool

val union : str set * str set -> str set

val inter : str set * str set -> str set

val minus : str set * str set -> str set

val genUnion : str set list -> str set

val genInter : str set list -> str set

val alphabet : str set -> sym set

The total ordering associated with sets of strings is our total ordering on strings.
Sets of strings are expressed in Forlan’s syntax as sequences of strings, separated
by commas.

Here are some example uses of the functions of StrSet:

- val xs = StrSet.input "";

@ hello, <id><num>, %

@ .

val xs = - : str set

- val ys = StrSet.input "";

@ <id><num>, another

2.3 Introduction to Forlan 61

@ .

val ys = - : str set

- val zs = StrSet.union(xs, ys);

val zs = - : str set

- Set.size zs;

val it = 4 : int

- StrSet.output("", zs);

%, <id><num>, hello, another

val it = () : unit

- val us = Set.filter (fn x => length x mod 2 = 0) zs;

val us = - : sym list set

- StrSet.output("", us);

%, <id><num>

val it = () : unit

- SymSet.output("", StrSet.alphabet zs);

a, e, h, l, n, o, r, t, <id>, <num>

val it = () : unit

In this transcript, us was declared to be all the even-length elements of zs.

2.3.8 Relations on Symbols

The module SymRel defines the type sym_rel of finite relations on symbols. It
is bound in the top-level environment, and is equal to (sym * sym)set, i.e., its
elements are finite sets of pairs of symbols. The total ordering associated with
relations on symbols orders pairs of symbols first according to their left-hand
sides (using the total ordering on symbols), and then according to their right-
hand sides. Relations on symbols are expressed in Forlan’s syntax as sequences
of ordered pairs (a,b) of symbols, separated by commas.

SymRel also defines various functions for processing finite relations on sym-
bols, including:

val input : string -> sym_rel

val output : string * sym_rel -> unit

val fromList : (sym * sym)list -> sym_rel

val memb : (sym * sym) * sym_rel -> bool

val subset : sym_rel * sym_rel -> bool

val equal : sym_rel * sym_rel -> bool

val union : sym_rel * sym_rel -> sym_rel

val inter : sym_rel * sym_rel -> sym_rel

val minus : sym_rel * sym_rel -> sym_rel

val genUnion : sym_rel list -> sym_rel

val genInter : sym_rel list -> sym_rel

val domain : sym_rel -> sym set

val range : sym_rel -> sym set

val relationFromTo : sym_rel * sym_set * sym_set -> bool

val reflexive : sym_rel * sym set -> bool

val symmetric : sym_rel -> bool

62 Formal Languages

val antisymmetric : sym_rel -> bool

val transitive : sym_rel -> bool

val total : sym_rel -> bool

val inverse : sym_rel -> sym_rel

val compose : sym_rel * sym_rel -> sym_rel

val function : sym_rel -> bool

val functionFromTo : sym_rel * sym_set * sym_set -> bool

val injection : sym_rel -> bool

val bijectionFromTo : sym_rel * sym_set * sym_set -> bool

val applyFunction : sym_rel -> sym -> sym

val restrictFunction : sym_rel * sym_set -> sym_rel

val updateFunction : sym_rel * sym * sym -> sym_rel

The functions domain and range return the domain and range, respectively, of
a relation. relationFromTo(rel , bs , cs) tests whether rel is a relation from bs
to cs .

reflexive(rel , bs) tests whether rel is reflexive on bs. The functions
symmetric, antisymmetric and transitive test whether a relation is sym-
metric, antisymmetric or transitive, respectively. total(rel , bs) tests whether
rel is total on bs .

The function inverse computes the inverse of a relation, and compose com-
poses two relations.

The function function tests whether a relation is a function. The function
applyFunction is curried. Given a relation rel , applyFunction checks that rel
is a function, issuing an error message, and raising an exception, otherwise. If
it is a function, it returns a function of type sym -> sym that, when called with
a symbol a, will apply the function rel to a, issuing an error message if a is not
in the domain of rel . functionFromTo(rel , bs , cs) tests whether rel is a function
from bs to cs . The function injection tests whether a relation is an injective
function. bijectionFromTo(rel , bs , cs) tests whether rel is a bijection from bs
to cs .

restrictFunction(rel , bs) restricts the function rel to bs ; it issues an error
message if rel is not a function, or bs is not a subset of the domain of rel . And,
updateFunction(rel , a, b) returns the updating of the function rel to send a to
b; it issues an error message if rel isn’t a function.

Here is how we can work with total orderings using functions from
SymRel:

- val rel = SymRel.input "";

@ (0, 1), (1, 2), (0, 2), (0, 0), (1, 1), (2, 2)

@ .

val rel = - : sym_rel

- SymRel.output("", rel);

(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)

val it = () : unit

- SymSet.output("", SymRel.domain rel);

2.3 Introduction to Forlan 63

0, 1, 2

val it = () : unit

- SymSet.output("", SymRel.range rel);

0, 1, 2

val it = () : unit

- SymRel.relationFromTo

= (rel, SymSet.fromString "0, 1, 2", SymSet.fromString "0, 1, 2");

val it = true : bool

- SymRel.relationOn(rel, SymSet.fromString "0, 1, 2");

val it = true : bool

- SymRel.reflexive(rel, SymSet.fromString "0, 1, 2");

val it = true : bool

- SymRel.symmetric rel;

val it = false : bool

- SymRel.antisymmetric rel;

val it = true : bool

- SymRel.transitive rel;

val it = true : bool

- SymRel.total(rel, SymSet.fromString "0, 1, 2");

val it = true : bool

- val rel’ = SymRel.inverse rel;

val rel’ = - : sym_rel

- SymRel.output("", rel’);

(0, 0), (1, 0), (1, 1), (2, 0), (2, 1), (2, 2)

val it = () : unit

- val rel’’ = SymRel.compose(rel’, rel);

val rel’’ = - : sym_rel

- SymRel.output("", rel’’);

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1),

(2, 2)

val it = () : unit

And here is how we can work with relations that are functions:

- val rel = SymRel.input "";

@ (1, 2), (2, 3), (3, 4)

@ .

val rel = - : sym_rel

- SymRel.output("", rel);

(1, 2), (2, 3), (3, 4)

val it = () : unit

- SymSet.output("", SymRel.domain rel);

1, 2, 3

val it = () : unit

- SymSet.output("", SymRel.range rel);

2, 3, 4

val it = () : unit

- SymRel.function rel;

val it = true : bool

- SymRel.functionFromTo

64 Formal Languages

= (rel, SymSet.fromString "1, 2, 3", SymSet.fromString "2, 3, 4");

val it = true : bool

- SymRel.injection rel;

val it = true : bool

- SymRel.bijectionFromTo

= (rel, SymSet.fromString "1, 2, 3", SymSet.fromString "2, 3, 4");

val it = true : bool

- val f = SymRel.applyFunction rel;

val f = fn : sym -> sym

- Sym.output("", f(Sym.fromString "1"));

2

val it = () : unit

- Sym.output("", f(Sym.fromString "2"));

3

val it = () : unit

- Sym.output("", f(Sym.fromString "3"));

4

val it = () : unit

- Sym.output("", f(Sym.fromString "4"));

argument not in domain

uncaught exception Error

- val rel’ = SymRel.input "";

@ (4, 3), (3, 2), (2, 1)

@ .

val rel’ = - : sym_rel

- val rel’’ = SymRel.compose(rel’, rel);

val rel’’ = - : sym_rel

- SymRel.functionFromTo

= (rel’’, SymSet.fromString "1, 2, 3",

= SymSet.fromString "1, 2, 3");

val it = true : bool

- SymRel.output("", rel’’);

(1, 1), (2, 2), (3, 3)

val it = () : unit

2.3.9 Notes

The book and toolset were designed and developed together, which made it
possible to minimize the notational and conceptual distance between the two.

Chapter 3

Regular Languages

In this chapter, we study our most restrictive set of languages, the regular lan-
guages. We begin by introducing regular expressions, and saying that a language
is regular iff it is generated by a regular expression. We study regular expres-
sion equivalance, look at how regular expressions can be synthesized and proved
correct, and study several algorithms for regular expression simplification.

We go on to study five kinds of finite automata, culminating in finite au-
tomata whose transitions are labeled by regular expressions. We introduce
methods for synthesizing and proving the correctness of finite automata, and
study numerous algorithms for processing and converting between regular ex-
pressions and finite automata. Because of these conversions, the set of languages
accepted by the finite automata is exactly the regular languages. The chapter
concludes by considering the application of regular expressions and finite au-
tomata to searching in text files, lexical analysis, and the design of finite state
systems.

3.1 Regular Expressions and Languages

In this section, we define several operations on languages, say what regular
expressions are, what they mean, and what regular languages are, and begin to
show how regular expressions can be processed by Forlan.

3.1.1 Operations on Languages

The union, intersection and set-difference operations on sets are also operations
on languages, i.e., if L1, L2 ∈ Lan, then L1 ∪ L2, L1 ∩ L2 and L1 − L2 are
all languages. (Since L1, L2 ∈ Lan, we have that L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2, for

alphabets Σ1 and Σ2. Let Σ = Σ1 ∪ Σ2, so that Σ is an alphabet, L1 ⊆ Σ∗ and
L2 ⊆ Σ∗. Thus L1 ∪ L2, L1 ∩ L2 and L1 − L2 are all subsets of Σ∗, and so are
all languages.)

65

66 Regular Languages

The first new operation on languages is language concatenation. The con-
catenation of languages L1 and L2 (L1 @ L2) is the language

{x1 @ x2 | x1 ∈ L1 and x2 ∈ L2 }.

I.e., L1 @ L2 consists of all strings that can be formed by concatenating an
element of L1 with an element of L2. For example,

{ab, abc}@ {cd, d} = {(ab)(cd), (ab)(d), (abc)(cd), (abc)(d)}

= {abcd, abd, abccd}.

Concatenation of languages is associative: for all L1, L2, L3 ∈ Lan,

(L1 @ L2) @ L3 = L1 @ (L2 @ L3).

And, {%} is the identity for concatenation: for all L ∈ Lan,

{%}@ L = L@ {%} = L.

Furthermore, ∅ is the zero for concatenation: for all L ∈ Lan,

∅@ L = L@ ∅ = ∅.

We often abbreviate L1 @ L2 to L1L2.
Now that we know what language concatenation is, we can say what it means

to raise a language to a power. We define the language Ln formed by raising a
language L to the power n ∈ N by recursion on n:

L0 = {%}, for all L ∈ Lan; and

Ln+1 = LLn, for all L ∈ Lan and n ∈ N.

We assign this exponentiation operation higher precedence than concatenation,
so that LLn means L(Ln) in the above definition. For example, we have that

{a, b}2 = {a, b}{a, b}1 = {a, b}{a, b}{a, b}0

= {a, b}{a, b}{%} = {a, b}{a, b}

= {aa, ab, ba, bb}.

Proposition 3.1.1
For all L ∈ Lan and n,m ∈ N, Ln+m = LnLm.

Proof. An easy mathematical induction on n. The language L and the natural
number m can be fixed at the beginning of the proof. ✷

3.1 Regular Expressions and Languages 67

Thus, if L ∈ Lan and n ∈ N, then

Ln+1 = LLn (definition),

and

Ln+1 = LnL1 = LnL (Proposition 3.1.1).

Another useful fact about language exponentiation is:

Proposition 3.1.2
For all w ∈ Str and n ∈ N, {w}n = {wn}.

Proof. By mathematical induction on n. ✷

For example, we have that {01}4 = {(01)4} = {01010101}.
Now we consider a language operation that is named after Stephen Cole

Kleene, one of the founders of formal language theory. The Kleene closure (or
just closure) of a language L (L∗) is the language

⋃

{Ln | n ∈ N }.

Thus, for all w,

w ∈ L∗ iff w ∈ A, for some A ∈ {Ln | n ∈ N }

iff w ∈ Ln for some n ∈ N.

Or, in other words:

• L∗ = L0 ∪ L1 ∪ L2 ∪ · · ·; and

• L∗ consists of all strings that can be formed by concatenating together
some number (maybe none) of elements of L (the same element of L can
be used as many times as is desired).

For example,

{a, ba}∗ = {a, ba}0 ∪ {a, ba}1 ∪ {a, ba}2 ∪ · · ·

= {%} ∪ {a, ba} ∪ {aa, aba, baa, baba} ∪ · · ·

Suppose w ∈ Str. By Proposition 3.1.2, we have that, for all x,

x ∈ {w}∗ iff x ∈ {w}n, for some n ∈ N,

iff x ∈ {wn}, for some n ∈ N,

iff x = wn, for some n ∈ N.

If we write {0, 1}∗, then this could mean:

68 Regular Languages

• all strings over the alphabet {0, 1} (Section 2.1); or

• the closure of the language {0, 1}.

Fortunately, these languages are equal (both are all strings of 0’s and 1’s), and
this kind of ambiguity is harmless.

We assign our operations on languages relative precedences as follows:

Highest: closure ((·)∗) and raising to a power ((·)n);

Intermediate: concatenation (@, or just juxtapositioning); and

Lowest: union (∪), intersection (∩) and difference (−).

For example, if n ∈ N and A,B,C ∈ Lan, then A∗BCn ∪ B abbreviates
((A∗)B(Cn)) ∪ B. The language ((A ∪ B)C)∗ can’t be abbreviated, since re-
moving either pair of parentheses will change its meaning. If we removed the
outer pair, then we would have (A∪B)(C∗), and removing the inner pair would
yield (A ∪ (BC))∗.

Suppose L, L1 and L2 are languages, and n ∈ N. It is easy to
see that alphabet(L1 ∪ L2) = alphabet(L1) ∪ alphabet(L2). And, if
L1 and L2 are both nonempty, then alphabet(L1L2) = alphabet(L1) ∪
alphabet(L2), and otherwise, alphabet(L1L2) = ∅. Furthermore, if n ≥ 1,
then alphabet(Ln) = alphabet(L); otherwise, alphabet(Ln) = ∅. Finally, we
have that alphabet(L∗) = alphabet(L).

In Section 2.3, we introduced the Forlan module StrSet, which defines var-
ious functions for processing finite sets of strings, i.e., finite languages. This
module also defines the functions

val concat : str set * str set -> str set

val power : str set * int -> str set

which implement our concatenation and exponentiation operations on finite lan-
guages. Here are some examples of how these functions can be used:

- val xs = StrSet.fromString "ab, cd";

val xs = - : str set

- val ys = StrSet.fromString "uv, wx";

val ys = - : str set

- StrSet.output("", StrSet.concat(xs, ys));

abuv, abwx, cduv, cdwx

val it = () : unit

- StrSet.output("", StrSet.power(xs, 0));

%

val it = () : unit

- StrSet.output("", StrSet.power(xs, 1));

ab, cd

val it = () : unit

3.1 Regular Expressions and Languages 69

- StrSet.output("", StrSet.power(xs, 2));

abab, abcd, cdab, cdcd

val it = () : unit

- StrSet.output("", StrSet.power(xs, 3));

ababab, ababcd, abcdab, abcdcd, cdabab, cdabcd, cdcdab, cdcdcd

val it = () : unit

3.1.2 Regular Expressions

Next, we define the set of all regular expressions. Let the set RegLab of regular
expression labels be

Sym ∪ {%, $, ∗,@,+}.

Let the set Reg of regular expressions be the least subset of TreeRegLab such
that:

(empty string) % ∈ Reg;

(empty set) $ ∈ Reg;

(symbol) for all a ∈ Sym, a ∈ Reg;

(closure) for all α ∈ Reg, ∗(α) ∈ Reg;

(concatenation) for all α, β ∈ Reg, @(α, β) ∈ Reg; and

(union) for all α, β ∈ Reg, +(α, β) ∈ Reg.

This is yet another example of an inductive definition. The elements of Reg are
precisely those RegLab-trees (trees (See Section 1.3) whose labels come from
RegLab) that can be built using these six rules.

Whenever possible, we will use the mathematical variables α, β and γ to
name regular expressions. Since regular expressions are RegLab-trees, we may
talk of their sizes and heights.

For example,

+(@(∗(0),@(1, ∗(0))),%),

i.e.,

0,

+

@ %

∗

0

@

1 ∗

70 Regular Languages

is a regular expression. On the other hand, the RegLab-tree ∗(∗, ∗) is not a
regular expression, since it can’t be built using our six rules.

We order the elements of RegLab as follows:

% < $ < symbols in order < ∗ < @ < +.

It is important that + be the greatest element of RegLab; if this were not
so, then the definition of weakly simplified regular expressions (see Section 3.3)
would have to be altered.

We order regular expressions first by their root labels, and then, recursively,
by their children, working from left to right. For example, we have that

% < ∗(%) < ∗(@($, ∗($))) < ∗(@(a,%)) < @(%, $).

Because Reg is defined inductively, it gives rise to an induction principle.

Theorem 3.1.3 (Principle of Induction on Regular Expressions)
Suppose P (α) is a property of a regular expression α. If

• P (%),

• P ($),

• for all a ∈ Sym, P (a),

• for all α ∈ Reg, if P (α), then P (∗(α)),

• for all α, β ∈ Reg, if P (α) and P (β), then P (@(α, β)), and

• for all α, β ∈ Reg, if P (α) and P (β), then P (+(α, β)),

then

for all α ∈ Reg, P (α).

To increase readability, we use infix and postfix notation, abbreviating:

• ∗(α) to α∗ or α∗;

• @(α, β) to α@ β; and

• +(α, β) to α+ β.

We assign the operators (·)∗, @ and + the following precedences and associativ-
ities:

Highest: (·)∗;

Intermediate: @ (right associative); and

3.1 Regular Expressions and Languages 71

Lowest: + (right associative).

We parenthesize regular expressions when we need to override the default prece-
dences and associativities, and for reasons of clarity. Furthermore, we often
abbreviate α@ β to αβ.

For example, we can abbreviate the regular expression

+(@(∗(0),@(1, ∗(0))),%)

to 0∗ @ 1@ 0∗ +% or 0∗10∗ +%. On the other hand, the regular expression
((0+ 1)2)∗ can’t be further abbreviated, since removing either pair of paren-
theses would result in a different regular expression. Removing the outer pair
would result in (0+ 1)(2∗) = (0+ 1)2∗, and removing the inner pair would yield
(0+ (12))∗ = (0+ 12)∗.

Now we can say what regular expressions mean, using some of our language
operations. The language generated by a regular expression α (L(α)) is defined
by recursion:

L(%) = {%};

L($) = ∅;

L(a) = {[a]} = {a}, for all a ∈ Sym;

L(∗(α)) = L(α)∗, for all α ∈ Reg;

L(@(α, β)) = L(α) @ L(β), for all α, β ∈ Reg; and

L(+(α, β)) = L(α) ∪ L(β), for all α, β ∈ Reg.

This is a good definition since, if L is a language, then so is L∗, and, if L1 and
L2 are languages, then so are L1L2 and L1 ∪L2. We say that w is generated by
α iff w ∈ L(α).

For example,

L(0∗10∗ +%) = L(+(@(∗(0),@(1, ∗(0))),%))

= L(@(∗(0),@(1, ∗(0)))) ∪ L(%)

= L(∗(0))L(@(1, ∗(0))) ∪ {%}

= L(0)∗L(1)L(∗(0)) ∪ {%}

= {0}∗{1}L(0)∗ ∪ {%}

= {0}∗{1}{0}∗ ∪ {%}

= { 0n10m | n,m ∈ N } ∪ {%}.

E.g., 0001000, 10, 001 and % are generated by 0∗10∗ +%.
We define functions symToReg ∈ Sym→Reg and strToReg ∈ Str→Reg,

as follows. Given a symbol a ∈ Sym, symToReg a = a. And, given a string
x, strToReg x is the canonical regular expression for x: %, if x = %, and
@(a1,@(a2, . . . an . . .)) = a1a2 . . . an, if x = a1a2 . . . an, for symbols a1, a2, . . . , an

72 Regular Languages

and n ≥ 1. It is easy to see that, for all a ∈ Sym, L(symToReg a) = {a}, and,
for all x ∈ Str, L(strToReg x) = {x}.

We define the regular expression αn formed by raising a regular expression
α to the power n ∈ N by recursion on n:

α0 = %, for all α ∈ Reg;

α1 = α, for all α ∈ Reg; and

αn+1 = ααn, for all α ∈ Reg and n ∈ N− {0}.

We assign this operation the same precedence as closure, so that ααn means
α(αn) in the above definition. Note that, in contrast to the definitions of xn and
Ln, we have made use of two base cases, so that α1 is α, not α%. For example,
(0+ 1)3 = (0+ 1)(0 + 1)(0 + 1).

Proposition 3.1.4
For all α ∈ Reg and n ∈ N, L(αn) = L(α)n.

Proof. An easy mathematical induction on n. α may be fixed at the beginning
of the proof. ✷

An example consequence of the proposition is that L((0+ 1)3) = L(0+ 1)3 =
{0, 1}3.

We define alphabet ∈ Reg→Alp by recursion:

alphabet% = ∅;

alphabet $ = ∅;

alphabet a = {a}, for all a ∈ Sym;

alphabet(∗(α)) = alphabetα, for all α ∈ Reg;

alphabet(@(α, β)) = alphabetα ∪ alphabetβ, for all α, β ∈ Reg; and

alphabet(+(α, β)) = alphabetα ∪ alphabetβ, for all α, β ∈ Reg.

This is a good definition, since the union of two alphabets is an alphabet. For ex-
ample, alphabet(0∗10∗ +%) = {0, 1}. We say that alphabetα is the alphabet
of a regular expression α.

Proposition 3.1.5
For all α ∈ Reg, alphabet(L(α)) ⊆ alphabetα.

In other words, the proposition says that every symbol of every string in
L(α) comes from alphabetα.

Proof. An easy induction on regular expressions. ✷

3.1 Regular Expressions and Languages 73

For example, since L(1$) = {1}∅ = ∅, we have that

alphabet(L(0∗ + 1$)) = alphabet({0}∗)

= {0}

⊆ {0, 1}

= alphabet(0∗ + 1$).

Next, we define some useful auxiliary functions on regular expressions. The
generalized concatenation function genConcat ∈ ListReg → Reg is defined
by right recursion:

genConcat [] = %,

genConcat [α] = α, and

genConcat([α] @ ᾱ) = @(α,genConcat ᾱ), if ᾱ 6= [].

And the generalized union function genUnion ∈ ListReg→Reg is defined by
right recursion:

genUnion [] = %,

genUnion [α] = α, and

genUnion([α] @ ᾱ) = +(α,genUnion ᾱ), if ᾱ 6= [].

E.g., genConcat[1, 0, 12, 3 + 4] = 10(12)(3 + 4) and genUnion[1, 0, 12, 3 + 4] =
1+ 0+ (12) + 3+ 4.

rightConcat ∈ Reg×Reg→Reg is defined by structural recursion on its
first argument:

rightConcat(@(α1, α2), β) = @(α1, rightConcat(α2, β)), and

rightConcat(α, β) = @(α, β), if α is not a concatenation.

And rightUnion ∈ Reg×Reg→Reg is defined by structural recursion on its
first argument:

rightUnion(+(α1, α2), β) = +(α1, rightUnion(α2, β)), and

rightUnion(α, β) = +(α, β), if α is not a union.

E.g., rightConcat(012, 345) = 012345 and rightUnion(0+ 1+ 2, 1+ 2+ 3) =
0+ 1+ 2+ 1+ 2+ 3.

concatsToList ∈ Reg→ ListReg is defined by structural recursion:

concatsToList(@(α, β)) = [α] @ concatsToList β, and

concatsToListα = α, if α is not a concatenation.

74 Regular Languages

And unionsToList ∈ Reg→ ListReg is defined by structural recursion:

unionsToList(+(α, β)) = [α] @ unionsToList β, and

unionsToListα = α, if α is not a union.

E.g., concatsToList((12)34) = [12, 3, 4] and unionsToList((0 + 1) + 2+ 3) =
[0+ 1, 2, 3].

Finally, sortUnions ∈ Reg→Reg is defined by:

sortUnionsα = genUnion β̄,

where β̄ is the result of sorting the elements of unionsToListα into strictly
ascending order (without duplicates), according to our total ordering on regular
expressions. E.g., sortUnions(1+ 0+ 23+ 1) = 0+ 1+ 23.

We define functions allSym ∈ Alp → Reg and allStr ∈ Alp → Reg as
follows. Given an alphabet Σ, allSymΣ is the all symbols regular expression
for Σ: a1 + · · · + an, where a1, . . . , an are the elements of Σ, listed in order
and without repetition (when n = 0, we use $, and when n = 1, we use a1).
And, given an alphabet Σ, allStrΣ is the all strings regular expression for Σ:
(allSymΣ)∗. For example,

allSym {0, 1, 2} = 0+ 1+ 2, and

allStr {0, 1, 2} = (0+ 1+ 2)∗.

Thus, for all Σ ∈ Alp,

L(allSymΣ) = { [a] | a ∈ Σ } = { a | a ∈ Σ }, and

L(allStrΣ) = Σ∗.

Now we are able to say what it means for a language to be regular: a language
L is regular iff L = L(α) for some α ∈ Reg. We define

RegLan = {L(α) | α ∈ Reg }

= {L ∈ Lan | L is regular }.

Since every regular expression can be described, e.g., in fully parenthesized
form, by a finite sequence of ASCII characters, we can enumerate the regular
expressions, and consequently we have that Reg is countably infinite. Since
{00}, {01}, {02}, . . . , are all regular languages, we have that RegLan is infinite.
Furthermore, we can establish an injection h from RegLan to Reg: hL is the
first (in our enumeration of regular expressions) α such that L(α) = L. Because
Reg is countably infinite, it follows that there is an injection from RegLan to
N. And we already gave an injection from N to RegLan, completing the proof
that RegLan and N have the same size, i.e., that RegLan is countably infinite.

Since RegLan is countably infinite but Lan is uncountable, it follows that
RegLan (Lan, i.e., there are non-regular languages. In Section 3.14, we will
see a concrete example of a non-regular language.

3.1 Regular Expressions and Languages 75

3.1.3 Processing Regular Expressions in Forlan

Now, we turn to the Forlan implementation of regular expressions. The Forlan
module Reg defines the abstract type reg (in the top-level environment) of regu-
lar expressions, as well as various functions and constants for processing regular
expressions, including:

val input : string -> reg

val output : string * reg -> unit

val size : reg -> int

val numLeaves : reg -> int

val height : reg -> int

val emptyStr : reg

val emptySet : reg

val fromSym : sym -> reg

val closure : reg -> reg

val concat : reg * reg -> reg

val union : reg * reg -> reg

val compare : reg * reg -> order

val equal : reg * reg -> bool

val fromStr : str -> reg

val power : reg * int -> reg

val alphabet : reg -> sym set

val genConcat : reg list -> reg

val genUnion : reg list -> reg

val rightConcat : reg * reg -> reg

val rightUnion : reg * reg -> reg

val concatsToList : reg -> reg list

val unionsToList : reg -> reg list

val sortUnions : reg -> reg

val allSym : sym set -> reg

val allStr : sym set -> reg

val fromStrSet : str set -> reg

The Forlan syntax for regular expressions is the infix/postfix one introduced
in the preceding subsection, where α @ β is always written as αβ, and we use
parentheses to override default precedences/associativities, or simply for clarity.
For example, 0∗10∗ +% and (0∗(1(0∗))) + % are the same regular expression.
And, ((0∗)1)0∗ +% is a different regular expression, but one with the same
meaning. Furthermore, 0∗1(0∗ +%) is not only different from the two preceding
regular expressions, but it has a different meaning (it generates 001 and fails
to generate %.) When regular expressions are outputted, as few parentheses as
possible are used.

The functions size, numLeaves and height return the size, number of leaves
and height, respectively, of a regular expression. The values emptyStr and
emptySet are % and $, respectively. The function fromSym takes in a sym-
bol a and returns the regular expression a. It is available in the top-level

76 Regular Languages

environment as symToReg. The function closure takes in a regular expres-
sion α and returns ∗(α). The function concat takes a pair (α, β) of regular
expressions and returns @(α, β). The function union takes a pair (α, β) of
regular expressions and returns +(α, β). The function compare implements
our total ordering on regular expressions, and equal tests whether two reg-
ular expressions are equal. The function fromStr implements the function
strToReg, and is also available in the top-level environment as strToReg.
The function power raises a regular expression to a power, and the func-
tion alphabet returns the alphabet of a regular expression. Finally, the
functions genConcat, genUnion, rightConcat, rightUnion, concatsToList,
unionsToList, sortUnions, allSym and allStr implement the functions with
the same names. The function fromStrSet returns $, if called with the empty
set. Otherwise, it returns fromStrx1 + · · · + fromStrxn, where x1, . . . , xn are
the elements of its argument, listed in strictly ascending order.

Here are some example uses of the functions of Reg:

- val reg = Reg.input "";

@ 0*10* + %

@ .

val reg = - : reg

- Reg.size reg;

val it = 9 : int

- Reg.numLeaves reg;

val it = 4 : int

- val reg’ = Reg.fromStr(Str.power(Str.input "", 3));

@ 01

@ .

val reg’ = - : reg

- Reg.output("", reg’);

010101

val it = () : unit

- Reg.size reg’;

val it = 11 : int

- Reg.numLeaves reg’;

val it = 6 : int

- Reg.compare(reg, reg’);

val it = GREATER : order

- val reg’’ = Reg.concat(Reg.closure reg, reg’);

val reg’’ = - : reg

- Reg.output("", reg’’);

(0*10* + %)*010101

val it = () : unit

- SymSet.output("", Reg.alphabet reg’’);

0, 1

val it = () : unit

- val reg’’’ = Reg.power(reg, 3);

val reg’’’ = - : reg

3.1 Regular Expressions and Languages 77

- Reg.output("", reg’’’);

(0*10* + %)(0*10* + %)(0*10* + %)

val it = () : unit

- Reg.size reg’’’;

val it = 29 : int

- Reg.numLeaves reg’’’;

val it = 12 : int

- Reg.output("", Reg.fromString "(0*(1(0*))) + %");

0*10* + %

val it = () : unit

- Reg.output("", Reg.fromString "(0*1)0* + %");

(0*1)0* + %

val it = () : unit

- Reg.output("", Reg.fromString "0*1(0* + %)");

0*1(0* + %)

val it = () : unit

- Reg.equal

= (Reg.fromString "0*10* + %",

= Reg.fromString "0*1(0* + %)");

val it = false : bool

We can use the functions genConcat, genUnion, rightConcat, rightUnion,
concatsToList, unionsToList and sortUnions as follows:

- Reg.output("", Reg.genConcat nil);

%

val it = () : unit

- Reg.output("", Reg.genUnion nil);

$

val it = () : unit

- val regs =

= [Reg.fromString "01", Reg.fromString "01 + 12",

= Reg.fromString "(1 + 2)*", Reg.fromString "3 + 4"];

val regs = [-,-,-,-] : reg list

- Reg.output("", Reg.genConcat regs);

(01)(01 + 12)(1 + 2)*(3 + 4)

val it = () : unit

- Reg.output("", Reg.genUnion regs);

01 + (01 + 12) + (1 + 2)* + 3 + 4

val it = () : unit

- Reg.output

= ("",

= Reg.rightConcat

= (Reg.fromString "0123", Reg.fromString "4567"));

01234567

val it = () : unit

- Reg.output

= ("",

= Reg.rightUnion

78 Regular Languages

= (Reg.fromString "0 + 1 + 2", Reg.fromString "1 + 2 + 3"));

0 + 1 + 2 + 1 + 2 + 3

val it = () : unit

- map

= Reg.toString

= (Reg.concatsToList(Reg.fromString "0(12)34"));

val it = ["0","12","3","4"] : string list

- map

= Reg.toString

= (Reg.unionsToList(Reg.fromString "0 + (1 + 2) + 3 + 0"));

val it = ["0","1 + 2","3","0"] : string list

- Reg.output

= ("", Reg.sortUnions(Reg.fromString "12 + 0 + 3 + 0"));

0 + 3 + 12

val it = () : unit

We can use the functions allSym, allStr and fromStrSet like this:

- Reg.output("", Reg.allSym(SymSet.fromString ""));

$

val it = () : unit

- Reg.output("", Reg.allSym(SymSet.fromString "0"));

0

val it = () : unit

- Reg.output("", Reg.allSym(SymSet.fromString "0, 1, 2"));

0 + 1 + 2

val it = () : unit

- Reg.output("", Reg.allStr(SymSet.fromString ""));

$*

val it = () : unit

- Reg.output("", Reg.allStr(SymSet.fromString "0"));

0*

val it = () : unit

- Reg.output("", Reg.allStr(SymSet.fromString "2, 1, 0"));

(0 + 1 + 2)*

val it = () : unit

- Reg.output

= ("",

= Reg.fromStrSet(StrSet.fromString "one, two, three, four"));

one + two + four + three

val it = () : unit

The Java program JForlan can be used to view and edit regular expression
trees. It can be invoked directly, or run via Forlan. See the Forlan website for
more information.

3.1.4 Notes

A novel feature of this book is that regular expressions are trees, so that our lin-
ear syntax for regular expressions is derived rather than primary. Thus regular

3.2 Equivalence and Correctness of Regular Expressions 79

expression equality is just tree equality, and it’s easy to explain when parenthe-
ses are necessary in a linear description of a regular expression. Furthermore,
tree-oriented concepts, notation and operations automatically apply to regular
expressions, letting us, e.g., give definitions by structural recursion.

3.2 Equivalence and Correctness of Regular Expres-
sions

In this section, we say what it means for regular expressions to be equivalent,
show a series of results about regular expression equivalence, and consider how
regular expressions may be designed and proved correct.

3.2.1 Equivalence of Regular Expressions

Regular expressions α and β are equivalent iff L(α) = L(β). In other words,
α and β are equivalent iff α and β generate the same language. We define
a relation ≈ on Reg by: α ≈ β iff α and β are equivalent. For example,
L((00)∗ +%) = L((00)∗), and thus (00)∗ +% ≈ (00)∗.

One approach to showing that α ≈ β is to show that L(α) ⊆ L(β) and L(β) ⊆
L(α). The following proposition is useful for showing language inclusions, not
just ones involving regular languages.

Proposition 3.2.1
(1) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1 ∪ A2 ⊆

B1 ∪B2.

(2) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1 ∩ A2 ⊆
B1 ∩B2.

(3) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and B2 ⊆ A2, then A1 − A2 ⊆
B1 −B2.

(4) For all A1, A2, B1, B2 ∈ Lan, if A1 ⊆ B1 and A2 ⊆ B2, then A1A2 ⊆ B1B2.

(5) For all A,B ∈ Lan and n ∈ N, if A ⊆ B, then An ⊆ Bn.

(6) For all A,B ∈ Lan, if A ⊆ B, then A∗ ⊆ B∗.

In Part (3), note that the second part of the sufficient condition for knowing
A1 −A2 ⊆ B1 −B2 is B2 ⊆ A2, not A2 ⊆ B2.

Proof. (1) and (2) are straightforward. We show (3) as an example, below.
(4) is easy. (5) is proved by mathematical induction, using (4). (6) is proved
using (5).

80 Regular Languages

For (3), suppose that A1, A2, B1, B2 ∈ Lan, A1 ⊆ B1 and B2 ⊆ A2. To show
that A1−A2 ⊆ B1−B2, suppose w ∈ A1−A2. We must show that w ∈ B1−B2.
It will suffice to show that w ∈ B1 and w 6∈ B2.

Since w ∈ A1 − A2, we have that w ∈ A1 and w 6∈ A2. Since A1 ⊆ B1, it
follows that w ∈ B1. Thus, it remains to show that w 6∈ B2.

Suppose, toward a contradiction, that w ∈ B2. Since B2 ⊆ A2, it follows
that w ∈ A2—contradiction. Thus we have that w 6∈ B2. ✷

Next we show that our relation ≈ has some of the familiar properties of
equality.

Proposition 3.2.2
(1) ≈ is reflexive on Reg, symmetric and transitive.

(2) For all α, β ∈ Reg, if α ≈ β, then α∗ ≈ β∗.

(3) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then α1α2 ≈ β1β2.

(4) For all α1, α2, β1, β2 ∈ Reg, if α1 ≈ β1 and α2 ≈ β2, then α1+α2 ≈ β1+β2.

Proof. Follows from the properties of =. As an example, we show Part (4).
Suppose α1, α2, β1, β2 ∈ Reg, and assume that α1 ≈ β1 and α2 ≈ β2. Then

L(α1) = L(β1) and L(α2) = L(β2), so that

L(α1 + α2) = L(α1) ∪ L(α2) = L(β1) ∪ L(β2)

= L(β1 + β2).

Thus α1 + α2 ≈ β1 + β2. ✷

A consequence of Proposition 3.2.2 is the following proposition, which says
that, if we replace a subtree of a regular expression α by an equivalent regular
expression, that the resulting regular expression is equivalent to α.

Proposition 3.2.3
Suppose α, β, β′ ∈ Reg, β ≈ β′, pat ∈ Path is valid for α, and β is the subtree
of α at position pat . Let α′ be the result of replacing the subtree at position pat
in α by β′. Then α ≈ α′.

Proof. By induction on α. ✷

Next, we state and prove some equivalences involving union.

Proposition 3.2.4
(1) For all α, β ∈ Reg, α+ β ≈ β + α.

(2) For all α, β, γ ∈ Reg, (α+ β) + γ ≈ α+ (β + γ).

3.2 Equivalence and Correctness of Regular Expressions 81

(3) For all α ∈ Reg, $ + α ≈ α.

(4) For all α ∈ Reg, α+ α ≈ α.

(5) If L(α) ⊆ L(β), then α+ β ≈ β.

Proof.

(1) Follows from the commutativity of ∪.

(2) Follows from the associativity of ∪.

(3) Follows since ∅ is the identity for ∪.

(4) Follows since ∪ is idempotent: A ∪A = A, for all sets A.

(5) Follows since, if L1 ⊆ L2, then L1 ∪ L2 = L2.

✷

Next, we consider equivalences for concatenation.

Proposition 3.2.5
(1) For all α, β, γ ∈ Reg, (αβ)γ ≈ α(βγ).

(2) For all α ∈ Reg, %α ≈ α ≈ α%.

(3) For all α ∈ Reg, $α ≈ $ ≈ α$.

Proof.

(1) Follows from the associativity of language concatenation.

(2) Follows since {%} is the identity for language concatenation.

(3) Follows since ∅ is the zero for language concatenation.

✷

Next we consider the distributivity of concatenation over union. First, we
prove a proposition concerning languages. Then, we use this proposition to show
the corresponding proposition for regular expressions.

Proposition 3.2.6
(1) For all L1, L2, L3 ∈ Lan, L1(L2 ∪ L3) = L1L2 ∪ L1L3.

(2) For all L1, L2, L3 ∈ Lan, (L1 ∪ L2)L3 = L1L3 ∪ L2L3.

82 Regular Languages

Proof. We show the proof of Part (1); the proof of the other part is similar.
Suppose L1, L2, L3 ∈ Lan. It will suffice to show that

L1(L2 ∪ L3) ⊆ L1L2 ∪ L1L3 ⊆ L1(L2 ∪ L3).

To see that L1(L2 ∪L3) ⊆ L1L2 ∪L1L3, suppose w ∈ L1(L2 ∪L3). We must
show that w ∈ L1L2 ∪ L1L3. By our assumption, w = xy for some x ∈ L1 and
y ∈ L2 ∪ L3. There are two cases to consider.

• Suppose y ∈ L2. Then w = xy ∈ L1L2 ⊆ L1L2 ∪ L1L3.

• Suppose y ∈ L3. Then w = xy ∈ L1L3 ⊆ L1L2 ∪ L1L3.

To see that L1L2∪L1L3 ⊆ L1(L2∪L3), suppose w ∈ L1L2∪L1L3. We must
show that w ∈ L1(L2 ∪ L3). There are two cases to consider.

• Suppose w ∈ L1L2. Then w = xy for some x ∈ L1 and y ∈ L2. Thus
y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

• Suppose w ∈ L1L3. Then w = xy for some x ∈ L1 and y ∈ L3. Thus
y ∈ L2 ∪ L3, so that w = xy ∈ L1(L2 ∪ L3).

✷

Proposition 3.2.7
(1) For all α, β, γ ∈ Reg, α(β + γ) ≈ αβ + αγ.

(2) For all α, β, γ ∈ Reg, (α+ β)γ ≈ αγ + βγ.

Proof. Follows from Proposition 3.2.6. Consider, e.g., the proof of Part (1).
By Proposition 3.2.6(1), we have that

L(α(β + γ)) = L(α)L(β + γ)

= L(α)(L(β) ∪ L(γ))

= L(α)L(β) ∪ L(α)L(γ)

= L(αβ) ∪ L(αγ)

= L(αβ + αγ)

Thus α(β + γ) ≈ αβ + αγ. ✷

Finally, we turn our attention to equivalences for Kleene closure, first stat-
ing and proving some results for languages, and then stating and proving the
corresponding results for regular expressions.

Proposition 3.2.8
• For all L ∈ Lan, LL∗ ⊆ L∗.

• For all L ∈ Lan, L∗L ⊆ L∗.

3.2 Equivalence and Correctness of Regular Expressions 83

Proof. E.g., to see that LL∗ ⊆ L∗, suppose w ∈ LL∗. Then w = xy for some
x ∈ L and y ∈ L∗. Hence y ∈ Ln for some n ∈ N. Thus w = xy ∈ LLn =
Ln+1 ⊆ L∗. ✷

Proposition 3.2.9
(1) ∅∗ = {%}.

(2) {%}∗ = {%}.

(3) For all L ∈ Lan, L∗L = LL∗.

(4) For all L ∈ Lan, L∗L∗ = L∗.

(5) For all L ∈ Lan, (L∗)∗ = L∗.

(6) For all L1L2 ∈ Lan, (L1L2)
∗L1 = L1(L2L1)

∗.

Proof. The six parts can be proven in order using Proposition 3.2.1. All parts
but (2), (5) and (6) can be proved without using induction.

As an example, we show the proof of (5). To show that (L∗)∗ = L∗, it will
suffice to show that (L∗)∗ ⊆ L∗ ⊆ (L∗)∗.

To see that (L∗)∗ ⊆ L∗, we use mathematical induction to show that, for all
n ∈ N, (L∗)n ⊆ L∗.

(Basis Step) We have that (L∗)0 = {%} = L0 ⊆ L∗.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
(L∗)n ⊆ L∗. We must show that (L∗)n+1 ⊆ L∗. By the inductive hypothe-
sis, Proposition 3.2.1(4) and Part (4), we have that (L∗)n+1 = L∗(L∗)n ⊆
L∗L∗ = L∗.

Now, we use the result of the induction to prove that (L∗)∗ ⊆ L∗. Suppose
w ∈ (L∗)∗. We must show that w ∈ L∗. Since w ∈ (L∗)∗, we have that w ∈ (L∗)n

for some n ∈ N. Thus, by the result of the induction, w ∈ (L∗)n ⊆ L∗.
Finally, for the other inclusion, we have that L∗ = (L∗)1 ⊆ (L∗)∗. ✷

Exercise 3.2.10
Prove Proposition 3.2.9(6), i.e., for all L1L2 ∈ Lan, (L1L2)

∗L1 = L1(L2L1)
∗.

Proposition 3.2.11
(1) $∗ ≈ %.

(2) %∗ ≈ %.

(3) For all α ∈ Reg, α∗α ≈ αα∗.

(4) For all α ∈ Reg, α∗α∗ ≈ α∗.

(5) For all α ∈ Reg, (α∗)∗ ≈ α∗.

84 Regular Languages

(6) For all α, β ∈ Reg, (αβ)∗α ≈ α(βα)∗.

Proof. Follows from Proposition 3.2.9. Consider, e.g., the proof of Part (5).
By Proposition 3.2.9(5), we have that

L((α∗)∗) = L(α∗)∗ = (L(α)∗)∗ = L(α)∗ = L(α∗).

Thus (α∗)∗ ≈ α∗. ✷

3.2.2 Proving the Correctness of Regular Expressions

In this subsection, we use two examples to show how regular expressions can be
designed and proved correct.

For our first example, define a function zeros ∈ {0, 1}∗ → N by recursion:

zeros% = 0,

zeros(0w) = zerosw + 1, for all w ∈ {0, 1}∗, and

zeros(1w) = zerosw, for all w ∈ {0, 1}∗.

Thus zerosw is the number of occurrences of 0 in w. It is easy to show that:

• zeros 0 = 1;

• zeros 1 = 0;

• for all x, y ∈ {0, 1}∗, zeros(xy) = zeros x+ zeros y;

• for all n ∈ N, zeros(0n) = n; and

• for all n ∈ N, zeros(1n) = 0.

Let
X = {w ∈ {0, 1}∗ | zerosw is even },

so that X is all strings of 0’s and 1’s with an even number of 0’s. Clearly, % ∈ X
and {1}∗ ⊆ X.

Let’s consider the problem of finding a regular expression that generates X.
A string with this property would begin with some number of 1’s (possibly none).
After this, the string would have some number of parts (possibly none), each
consisting of a 0, followed by some number of 1’s, followed by a 0, followed by
some number of 1’s. The above considerations lead us to the regular expression

α = 1∗(01∗01∗)∗.

To prove L(α) = X, it’s helpful to give names to the meanings of two parts
of α. Let

Y = {0}{1}∗{0}{1}∗ and Z = {1}∗Y ∗,

so that L(01∗01∗) = Y and L(α) = Z. Thus it will suffice to prove that Z = X,
and we do this by showing Z ⊆ X ⊆ Z. We begin by showing Z ⊆ X.

3.2 Equivalence and Correctness of Regular Expressions 85

Lemma 3.2.12
(1) Y ⊆ X.

(2) XX ⊆ X.

Proof.

(1) Suppose w ∈ Y , so that w = 0x0y for some x, y ∈ {1}∗. Thus zerosw =
zeros(0x0y) = zeros 0+ zeros x+ zeros 0+ zeros y = 1+ 0+ 1+ 0 = 2
is even, so that w ∈ X.

(2) Suppose w ∈ XX, so that w = xy for some x, y ∈ X. Then zeros x and
zeros y are even, so that zerosw = zeros x + zeros y is even. Hence
w ∈ X.

✷

Lemma 3.2.13
Y ∗ ⊆ X.

Proof. It will suffice to show that, for all n ∈ N, Y n ⊆ X, and we show this
using mathematical induction.

(Basis Step) We have that Y 0 = {%} ⊆ X.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
Y n ⊆ X. Then Y n+1 = Y Y n ⊆ XX ⊆ X, by Lemma 3.2.12

✷

Lemma 3.2.14
Z ⊆ X.

Proof. By Lemmas 3.2.12 and 3.2.13, we have that Z = {1}∗Y ∗ ⊆ XX ⊆ X.
✷

To prove X ⊆ Z, it’s helpful to define another language:

U = {w ∈ X | 1 is not a prefix of w }.

Lemma 3.2.15
U ⊆ Y ∗.

Proof. Because U ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ U, then w ∈ Y ∗.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the
inductive hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ U, then x ∈ Y ∗.

86 Regular Languages

We must show that
if w ∈ U, then w ∈ Y ∗.

Suppose w ∈ U , so that zerosw is even and 1 is not a prefix of w. We must
show that w ∈ Y ∗. If w = %, then w ∈ Y ∗. Otherwise, w = 0x for some
x ∈ {0, 1}∗. Since 1 + zeros x = zeros 0 + zeros x = zeros(0x) = zerosw
is even, we have that zeros x is odd. Let n be the largest element of N such
that 1n is a prefix of x. (n is well-defined, since 10 = % is a prefix of x.)
Thus x = 1ny for some y ∈ {0, 1}∗. Since zeros y = 0 + zeros y = zeros 1n +
zeros y = zeros(1ny) = zeros x is odd, we have that y 6= %. And, by the
definition of n, 1 is not a prefix of y. Hence y = 0z for some z ∈ {0, 1}∗. Since
1 + zeros z = zeros 0 + zeros z = zeros(0z) = zeros y is odd, we have that
zeros z is even. Let m be the largest element of N such that 1m is a prefix of z.
Thus z = 1mu for some u ∈ {0, 1}∗, and 1 is not a prefix of u. Since zeros u =
0 + zeros u = zeros 1m + zeros u = zeros(1mu) = zeros z is even, it follows
that u ∈ U . Summarizing, we have that w = 0x = 01ny = 01n0z = 01n01mu
and u ∈ U . Since u is a proper substring of w, the inductive hypothesis tells us
that u ∈ Y ∗. Hence w = 01n01mu = (01n01m)u ∈ Y Y ∗ ⊆ Y ∗. ✷

Lemma 3.2.16
X ⊆ Z.

Proof. Suppose w ∈ X. Let n be the largest element of N such that 1n is a
prefix of w. Thus w = 1nx for some x ∈ {0, 1}∗. Since w ∈ X, we have that
zeros x = 0 + zeros x = zeros 1n + zeros x = zerosw is even, so that x ∈ X.
By the definition of n, we have that 1 is not a prefix of x, and thus x ∈ U . Hence
w = 1nx ∈ {1}∗U ⊆ {1}∗Y ∗ = Z, by Lemma 3.2.15. ✷

By Lemmas 3.2.14 and 3.2.16, we have that Z ⊆ X ⊆ Z, completing our
proof that α is correct.

Our second example of regular expression design and proof of correction
involves the languages

A = {001, 011, 101, 111}, and

B = {w ∈ {0, 1}∗ | for all x, y ∈ {0, 1}∗, if w = x0y, then there is a z ∈ A

such that z is a prefix of y }.

The elements of A can be thought of as the odd numbers between 1 and 7,
expressed in binary, and B consists of those strings of 0’s and 1’s in which every
occurrence of 0 is immediately followed by an element of A.

E.g., % ∈ B, since the empty string has no occurrences of 0, and 00111 is in
B, since its first 0 is followed by 011 and its second 0 is followed by 111. But
0000111 is not in B, since its first 0 is followed by 000, which is not in A. And
011 is not in B, since |11| < 3.

3.2 Equivalence and Correctness of Regular Expressions 87

Note that, for all x, y ∈ B, xy ∈ B, i.e., BB ⊆ B. This holds, since: each
occurrence of 0 in x is followed by an element of A in x, and is thus followed
by the same element of A in xy; and each occurrence of 0 in y is followed by an
element of A in y, and is thus followed by the same element of A in xy.

Furthermore, for all strings x, y, if xy ∈ B, then y is in B, i.e., every suffix
of an element of B is also in B. This holds since if there was an occurrence of 0
in y that wasn’t followed by an element of A, then this same occurrence of 0 in
the suffix y of xy would also not be followed by an element of A, contradicting
xy ∈ B.

How should we go about finding a regular expression α such that L(α) = B?
Because % ∈ B, for all x, y ∈ B, xy ∈ B, and for all strings x, y, if xy ∈ B then
y ∈ B, our regular expression can have the form β∗, where β generates all the
strings that are basic in the sense that they are nonempty elements of B with
no non-empty proper prefixes that are in B.

Let’s try to understand what the basic strings look like. Clearly, 1 is basic,
so there will be no more basic strings that begin with 1. But what about the
basic strings beginning with 0? No sequence of 0’s is basic, and any string that
begins with four or more 0’s will not be basic. It is easy to see that 000111 is
basic. In fact, it is the only basic string of the form 000u. (The first 0 forces u to
begin with 1, the second 0 forces u to continue with 1, and the third forces u to
continue with 1. And, if |u| > 3, then the overall string would have a nonempty,
proper prefix in B, and so wouldn’t be basic.) Similarly, 00111 is the only basic
string beginning with 001. But what about the basic strings beginning with 01?
It’s not hard to see that there are infinitely many such strings: 0111, 010111,
01010111, 0101010111, etc. Fortunately, there is a simple pattern here: we have
all strings of the form 0(10)n111 for n ∈ N.

By the above considerations, it seems that we can let our regular expression
be

(1+ 0(10)∗111+ 00111 + 000111)∗.

But, using some of the equivalences we learned about above, we can turn this
regular expression into

(1+ 0(0+ 00+ (10)∗)111)∗,

which we take as our α. Now, we prove that L(α) = B.
Let

X = {0} ∪ {00} ∪ {10}∗ and Y = {1} ∪ {0}X{111}.

Then, we have that

X = L(0+ 00+ (10)∗),

Y = L(1+ 0(0 + 00 + (10)∗)111), and

Y ∗ = L((1 + 0(0 + 00+ (10)∗)111)∗) = L(α).

88 Regular Languages

Thus, it will suffice to show that Y ∗ = B. We will show that Y ∗ ⊆ B ⊆ Y ∗.
To begin with, we would like to use mathematical induction to prove that, for

all n ∈ N, {0}{10}n{111} ⊆ B. But in order for the inductive step to succeed,
we must prove something stronger. Let

C = {w ∈ B | 01 is a prefix of w }.

Lemma 3.2.17
For all n ∈ N, {0}{10}n{111} ⊆ C.

Proof. We proceed by mathematical induction.

(Basis Step) Since 01 is a prefix of 0111, and 0111 ∈ B, we have that 0111 ∈
C. Hence {0}{10}0{111} = {0}{%}{111} = {0}{111} = {0111} ⊆ C.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
{0}{10}n{111} ⊆ C. We must show that {0}{10}n+1{111} ⊆ C. Since

{0}{10}n+1{111} = {0}{10}{10}n{111}

= {01}{0}{10}n{111}

⊆ {01}C (inductive hypothesis),

it will suffice to show that {01}C ⊆ C. Suppose w ∈ {01}C. We must
show that w ∈ C. We have that w = 01x for some x ∈ C. Thus w begins
with 01. It remains to show that w ∈ B. Since x ∈ C, we have that x
begins with 01. Thus the first occurrence of 0 in w = 01x is followed by
101 ∈ A. Furthermore, any other occurrence of 0 in w = 01x is within x,
and so is followed by an element of A because x ∈ C ⊆ B. Thus w ∈ B.

✷

Lemma 3.2.18
Y ⊆ B.

Proof. Suppose w ∈ Y . We must show that w ∈ B. If w = 1, then w ∈ B.
Otherwise, we have that w = 0x111 for some x ∈ X. There are three cases to
consider.

• Suppose x = 0. Then w = 00111 is in B.

• Suppose x = 00. Then w = 000111 is in B.

• Suppose x ∈ {10}∗. Then x ∈ {10}n for some n ∈ N. By Lemma 3.2.17,
we have that w = 0x111 ∈ {0}{10}n{111} ⊆ C ⊆ B.

✷

3.2 Equivalence and Correctness of Regular Expressions 89

Lemma 3.2.19
Y ∗ ⊆ B.

Proof. It will suffice to show that, for all n ∈ N, Y n ⊆ B, and we proceed by
mathematical induction.

(Basis Step) Since % ∈ B, we have that Y 0 = {%} ⊆ B.

(Inductive Step) Suppose n ∈ N, and assume the inductive hypothesis:
Y n ⊆ B. Then Y n+1 = Y Y n ⊆ BB ⊆ B, by Lemma 3.2.18 and the
inductive hypothesis.

✷

Lemma 3.2.20
B ⊆ Y ∗.

Proof. Since B ⊆ {0, 1}∗, it will suffice to show that, for all w ∈ {0, 1}∗,

if w ∈ B, then w ∈ Y ∗.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the
inductive hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then

if x ∈ B, then x ∈ Y ∗.

We must show that
if w ∈ B, then w ∈ Y ∗.

Suppose w ∈ B. We must show that w ∈ Y ∗. There are three main cases to
consider.

• Suppose w = %. Then w ∈ {%} = Y 0 ⊆ Y ∗.

• Suppose w = 0x for some x ∈ {0, 1}∗. Since w ∈ B, the first 0 of w must
be followed by an element of A. Hence x 6= %, so that there are two cases
to consider.

– Suppose x = 0y for some y ∈ {0, 1}∗. Thus w = 0x = 00y. Since
00y = w ∈ B, we have that y 6= %. Thus, there are two cases to
consider.

∗ Suppose y = 0z for some z ∈ {0, 1}∗. Thus w = 00y = 000z.
Since the first 0 in 000z = w is followed by an element of A,
and the only element of A that begins with 00 is 001, we have
that z = 1u for some u ∈ {0, 1}∗. Thus w = 0001u. Since the
second 0 in 0001u = w is followed by an element of A, and 011 is
the only element of A that begins with 01, we have that u = 1v
for some v ∈ {0, 1}∗. Thus w = 00011v. Since the third 0 in

90 Regular Languages

00011v = w is followed by an element of A, and 111 is the only
element of A that begins with 11, we have that v = 1t for some
t ∈ {0, 1}∗. Thus w = 000111t. Since 00 ∈ X, we have that
000111 = (0)(00)(111) ∈ {0}X{111} ⊆ Y . Because t is a suffix
of w, it follows that t ∈ B. Thus the inductive hypothesis tells
us that t ∈ Y ∗. Hence w = (000111)t ∈ Y Y ∗ ⊆ Y ∗.

∗ Suppose y = 1z for some z ∈ {0, 1}∗. Thus w = 00y = 001z.
Since the first 0 in 001z = w is followed by an element of A, and
the only element of A that begins with 01 is 011, we have that
z = 1u for some u ∈ {0, 1}∗. Thus w = 0011u. Since the second
0 in 0011u = w is followed by an element of A, and 111 is the
only element of A that begins with 11, we have that u = 1v for
some v ∈ {0, 1}∗. Thus w = 00111v. Since 0 ∈ X, we have that
00111 = (0)(0)(111) ∈ {0}X{111} ⊆ Y . Because v is a suffix of
w, it follows that v ∈ B. Thus the inductive hypothesis tells us
that v ∈ Y ∗. Hence w = (00111)v ∈ Y Y ∗ ⊆ Y ∗.

– Suppose x = 1y for some y ∈ {0, 1}∗. Thus w = 0x = 01y. Since
w ∈ B, we have that y 6= %. Thus, there are two cases to consider.

∗ Suppose y = 0z for some z ∈ {0, 1}∗. Thus w = 010z. Let u be
the longest prefix of z that is in {10}∗. (Since % is a prefix of z
and is in {10}∗, it follows that u is well-defined.) Let v ∈ {0, 1}∗

be such that z = uv. Thus w = 010z = 010uv.
Suppose, toward a contradiction, that v begins with 10. Then
u10 is a prefix of z = uv that is longer than u. Furthermore
u10 ∈ {10}∗{10} ⊆ {10}∗, contradicting the definition of u. Thus
we have that v does not begin with 10.
Next, we show that 010u ends with 010. Since u ∈ {10}∗, we
have that u ∈ {10}n for some n ∈ N. There are three cases to
consider.

· Suppose n = 0. Since u ∈ {10}0 = {%}, we have that u = %.
Thus 010u = 010 ends with 010.

· Suppose n = 1. Since u ∈ {10}1 = {10}, we have that u = 10.
Hence 010u = 01010 ends with 010.

· Suppose n ≥ 2. Then n − 2 ≥ 0, so that u ∈ {10}(n−2)+2 =
{10}n−2{10}2. Hence u ends with 1010, showing that 010u
ends with 010.

Summarizing, we have that w = 010uv, u ∈ {10}∗, 010u ends
with 010, and v does not begin with 10. Since the second-to-last
0 in 010u is followed in w by an element of A, and 101 is the
only element of A that begins with 10, we have that v = 1s for
some s ∈ {0, 1}∗. Thus w = 010u1s, and 010u1 ends with 0101.
Since the second-to-last symbol of 010u1 is a 0, we have that

3.2 Equivalence and Correctness of Regular Expressions 91

s 6= %. Furthermore, s does not begin with 0, since, if it did,
then v = 1s would begin with 10. Thus we have that s = 1t for
some t ∈ {0, 1}∗. Hence w = 010u11t. Since 010u11 ends with
011, it follows that the last 0 in 010u11 must be followed in w
by an element of A. Because 111 is the only element of A that
begins with 11, we have that t = 1r for some r ∈ {0, 1}∗. Thus
w = 010u111r. Since (10)u ∈ {10}{10}∗ ⊆ {10}∗ ⊆ X, we have
that 010u111 = (0)((10)u)111 ∈ {0}X{111} ⊆ Y . Since r is a
suffix of w, it follows that r ∈ B. Thus, the inductive hypothesis
tells us that r ∈ Y ∗. Hence w = (010u111)r ∈ Y Y ∗ ⊆ Y ∗.

∗ Suppose y = 1z for some z ∈ {0, 1}∗. Thus w = 011z. Since
the first 0 of w is followed by an element of A, and 111 is the
only element of A that begins with 11, we have that z = 1u for
some u ∈ {0, 1}∗. Thus w = 0111u. Since % ∈ {10}∗ ⊆ X, we
have that 0111 = (0)(%)(111) ∈ {0}X{111} ⊆ Y . Because u is
a suffix of w, it follows that u ∈ B. Thus, since u is a proper
substring of w, the inductive hypothesis tells us that u ∈ Y ∗.
Hence w = (0111)u ∈ Y Y ∗ ⊆ Y ∗.

• Suppose w = 1x for some x ∈ {0, 1}∗. Since x is a suffix of w, we have
that x ∈ B. Because x is a proper substring of w, the inductive hypothesis
tells us that x ∈ Y ∗. Thus w = 1x ∈ Y Y ∗ ⊆ Y ∗.

✷

By Lemmas 3.2.19 and 3.2.20, we have that Y ∗ ⊆ B ⊆ Y ∗, so that Y ∗ = B.
This completes our regular expression design and proof of correctness example.

Exercise 3.2.21
Let X = {w ∈ {0, 1}∗ | 010 is not a substring of w }. Find a regular expression
α such that L(α) = X, and prove that your answer is correct.

Exercise 3.2.22
Define diff ∈ {0, 1}∗ → Z as in Section 2.2, so that, for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − the number of 0’s in w.

Thus diff % = 0, diff 0 = −1, diff 1 = 1, and for all x, y ∈ {0, 1}∗, diff(xy) =
diff x+ diff y. Let X = {w ∈ {0, 1}∗ | diff w = 3m, for some m ∈ Z }. Find a
regular expression α such that L(α) = X, and prove that your answer is correct.

Exercise 3.2.23
Define a function diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 0’s in w − 2(the number of 1’s in w).

92 Regular Languages

Thus diff w = 0 iff w has twice as many 1’s as 0’s. Furthermore diff % = 0,
diff 0 = 1, diff 1 = −2, and, for all x, y ∈ {0, 1}∗, diff(xy) = diff x + diff y.
Let X = {w ∈ {0, 1}∗ | diff w = 0 and, for all prefixes v of w, 0 ≤ diff v ≤ 3 }.
Find a regular expression α such that L(α) = X, and prove that your answer is
correct.

3.2.3 Notes

Our approach in this section is somewhat more formal than is common, but is
otherwise standard.

3.3 Simplification of Regular Expressions

In this section, we give three algorithms—of increasing power, but decreas-
ing efficiency—for regular expression simplification. The first algorithm—weak
simplification—is defined via a straightforward structural recursion, and is suf-
ficient for many purposes. The remaining two algorithms—local simplification
and global simplification—are based on a set of simplification rules that is still
incomplete and evolving.

3.3.1 Regular Expression Complexity

To begin with, let’s consider how we might measure the complexity/simplicity of
regular expressions. The most obvious criterion is size (remember that regular
expressions are trees). But consider this pair of equivalent regular expressions:

α = (00∗11∗)∗, and

β = %+ 0(0+ 11∗0)∗11∗.

Although the size of β (18) is strictly greater than the size of α (10), β has only
one closure inside another closure, whereas α has two closures inside its outer
closure, and thus there is a sense in which β is easier to understand than α.

The standard measure of the closure-related complexity of a regular expres-
sion is its star-height : the maximum number n ∈ N such that there is a path
from the root of the regular expression to one of its leaves that passes through
n closures. But α and β both have star-heights of 2. Furthermore, star-height
isn’t respected by the ways of forming regular expressions. E.g., if γ1 has strictly
smaller star-height than γ2, we can’t conclude that γ1γ

′ has strictly smaller star-
height than γ2γ

′, as the star height of γ′ may be greater than the star-height of
γ2.

So, we need a better measure of the closure-related complexity of regular
expressions than star-height. Toward that end, let’s define a closure complexity
to be a nonempty list ns of natural numbers that is (not-necessarily strictly)

3.3 Simplification of Regular Expressions 93

descending: for all i ∈ [1 : |ns |−1], ns i ≥ ns(i+1). This is a way of representing
nonempty multisets of natural numbers that makes it easy to define the usual
ordering on multisets. We write CC for the set of all closure complexities.
For all n ∈ N, [n] is a singleton closure complexity. The union of closure
complexities ns and ms (ns ∪ ms) is the closure complexity that results from
putting ns @ms in descending order, keeping any duplicate elements. (Here we
are overloading the term union and the operation ∪, but the set-theoretic union
isn’t an operation on closure complexities, and so no confusion should result.)
E.g., [3, 2, 2, 1] ∪ [4, 2, 1, 0] = [4, 3, 2, 2, 2, 1, 1, 0]. The successor ns of a closure
complexity ns is the closure complexity formed by adding one to each element
of ns, maintaining the order of the elements. E.g., [3, 2, 2, 1] = [4, 3, 3, 2].

It is easy to see that ∪ is commutative and associative on CC, and that the
successor operation on CC preserves union:

Proposition 3.3.1
(1) For all ns ,ms ∈ CC, ns ∪ms = ms ∪ ns.

(2) For all ns ,ms , ls ∈ CC, (ns ∪ms) ∪ ls = ns ∪ (ms ∪ ls).

(3) For all ns ,ms ∈ CC, ns ∪ms = ns ∪ms .

Proposition 3.3.2
(1) For all ns ,ms ∈ CC, ns = ms iff ns = ms .

(2) For all ns ,ms , ls ∈ CC, ns ∪ ls = ms ∪ ls iff ns = ms.

We define a relation <cc on CC by: for all ns,ms ∈ CC, ns <cc ms either:

• |ns| < |ms| and, for all i ∈ [1 : |ns |], ns i = ms i; or

• there is an i ∈ N such that

– i ≤ |ns | and i ≤ |ms |,

– for all j ∈ [1 : i− 1], ns j = ms j, and

– ns i < ms i.

In other words, ns <cc ms iff either ms consists of the result of appending
a nonempty list at the end of ns, or ns and ms agree up to some point, at
which ns ’s value is strictly smaller than ms ’s value. E.g., [2, 2] ≤cc [2, 2, 1] and
[2, 1, 1, 0, 0] <cc [2, 2, 1].

Proposition 3.3.3
<cc is a strict total ordering on CC.

Proposition 3.3.4
(1) For all ns ,ms ∈ CC, ns <cc ms iff ns <cc ms .

94 Regular Languages

(2) For all ns ,ms , ls ∈ CC, ns ∪ ls <cc ms ∪ ls iff ns <cc ms .

(3) For all ns ,ms ∈ CC, ns <cc ns ∪ms .

Now we can define the closure complexity of a regular expression. Define the
function cc ∈ Reg→CC by structural recursion:

cc% = [0];

cc $ = [0];

cc a = [0], for all a ∈ Sym;

cc(∗(α)) = ccα, for all α ∈ Reg;

cc(@(α, β)) = ccα ∪ cc β, for all α, β ∈ Reg; and

cc(+(α, β)) = ccα ∪ cc β, for all α, β ∈ Reg.

We say that ccα is the closure complexity of α. E.g.,

cc((12∗)∗) = cc(12∗) = cc 1 ∪ cc(2∗) = [0] ∪ cc 2

= [0] ∪ [0] = [0] ∪ [1] = [1, 0] = [2, 1].

In other words, the ccα can be computed by first collecting together all the
paths through α that terminate in leafs, then counting the numbers of closures
visited when following each of these paths, and finally putting those sums in
descending order.

Proposition 3.3.5
For all α ∈ Reg, |ccα| = numLeavesα.

Proof. An easy induction on regular expressions. ✷

Exercise 3.3.6
Find regular expressions α and β such that ccα = cc β but sizeα 6= size β.

In contrast to star-height, closure complexity is compatible with the ways of
forming regular expressions. In fact, we can prove even stronger results.

Proposition 3.3.7
(1) For all α ∈ Reg, ccα = cc β iff cc(α∗) = cc(β∗).

(2) For all α, β, γ ∈ Reg, ccα = cc β iff cc(αγ) = cc(βγ).

(3) For all α, β, γ ∈ Reg, ccα = cc β iff cc(γα) = cc(γβ).

(4) For all α, β, γ ∈ Reg, ccα = cc β iff cc(α+ γ) = cc(β + γ).

(5) For all α, β, γ ∈ Reg, ccα = cc β iff cc(γ + α) = cc(γ + β).

Proof. Follows by Proposition 3.3.2. ✷

3.3 Simplification of Regular Expressions 95

Proposition 3.3.8
(1) For all α ∈ Reg, ccα <cc cc β iff cc(α∗) <cc cc(β

∗).

(2) For all α, β, γ ∈ Reg, ccα <cc cc β iff cc(αγ) <cc cc(βγ).

(3) For all α, β, γ ∈ Reg, ccα <cc cc β iff cc(γα) <cc cc(γβ).

(4) For all α, β, γ ∈ Reg, ccα <cc cc β iff cc(α+ γ) <cc cc(β + γ).

(5) For all α, β, γ ∈ Reg, ccα <cc cc β iff cc(γ + α) <cc cc(γ + β).

Proof. Follows by Proposition 3.3.4. ✷

Returning to our initial examples, we have that cc((00∗11∗)∗) = [2, 2, 1, 1]
and cc(% + 0(0 + 11∗0)∗11∗) = [2, 1, 1, 1, 1, 0, 0, 0]. Since [2, 1, 1, 1, 1, 0, 0, 0] <cc

[2, 2, 1, 1], the closure complexity of %+ 0(0+ 11∗0)∗11∗ is strictly smaller than
the closure complexity of (00∗11∗)∗.

When judging the relative complexity of regular expressions α and β, we will
first look at how their closure complexities are related. And, when their closure
complexities are equal, we will look at how their sizes are related. To finish
explaining how we will judge the relative complexity of regular expressions, we
need three definitions.

The function

numConcats ∈ Reg→ N

is defined by recursion:

numConcats% = 0;

numConcats $ = 0;

numConcats a = 0, for all a ∈ Sym;

numConcats(α∗) = numConcatsα, for all α ∈ Reg;

numConcats(αβ) = 1 + numConcatsα+ numConcatsβ; and

numConcats(α+ β) = numConcatsα+ numConcats β.

Thus numConcatsα is the number of concatenations in α, i.e., the number of
subtrees of α that are concatenations, where a given subtree may occur (and
will be counted) multiple times. E.g., numConcats(((01)∗(01))∗) = 3. The
function

numSyms ∈ Reg→ N

96 Regular Languages

is defined by structural recursion:

numSyms% = 0;

numSyms $ = 0;

numSyms a = 1, for all a ∈ Sym;

numSyms(α∗) = numSymsα, for all α ∈ Reg;

numSyms(αβ) = numSymsα+ numSyms β; and

numSyms(α+ β) = numSymsα+ numSyms β.

Thus numSymsα is the number of occurrences of symbols in α, where
a given symbol may occur (and will be counted) more than once. E.g.,
numSyms((0∗1) + 0) = 3.

Finally, we say that a regular expression α is standardized iff none of α’s
subtrees have any of the following forms:

• (β1 + β2) + β3 (we can avoid needing parentheses, and make a regular
expression easier to understand/process from left-to-right, by grouping
unions to the right);

• β1 + β2, where β1 > β2, or β1 + (β2 + β3), where β1 > β2 (it’s pleasing
if the regular expressions appear in order (recall that unions are greater
than all other kinds of regular expressions));

• (β1β2)β3 (we can avoid needing parentheses, and make a regular expres-
sion easier to understand/process from left-to-right, by grouping concate-
nations to the right); and

• β∗β, β∗(βγ), (β1β2)
∗β1 or (β1β2)

∗β1γ (moving closures to the right makes
a regular expression easier to understand/process from left-to-right).

Thus every subtree of a standardized regular expression will be standardized.
Returning to our assessment of regular expression complexity, suppose that

α and β are regular expressions generating %. Then (αβ)∗ and (α + β)∗ are
equivalent, but will will prefer the latter over the former, because unions are
generally more amenable to understanding and processing than concatenations.
Consequently, when two regular expression have the same closure complexity
and size, we will judge their relative complexity according to their numbers of
concatenations.

Next, consider the regular expressions 0+ 01 and 0(% + 1). These regular
expressions have the same closure complexity [0, 0, 0], size (5) and number of
concatenations (1). We would like to consider the latter to be simpler than the
former, since in general we would like to prefer α(%+β) over α+αβ. And we can
base this preference on the fact that the number of symbols of 0(% + 1) (2) is one
less than the number of symbols of 0+ 01. When regular expressions have the

3.3 Simplification of Regular Expressions 97

same closure complexity, size and number of concatenations, the one with fewer
symbols is likely to be easier to understand and process. Thus, when regular
expressions have identical closure complexity, size and number of concatenations,
we will use their relative numbers of symbols to judge their relative complexity.

Finally, when regular expressions have the same closure complexity, size,
number of concatenations, and number of symbols, we will judge their relative
complexity according to whether they are standardized, thinking that a stan-
dardized regular expression is simpler than one that is not standardized.

To summarize, we say that a regular expression α is simpler (less complex)
than β iff:

• ccα <cc cc β; or

• ccα = cc β but sizeα < size β; or

• ccα = cc β and sizeα = size β, but numConcatsα < numConcats β;
or

• ccα = cc β, sizeα = size β and numConcatsα = numConcats β, but
numSymsα < numSyms β; or

• ccα = cc β, sizeα = size β, numConcatsα = numConcats β and
numSymsα = numSyms β, but α is standardized and β is not stan-
dardized.

We define relations ≤simp and ≡simp on Reg by: for all α, β ∈ Reg, α ≤simp β
iff α is simpler than β, and α ≡simp β iff α ≤simp β ≤simp α. We say that α
has the same complexity as β iff α ≡simp β.

For example, the following regular expressions are equivalent and have the
same complexity:

1(01 + 10) + (% + 01)1 and 011 + 1(% + 01+ 10).

Proposition 3.3.9
(1) ≤simp is a reflexive, transitive and total relation on Reg.

(2) ≡simp is a reflexive, transitive and symmetric relation on Reg.

The Forlan module Reg defines the abstract type cc of closure complexities,
along with these functions:

val ccToList : cc -> int list

val singCC : int -> cc

val unionCC : cc * cc -> cc

val succCC : cc -> cc

val cc : reg -> cc

val compareCC : cc * cc -> order

98 Regular Languages

The function ccToList is the identity function on closure complexities: all that
changes is the type. singCC n returns the singleton closure complexity [n], if n
is nonnegative; otherwise it issues an error message. The functions unionCC and
succCC implement the union and successor operations on closure complexities.
The function cc corresponds to cc, and compareCC implements <cc.

Here are some examples of how these functions can be used:

- val ns = Reg.succCC(Reg.unionCC(Reg.singCC 1, Reg.singCC 1));

val ns = - : Reg.cc

- Reg.ccToList ns;

val it = [2,2] : int list

- val ms = Reg.unionCC(ns, Reg.succCC ns);

val ms = - : Reg.cc

- Reg.ccToList ms;

val it = [3,3,2,2] : int list

- Reg.ccToList(Reg.cc(Reg.fromString "(00*11*)*"));

val it = [2,2,1,1] : int list

- Reg.ccToList(Reg.cc(Reg.fromString "% + 0(0 + 11*0)*11*"));

val it = [2,1,1,1,1,0,0,0] : int list

- Reg.compareCC

= (Reg.cc(Reg.fromString "(00*11*)*"),

= Reg.cc(Reg.fromString "% + 0(0 + 11*0)*11*"));

val it = GREATER : order

- Reg.compareCC

= (Reg.cc(Reg.fromString "(00*11*)*"),

= Reg.cc(Reg.fromString "(1*10*0)*"));

val it = EQUAL : order

The module Reg also includes these functions:

val numConcats : reg -> int

val numSyms : reg -> int

val standardized : reg -> bool

val compareComplexity : reg * reg -> order

val compareComplexityTotal : reg * reg -> order

The first two functions implement the functions with the same names.
The function standardized tests whether a regular expression is stan-
dardized, and the function compareComplexity implements ≤simp. Fi-
nally, compareComplexityTotal is like compareComplexity, but falls back on
Reg.compare (our total ordering on regular expressions) to order regular ex-
pressions with the same complexity. Thus compareComplexityTotal is a total
ordering.

Here are some examples of how these functions can be used:

- Reg.numConcats(Reg.fromString "(01)*(10)*");

val it = 3 : int

- Reg.numSyms(Reg.fromString "(01)*(10)*");

val it = 4 : int

3.3 Simplification of Regular Expressions 99

- Reg.standardized(Reg.fromString "00*1");

val it = true : bool

- Reg.standardized(Reg.fromString "00*0");

val it = false : bool

- Reg.compareComplexity

= (Reg.fromString "(00*11*)*",

= Reg.fromString "% + 0(0 + 11*0)*11*");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "0**1**", Reg.fromString "(01)**");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "(0*1*)*", Reg.fromString "(0*+1*)*");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "0+01", Reg.fromString "0(%+1)");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "(01)2", Reg.fromString "012");

val it = GREATER : order

- Reg.compareComplexity

= (Reg.fromString "1(01+10)+(%+01)1",

= Reg.fromString "011+1(%+01+10)");

val it = EQUAL : order

3.3.2 Weak Simplification

In this subsection, we give our first simplification algorithm: weak simplification.
We say that a regular expression α is weakly simplified iff α is standardized and
none of α’s subtrees have any of the following forms:

• $ + β or β + $ (the $ is redundant);

• β + β or β + (βγ) (the duplicate occurrence of β is redundant);

• %β or β% (the % is redundant);

• $β or β$ (both are equivalent to $); and

• %∗ or $∗ or (β∗)∗ (the first two can be replaced by %, and the extra closure
can be omitted in the third case).

Thus, if a regular expression α is weakly simplified, then each of its subtrees will
also be weakly simplified.

Weakly simplified regular expressions have some pleasing properties.

Proposition 3.3.10
(1) For all α ∈ Reg, if α is weakly simplified and L(α) = ∅, then α = $.

100 Regular Languages

(2) For all α ∈ Reg, if α is weakly simplified and L(α) = {%}, then α = %.

(3) For all α ∈ Reg, for all a ∈ Sym, if α is weakly simplified and L(α) = {a},
then α = a.

E.g., part (2) of the proposition says that, if α is weakly simplified and L(α)
is the language whose only string is %, then α is %.

Proof. The three parts are proved in order, using induction on regular ex-
pressions. We will show the concatenation case of part (3). Suppose α, β ∈ Reg
and assume the inductive hypothesis: for all a ∈ Sym, if α is weakly simplified
and L(α) = {a}, then α = a, and for all a ∈ Sym, if β is weakly simplified
and L(β) = {a}, then β = a. Suppose a ∈ Sym, and assume that αβ is weakly
simplified and L(αβ) = {a}. We must show that αβ = a.

Since L(α)L(β) = L(αβ) = {a}, there are two cases to consider.

• Suppose L(α) = {a} and L(β) = {%}. Since β is weakly simplified and
L(β) = {%}, part (2) tells us that β = %. But this means that αβ = α%
is not weakly simplified after all—contradiction. Thus we can conclude
that αβ = a.

• Suppose L(α) = {%} and L(β) = {a}. The proof of this case is similar to
that of the other one.

✷

Proposition 3.3.11
For all α ∈ Reg, if α is weakly simplified, then alphabet(L(α)) = alphabetα.

Proof. By Proposition 3.1.5, it suffices to show that, for all α ∈ Reg, if α is
weakly simplified, then alphabetα ⊆ alphabet(L(α)). And this follows by an
easy induction on α, using Proposition 3.3.10(2). ✷

The next proposition says that $ need only be used at the top-level of a
regular expression.

Proposition 3.3.12
For all α ∈ Reg, if α is weakly simplified and α has one or more occurrences of
$, then α = $.

Proof. An easy induction on regular expressions. ✷

Finally, we have that weakly simplified regular expressions with closures
generate infinite languages:

Proposition 3.3.13
For all α ∈ Reg, if α is weakly simplified and α has one or more closures, then
L(α) is infinite.

3.3 Simplification of Regular Expressions 101

Proof. An easy induction on regular expressions. ✷

Next, we see how we can test whether a regular expression is weakly simplified
via a simple stuctural recursion. Define weaklySimplified ∈ Reg →Bool by
structural recursion, as follows. Given a regular expression α, it proceeds as
follows:

• Suppose α is %, $ or a symbol. Then it returns true.

• Suppose α has the form β∗. Then it checks that:

– β is weakly simplified (this is done using recursion); and

– β is neither %, nor $, nor a closure.

• Suppose α has the form α1 α2. Then it checks that:

– α1 and α2 are weakly simplified; and

– α1 is neither % nor $ nor a concatenation; and

– α2 is neither % nor $; and

– α has none of the following forms: β∗β, β∗(βγ), (β1β2)
∗β1 or

(β1β2)
∗β1γ.

• Suppose α has the form α1 + α2. Then it checks that:

– α1 and α2 are weakly simplified; and

– α1 is neither $ nor a union; and

– α2 is not $;

– if α2 has the form β1 + β2, then α1 < β1; and

– if α2 is not a union, then α1 < α2.

Proposition 3.3.14
For all α ∈ Reg, α is weakly simplified iff weaklySimplifiedα = true.

Proof. By induction on regular expressions. ✷

In preparation for giving our weak simplification algorithm, we need to define
some auxiliary functions. We say that a regular expression α is almost weakly
simplified iff either:

• w ∈ {%, $}; or

• all elements of concatsToListα are weakly simplified, and are not %, $
or concatentations.

102 Regular Languages

For example, 0∗0(1+ 2)∗(1+ 2) = 0∗(0((1 + 2)∗(1+ 2))) is almost weakly
simplified, even though it’s not weakly simplified. On the other hand: ($ + 1)1
isn’t almost weakly simplified, because $ + 1 isn’t weakly simplified; 1% isn’t
weakly simplified, because of the location of %; and (01)1 isn’t almost weakly
simplified, because of the location of the concatenation 01.

Let

WS = {α ∈ Reg | α is weakly simplified }, and

AWS = {α ∈ Reg | α is almost weakly simplified }.

We define a function shiftClosuresRight ∈ AWS → WS by recursion.
Given α ∈ AWS, shiftClosuresRight proceeds as follows. If α is not a con-
catentation, than it returns α. Otherwise, α = α1α2 for some α1, α2 ∈ Reg.
Since α is almost weakly simplified, so is α2. So it lets α′

2 ∈ WS be the result
of calling shiftClosuresRight on α2.

• If α1α
′
2 has the form β∗β, for some β ∈ Reg, then shiftClosuresRight

returns
shiftClosuresRight(rightConcat(β, β∗)).

• Otherwise, if α1α
′
2 has the form β∗βγ, for some β, γ ∈ Reg, then

shiftClosuresRight returns

shiftClosuresRight(ββ∗γ)).

• Otherwise, if α1α
′
2 has the form (β1β2)

∗β1, for some β1, β2 ∈ Reg, then
shiftClosuresRight returns

shiftClosuresRight(β1(rightConcat(β2, β1))
∗).

• Otherwise, if α1α
′
2 has the form (β1β2)

∗β1γ, for some β1, β2, γ ∈ Reg,
then shiftClosuresRight returns

shiftClosuresRight(β1(rightConcat(β2, β1))
∗γ).

• Otherwise, shiftClosuresRight returns α1α
′
2.

(The work needed to justify the kind of well-founded recursion used in
shiftClosuresRight’s definition will be added in a subsequent revision.)

Proposition 3.3.15
For all α ∈ AWS, shiftClosuresRightα is equivalent to α and has the same
closure complexity, size, number of concatenations and number of symbols as α.

3.3 Simplification of Regular Expressions 103

Define a function deepClosure ∈ WS→WS as follows. For all α ∈ WS:

deepClosure% = %,

deepClosure $ = %,

deepClosure (∗(α)) = α∗, and

deepClosureα = α∗, if α 6∈ {%, $} and α is not a closure.

Lemma 3.3.16
For all α ∈ WS, deepClosureα is equivalent to α∗, has the same alphabet as
α∗, has a closure complexity that is no bigger than that of α∗, has a size that
is no bigger than that of α∗, has the same number of concatenations as α∗, and
has the same number of symbols α∗.

Define a function deepConcat ∈ WS × WS → WS as follows. For all
α, β ∈ WS:

deepConcat(α, $) = $,

deepConcat($, α) = $, if α 6= $,

deepConcat(α,%) = α, if α 6= $,

deepConcat(%, α) = α, if α 6∈ {$,%}, and

deepConcat(α, β) = shiftClosuresRight(rightConcat(α, β)),

if α, β 6∈ {$,%}.

To see that the last clause of this definition is proper, suppose that α, β ∈
WS−{%, $}. Thus all the elements of concatsToListα and concatsToList β
are weakly simplified, and are not %, $ or concatentations. Hence

concatsToList(rightConcat(α, β)) = concatsToListα@ concatsToList β

also has this property, showing that rightConcat(α, β) is almost weakly sim-
plified, which is what shiftClosuresRight needs to deliver a weakly simplified
result.

Lemma 3.3.17
For all α, β ∈ WS, deepConcat(α, β) is equivalent to αβ, has an alphabet
that is a subset of the alphabet of αβ, has a closure complexity that is no bigger
than that of αβ, has a size that is no bigger than that of αβ, has no more
concatenations than αβ, and has no more symbols than αβ.

Define a function deepUnion ∈ WS × WS → WS as follows. For all
α, β ∈ WS:

deepUnion(α, $) = α,

deepUnion($, α) = α, if α 6= $, and

deepUnion(α, β) = sortUnions(rightUnion(α, β)), if α 6= $ and β 6= $.

104 Regular Languages

To see that the last clause of this definition is proper, suppose α, β ∈ WS −
{$}. Then all the elements of unionsToList(rightUnion(α, β)) will be weakly
simplified, and won’t be $ or unions. Consequently, sortUnions will deliver a
weakly simplified result.

Lemma 3.3.18
For all α, β ∈ WS, deepUnion(α, β) is equivalent to α + β, has an alphabet
that is a subset of the alphabet of α + β, has a closure complexity that is no
bigger than that of α + β, has a size that is no bigger than that of α + β, has
no more concatenations than α+ β, and has no more symbols than α+ β.

Now, we can define our weak simplification function/algorithm. Define
weaklySimplify ∈ Reg→WS by structural recursion:

• weaklySimplify% = %;

• weaklySimplify $ = $;

• weaklySimplify a = a, for all a ∈ Sym;

• weaklySimplify(∗(α))

= deepClosure(weaklySimplifyα),

for all α ∈ Reg;

• weaklySimplify(@(α, β))

= deepConcat(weaklySimplifyα,weaklySimplify β),

for all α, β ∈ Reg; and

• weaklySimplify(+(α, β))

= deepUnion(weaklySimplifyα,weaklySimplify β),

for all α, β ∈ Reg.

Proposition 3.3.19
For all α ∈ Reg:

(1) weaklySimplifyα ≈ α;

(2) alphabet(weaklySimplify(α)) ⊆ alphabetα;

(3) cc(weaklySimplify α) ≤cc ccα;

(4) size(weaklySimplifyα) ≤ sizeα;

(5) numSyms(weaklySimplifyα) ≤ numSymsα; and

3.3 Simplification of Regular Expressions 105

(6) numConcats(weaklySimplifyα) ≤ numConcatsα.

Proof. By induction on regular expressions. ✷

Exercise 3.3.20
Prove Proposition 3.3.19.

Proposition 3.3.21
For all α ∈ Reg, if α is weakly simplified, then weaklySimplify(α) = α.

Proof. By induction on regular expresssions. ✷

Using our weak simplification algorithm, we can define an algorithm for
calculating the language generated by a regular expression, when this language
is finite, and for announcing that this language is infinite, otherwise. First,
we weakly simplify our regular expression, α, and call the resulting regular
expression β. If β contains no closures, then we compute its meaning in the
usual way. But, if β contains one or more closures, then its language will be
infinite, and thus we can output a message saying that L(α) is infinite.

The Forlan module Reg defines the following functions relating to weak sim-
plification:

val weaklySimplified : reg -> bool

val weaklySimplify : reg -> reg

val toStrSet : reg -> str set

The function weaklySimplified tests whether its argument is weakly simpli-
fied, and weaklySimplify implements weaklySimplify. Finally, the function
toStrSet implements our algorithm for calculating the language generated by
a regular expression, if that langauge is finite, and for announcing the this lan-
guage is infinite, otherwise.

Here are some examples of how these functions can be used:

- val reg = Reg.input "";

@ (% + $0)(% + 00*0 + 0**)*

@ .

val reg = - : reg

- Reg.output("", Reg.weaklySimplify reg);

(% + 0* + 000*)*

val it = () : unit

- Reg.toStrSet reg;

language is infinite

uncaught exception Error

- val reg’ = Reg.input "";

@ (1 + %)(2 + $)(3 + %*)(4 + $*)

@ .

106 Regular Languages

val reg’ = - : reg

- StrSet.output("", Reg.toStrSet reg’);

2, 12, 23, 24, 123, 124, 234, 1234

val it = () : unit

- Reg.output("", Reg.weaklySimplify reg’);

(% + 1)2(% + 3)(% + 4)

val it = () : unit

- Reg.output

= ("",

= Reg.weaklySimplify(Reg.fromString "(00*11*)*"));

(00*11*)*

val it = () : unit

3.3.3 Local and Global Simplification

In preparation for the definition of our local and global simplification algorithms,
we must define some auxiliary functions. First, we show how we can recursively
test whether % ∈ L(α), for a regular expression α. We define a function

hasEmp ∈ Reg→Bool

by recursion:

hasEmp% = true;

hasEmp $ = false;

hasEmp a = false, for all a ∈ Sym;

hasEmp(α∗) = true, for all α ∈ Reg;

hasEmp(αβ) = hasEmpα and hasEmpβ, for all α, β ∈ Reg; and

hasEmp(α+ β) = hasEmpα or hasEmpβ, for all α, β ∈ Reg.

Proposition 3.3.22
For all α ∈ Reg, % ∈ L(α) iff hasEmpα = true.

Proof. By induction on regular expressions. ✷

Next, we show how we can recursively test whether a ∈ L(α), for a symbol
a and a regular expression α. We define a function

hasSym ∈ Sym×Reg→Bool

3.3 Simplification of Regular Expressions 107

by recursion:

hasSym(a,%) = false, for all a ∈ Sym;

hasSym(a, $) = false, for all a ∈ Sym;

hasSym(a, b) = a = b, for all a, b ∈ Sym;

hasSym(a, α∗) = hasSym(a, α), for all a ∈ Sym and α ∈ Reg;

hasSym(a, αβ) = (hasSym(a, α) and hasEmp(β)) or

(hasEmp(α) and hasSym(a, β)),

for all a ∈ Sym and α, β ∈ Reg; and

hasSym(a, α + β) = hasSym(a, α) or hasSym(a, β),

for all a ∈ Sym and α, β ∈ Reg.

Proposition 3.3.23
For all a ∈ Sym and α ∈ Reg, a ∈ L(α) iff hasSym(a, α) = true.

Proof. By induction on regular expressions, using Proposition 3.3.22. ✷

Finally, we define a function/algorithm

obviousSubset ∈ Reg ×Reg→{true, false}

meeting the following specification: for all α, β ∈ Reg,

if obviousSubset(α, β) = true, then L(α) ⊆ L(β).

I.e., this function is a conservative approximation to subset testing. The function
that always returns false would meet this specification, but our function will
do much better than this, and will be reasonably efficient. In Section 3.13,
we will learn of a less efficient algorithm that will provide a complete test for
L(α) ⊆ L(β).

Given α, β ∈ Reg, obviousSubset(α, β) proceeds as follows. First, it
lets α′ = weaklySimplifyα and β′ = weaklySimplify β. Then it returns
obviSub(α′, β′), where

obviSub ∈ WS×WS→Bool

is the function defined below.
obviSub is defined by well-founded recursion on the sum of the sizes of its

arguments. If α = β, then it returns true; otherwise, it considers the possible
forms of α.

• Suppose α = %. It returns hasEmpβ.

• Suppose α = $. It returns true.

108 Regular Languages

• Suppose α = a, for some a ∈ Sym. It returns hasSym(a, β).

• Suppose α = α1
∗, for some α1 ∈ Reg. Here it looks at the form of β.

– Suppose β = %. It returns false. (Because α will be weakly simpli-
fied, and so α won’t generate {%}.)

– Suppose β = $. It returns false.

– Suppose β = a, for some a ∈ Sym. It returns false.

– Suppose β is a closure. It returns obviSub(α1, β).

– Suppose β = β1β2, for some β1, β2 ∈ Reg. If hasEmpβ1 = true and
obviSub(α, β2), then it returns true. Otherwise, if hasEmpβ2 =
true and obviSub(α, β1), then it returns true. Otherwise, it returns
false (even though the answer sometimes should be true).

– Suppose β = β1 + β2, for some β1, β2 ∈ Reg. It returns

obviSub(α, β1) or obviSub(α, β2)

(even though this is false too often).

• Suppose α = α1α2, for some α1, α2 ∈ Reg. Here it looks at the form of β.

– Suppose β = %. It returns false. (Because α is weakly simplified, α
won’t generate {%}.)

– Suppose β = $. It returns false. (Because α is weakly simplified, α
won’t generate ∅.)

– Suppose β = a, for some a ∈ Sym. It returns false. (Because α is
weakly simplified, α won’t generate {a}.)

– Suppose β = β1
∗, for some β1 ∈ Reg. It returns

obviSub(α, β1)

or

(obviSub(α1, β) and obviSub(α2, β))

(even though this returns false too often).

– Suppose β = β1β2, for some β1, β2 ∈ Reg. If obviSub(α1, β1) =
true and obviSub(α2, β2) = true, then it returns true. Otherwise,
if hasEmpβ1 = true and obviSub(α, β2) = true, then it returns
true. Otherwise, if hasEmpβ2 = true and obviSub(α, β1) = true,
then it returns true. Otherwise, if β1 is a closure but β2 is not a
closure, then it returns

obviSub(α1, β1) and obviSub(α2, β)

3.3 Simplification of Regular Expressions 109

(even though this returns false too often). Otherwise, if β2 is a
closure but β1 is not a closure, then it returns

obviSub(α1, β) and obviSub(α2, β2)

(even though this returns false too often). Otherwise, if β1 and β2
are closures, then it returns

(obviSub(α1, β1) and obviSub(α2, β))

or

(obviSub(α1, β) and obviSub(α2, β2))

(even though this returns false too often). Otherwise, it returns
false, even though sometimes we would like the answer to be true).

– Suppose β = β1 + β2, for some β1, β2 ∈ Reg. It returns

obviSub(α, β1) or obviSub(α, β2)

(even though this is false too often).

• Suppose α = α1 + α2. It returns

obviSub(α1, β) and obviSub(α2, β).

We say that α is obviously a subset of β iff obviousSubset(α, β) = true.
On the positive side, we have that, e.g., obviousSubset(0∗011∗1, 0∗1∗) = true.
On the other hand, obviousSubset((01)∗, (% + 0)(10)∗(% + 1)) = false, even
though L((01)∗) ⊆ L((% + 0)(10)∗(% + 1)).

Proposition 3.3.24
For all α, β ∈ Reg, if obviousSubset(α, β) = true, then L(α) ⊆ L(β).

Proof. First, we use induction on the sum of the sizes of α and β to show
that, for all α, β ∈ Reg, if obviSub(α, β) = true, then L(α) ⊆ L(β). The
result then follows by Proposition 3.3.19. ✷

The Forlan module Reg provides the following functions corresponding to
the auxiliary functions hasEmp, hasSym and obviousSubset:

val hasEmp : reg -> bool

val hasSym : sym * reg -> bool

val obviousSubset : reg * reg -> bool

Here are some examples of how they can be used:

- Reg.hasEmp(Reg.fromString "0*1*");

val it = true : bool

110 Regular Languages

- Reg.hasEmp(Reg.fromString "01*");

val it = false : bool

- Reg.hasSym(Sym.fromString "0", Reg.fromString "0*1*");

val it = true : bool

- Reg.hasSym(Sym.fromString "1", Reg.fromString "0*1*");

val it = true : bool

- Reg.hasSym(Sym.fromString "0", Reg.fromString "0*$");

val it = false : bool

- Reg.obviousSubset

= (Reg.fromString "(0 + 1)*",

= Reg.fromString "0*(0 + 1)*1*");

val it = true : bool

- Reg.obviousSubset

= (Reg.fromString "0*(0 + 1)*1*",

= Reg.fromString "(0 + 1)*");

val it = true : bool

- Reg.obviousSubset

= (Reg.fromString "0*011*1",

= Reg.fromString "0*1*");

val it = true : bool

- Reg.obviousSubset

= (Reg.fromString "(01 + 011)1*",

= Reg.fromString "01*");

val it = true : bool

- Reg.obviousSubset

= (Reg.fromString "(01)*",

= Reg.fromString "(% + 0)(10)*(% + 1)");

val it = false : bool

Our local and global simplification algorithms make use of simplification
rules, which may be applied to arbitrary subtrees of regular expressions. There
are three kinds of rules: structural rules, distributive rules and reduction rules.

There are nine structural rules, which preserve the alphabet, closure com-
plexity, size, number of concatenations and number of symbols of a regular
expression:

(1) (α+ β) + γ → α+ (β + γ).

(2) α+ (β + γ)→ (α+ β) + γ.

(3) α(βγ)→ (αβ)γ.

(4) (αβ)γ → α(βγ).

(5) α+ β → β + α.

(6) α∗α→ αα∗.

(7) αα∗ → α∗α.

3.3 Simplification of Regular Expressions 111

(8) α(βα)∗ → (αβ)∗α.

(9) (αβ)∗α→ α(βα)∗.

There are two distributive rules, which preserve the alphabet of a regular
expression:

(1) α(β1 + β2)→ αβ1 + αβ2.

(2) (α1 + α2)β → α1β + α2β.

Finally, there are 26 reduction rules, some of which make use of a conservative
approximation sub to subset testing. When α→ β because of a reduction rule,
we have that alphabetβ ⊆ alphabetα and β simp α, where simp is the
well-founded relation on Reg that is defined below.

First, we see that our strict total ordering <cc on the set CC of closure
complexities is well-founded:

Proposition 3.3.25
<cc is a well-founded relation on CC.

Next, define the relation simp on Reg by: for all α, β ∈ Reg, α simp β iff
either:

• ccα <cc cc β; or

• ccα = cc β, but sizeα < size β; or

• ccα = cc β and sizeα = size β, but numConcatsα < numConcats β;
or

• ccα = cc β and sizeα = size β, and numConcatsα = numConcats β,
but numSymsα < numSyms β.

Proposition 3.3.26
simp is a well-founded relation on Reg.

Proof. Follows by Propositions 3.3.25, 1.2.11 and 1.2.10, plus the fact that <
is well-founded on N. ✷

Our reduction rules follow. In the rules, we abbreviate hasEmpα = true
and sub(α, β) = true to hasEmpα and sub(α, β), respectively. Most of the
rules strictly decrease a regular expression’s closure complexity and size. The
exceptions are labeled “size” (for when the closure complexity strictly decreases,
but the size strictly increases), “concatenations” (for when the closure complex-
ity and size are preserved, but the number of concatentations strictly decreases)
or “alphabet” (for when the closure complexity and size normally strictly de-
crease, but occasionally they and the number of concatenations stay they same,
but the number of symbols strictly decreases).

112 Regular Languages

(1) If sub(α, β), then α+ β → β.

(2) αβ1 + αβ2 → α(β1 + β2).

(3) α1β + α2β → (α1 + α2)β.

(4) If hasEmpα and sub(α, β∗), then αβ∗ → β∗.

(5) If hasEmp β and sub(β, α∗), then α∗β → α∗.

(6) If sub(α, β∗), then (α+ β)∗ → β∗.

(7) (α∗ + β)∗ → (α+ β)∗.

(8) (concatenations) If hasEmpα and hasEmpβ, then (αβ)∗ → (α+ β)∗.

(9) (concatenations) If hasEmpα and hasEmp β, then (αβ+γ)∗→ (α+β+
γ)∗.

(10) If hasEmpα and sub(α, β∗), then (αβ)∗ → β∗.

(11) If hasEmp β and sub(β, α∗), then (αβ)∗ → α∗.

(12) If hasEmpα and sub(α, (β + γ)∗), then (αβ + γ)∗ → (β + γ)∗.

(13) If hasEmp β and sub(β, (α + γ)∗), then (αβ + γ)∗ → (α+ γ)∗.

(14) (size) If not(hasEmpα) and ccα ∪ cc β <cc cc β, then (αβ∗)∗ → % +
α(α+ β)∗.

(15) (size) If not(hasEmp β) and ccα ∪ cc β <cc ccα, then (α∗β)∗ → % +
(α+ β)∗β.

(16) (size) If not(hasEmpα) or not(hasEmp γ), and ccα ∪ cc β ∪ cc γ <cc

cc, β, then (αβ∗γ)∗ →%+ α(β + γα)∗γ.

(17) If sub(αα∗, β), then α∗ + β →%+ β.

(18) If hasEmp β and sub(ααα∗, β), then α∗ + β → α+ β.

(19) (alphabet) If α 6∈ {%, $} and sub(αn, β), then αn+1α∗ + β → αnα∗ + β.

(20) If n ≥ 2, l ≥ 0 and 2n − 1 < m1 < · · · < ml, then (αn + αn+1 + · · · +
α2n−1 + αm1 + · · · + αml)∗ →%+ αnα∗.

(21) (alphabet) If α 6∈ {%, $}, then α+ αβ → α(% + β).

(22) (alphabet) If α 6∈ {%, $}, then α+ βα→ (% + β)α.

(23) α∗(% + β(α+ β)∗)→ (α+ β)∗.

3.3 Simplification of Regular Expressions 113

(24) (% + (α+ β)∗α)β∗ → (α+ β)∗.

(25) If sub(α, β∗) and sub(β, α), then % + αβ∗ → β∗.

(26) If sub(β, α∗) and sub(α, β), then % + α∗β → α∗.

In rules (14)-(16), the preconditions involving cc are necessary and sufficient
conditions for the right-hand side to have strictly smaller closure complexity
than the left-hand side.

Consider, e.g., reduction rule (4). Suppose hasEmpα = true and
sub(α, β∗) = true, so that that % ∈ L(α) and L(α) ⊆ L(β∗). We need that
αβ∗ ≈ β∗, alphabet(β∗) ⊆ alphabet(αβ∗) and β∗ simp αβ∗. The alphabet of
β∗ is clearly a subset of that of αβ∗.

To obtain αβ∗ ≈ β∗, it will suffice to show that, for all A,B ∈ Lan, if % ∈ A
and A ⊆ B∗, then AB∗ = B∗. Suppose A,B ∈ Lan, % ∈ A and A ⊆ B∗. We
show that AB∗ ⊆ B∗ ⊆ AB∗. Suppose w ∈ AB∗, so that w = xy, for some
x ∈ A and y ∈ B∗. Since A ⊆ B∗, it follows that w = xy ∈ B∗B∗ = B∗.
Suppose w ∈ B∗. Then w = %w ∈ AB∗.

And, to see that β∗ <cc αβ
∗, it will suffice to show that cc(β∗) <cc cc(αβ

∗).
And we have that

cc(β∗) = cc β <cc ccα ∪ cc β = cc(αβ∗).

Because the structural rules preserve the size and alphabet of regular ex-
pressions, if we start with a regular expression α, there are only finitely many
regular expressions that we can transform α into using structural rules (we can
apply one of the rules to some subtree of α, giving us β1, apply a rule to one of
the subtrees of β2, giving us β2, etc.).

Suppose sub is a conservative approximation to subset testing. We say that
a regular expression α is locally simplified with respect to sub: iff

• α is weakly simplified, and

• α can’t be transformed by our structural rules into a regular expression to
which one of our reduction rules applies.

The local simplification of a regular expression α with respect to a conser-
vative approximation to subset testing sub proceeds as follows. It calls its main
function with the weak simplification, β of α. The closure complexity, size, num-
ber of concatenations, and number of symbols of β are no bigger than those of
α, and alphabetβ ⊆ alphabetα.

The main function is defined by well-founded recursion simp. It works as
follows, when called with a weakly simplified argument, α.

• It generates the set X of all regular expressions weaklySimplify γ, such
that α can be reorganized using the structural rules into a regular expres-
sion β, which can be transformed by a single application of one of our
reduction rules into γ.

114 Regular Languages

• If X is empty, then it returns α.

• Otherwise, it calls itself recursively on the simplest element, γ of X (when
X doesn’t have a unique simplest element, the smallest of the simplest
elements—in our total ordering on regular expressions—is selected). Be-
cause

– the structural rules preserve closure complexity, size, number of con-
catenations, and number of symbols,

– the reduction rules produce simp-predecessors, and

– and weak simplification doesn’t increase closure complexity, size,
numbers of concatenations, or numbers of symbols,

we have that γ simp α, so that this recursive call is legal. Furthermore,
weak simplification, and all of the rules, either preserve or decrease (via
⊆) the alphabet of regular expressions. Thus alphabet γ ⊆ alphabetα.

The algorithm is referred to as “local”, because at each recursive call of
its main function, γ is chosen using the best local knowledge. This strategy is
reasonably efficient, but there is no guarantee that another local choice wouldn’t
result in a simpler global answer.

We define a function/algorithm

locallySimplify ∈ (Reg ×Reg→Bool)→Reg→Reg

by: for all conservative approximations to subset testing sub, and α ∈ Reg,
locallySimplify sub α is the result of running our local simplification algorithm
on α, using sub as the conservative approximation to subset testing.

Theorem 3.3.27
For all conservative approximations to subset testing sub, and α ∈ Reg:

• locallySimplify sub α is locally simplified with respect to sub;

• locallySimplify sub α is equivalent to α;

• alphabet(locallySimplify sub α) ⊆ alphabetα; and

• locallySimplify sub α ≤simp α.

The Forlan module Reg provides the following functions relating to local
simplification:

val locallySimplified :

(reg * reg -> bool) -> reg -> bool

val locallySimplify :

int option * (reg * reg -> bool) -> reg -> bool * reg

val locallySimplifyTrace :

int option * (reg * reg -> bool) -> reg -> bool * reg

3.3 Simplification of Regular Expressions 115

The function locallySimplify takes in a conservative approximation to sub-
set testing sub and returns a function that tests whether a regular expres-
sion is sub-locally simplified. The function locallySimplifyTrace implements
locallySimplify. It emits tracing messages explaining its operation, takes in
an extra argument of type int option, and produces an extra result of type
bool. If this extra argument is NONE, then it runs as does locallySimplify, and
its boolean result is always true. But if it is SOME n, for n ≥ 1, then at each
recursive call of the algorithm’s function, no more than n ways of reorganizing
the function’s argument will be considered, and the boolean part of the result
will be false iff, in the final recursive call, n was not sufficient to explore all
structural reorganizations, so that the regular expression returned may not be
locally simplified with respect to sub. The function locallySimplify works
identically, except it doesn’t issue tracing messages.

Here are some examples of how these functions can be used.

- val locSimped = Reg.locallySimplified Reg.obviousSubset;

val locSimped = fn : reg -> bool

- locSimped(Reg.fromString "(1 + 00*1)*00*");

val it = false : bool

- locSimped(Reg.fromString "(0 + 1)*0");

val it = true : bool

- fun locSimp nOpt =

= Reg.locallySimplify(nOpt, Reg.obviousSubset);

val locSimp = fn : int option -> reg -> bool * reg

- locSimp NONE (Reg.fromString "% + 0*0(0 + 1)* + 1*1(0 + 1)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*

val it = () : unit

- locSimp NONE (Reg.fromString "% + 1*0(0 + 1)* + 0*1(0 + 1)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*

val it = () : unit

- locSimp NONE (Reg.fromString "(1 + 00*1)*00*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

(0 + 1)*0

val it = () : unit

- Reg.locallySimplifyTrace

= (NONE, Reg.obviousSubset)

= (Reg.fromString "1*(01*01*)*");

considered all 10 structural reorganizations of 1*(01*01*)*

1*(01*01*)* transformed by structural rule 4 at position [2, 1] to

1*((01*)01*)* transformed by structural rule 4 at position [2, 1]

to 1*(((01*)0)1*)* transformed by reduction rule 14 at position

[2] to 1*(% + ((01*)0)((01*)0 + 1)*) weakly simplifies to

1*(% + 01*0(1 + 01*0)*)

116 Regular Languages

considered all 40 structural reorganizations of

1*(% + 01*0(1 + 01*0)*)

1*(% + 01*0(1 + 01*0)*) transformed by structural rule 4 at

position [2, 2, 2] to 1*(% + 0(1*0)(1 + 01*0)*) transformed by

structural rule 4 at position [2, 2] to 1*(% + (01*0)(1 + 01*0)*)

transformed by reduction rule 23 at position [] to (1 + 01*0)*

considered all 4 structural reorganizations of (1 + 01*0)*

(1 + 01*0)* is locally simplified

val it = (true,-) : bool * reg

For even fairly small regular expressions, running through all the structural
reorganizations can take prohibitively long. So, one often has to bound the
number of such reorganizations, as in:

- val reg = Reg.input "";

@ 1 + (% + 0 + 2)(% + 0 + 2)*1 +

@ (1 + (% + 0 + 2)(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)

@ (% + 0 + 2 + 1(% + 0 + 2)*1)*

@ .

val reg = - : reg

- Reg.equal(Reg.weaklySimplify reg, reg);

val it = true : bool

- val (b’, reg’) = locSimp (SOME 10) reg;

val b’ = false : bool

val reg’ = - : reg

- Reg.output("", reg’);

(0 + 2)*1(0 + 2 + 1(0 + 2)*1)*

val it = () : unit

- val (b’’, reg’’) = locSimp (SOME 1000) reg’;

val b’’ = true : bool

val reg’’ = - : reg

- Reg.output("", reg’’);

(0 + 2)*1(0 + 2 + 1(0 + 2)*1)*

val it = () : unit

Note that, in this transcript, reg’ turns out to be locally simplified, despite the
fact that b’ is false.

Our global simplification algorithm comes in two variants, a non-distributive
one, which doesn’t use the distributive rules, and a distributive one, which does.
Given a boolean b, a conservative approximation to subset testing sub, and a
regular expression α, we say that α is globally simplified with respect to b and sub
iff no strictly simpler regular expression can be found by an arbitrary number
of applications of weak simplification, structural rules, reduction rules and—if
b = true—distributive rules.

The global simplification of a regular expression α with respect to a boolean
b and conservative approximation to subset testing sub consists of generating
the set X of all regular expressions β that can formed from α by an arbitrary

3.3 Simplification of Regular Expressions 117

number of applications of weak simplification, the structural rules, reduction
rules, and—in the case of the distributive variant—the distributive ones. The
simplest element of X is then selected (when there isn’t a unique simplest el-
ement, the smallest of the simplest elements—in our total ordering on regular
expressions—is selected). (A proof that the generation of X terminates even in
the distributive case will follow.)

Of course, this algorithm is much less efficient than the local one, but by
revisiting choices, it is capable of producing simpler answers.

We define a function/algorithm

globallySimplify ∈ Bool× (Reg ×Reg→Bool)→Reg→Reg

by: for all b ∈ Bool, conservative approximation to subset testing sub, and
α ∈ Reg, globallySimplify (b, sub)α is the result of running our global simpli-
fication algorithm on α, including the distributive rules iff b = true, and using
sub as our conservative approximation to subset testing.

Theorem 3.3.28
For all b ∈ Bool, conservative approximations to subset testing sub, and α ∈
Reg:

• globallySimplify (b, sub)α is globally simplified with respect to b and
sub;

• globallySimplify (b, sub)α is equivalent to α;

• alphabet(globallySimplify (b, sub)α) ⊆ alphabetα; and

• globallySimplify (b, sub)α ≤simp α.

The Forlan module Reg provides the following functions relating to global
simplification:

val globallySimplified :

bool * (reg * reg -> bool) -> reg -> bool

val globallySimplifyTrace :

int option * bool * (reg * reg -> bool) -> reg -> bool * reg

val globallySimplify :

int option * bool * (reg * reg -> bool) -> reg -> bool * reg

The function globallySimplify takes in a boolean b and a conservative ap-
proximation to subset testing sub and returns a function that tests whether a
regular expression is globally simplified with respect to b and sub. The func-
tion globallySimplifyTrace implements globallySimplify. It emits trac-
ing messages explaining its operation, and takes in an extra argument of type
int option, and produces an extra result of type bool. If this argument is
NONE, then it runs as does globallySimplify, and the boolean result is always

118 Regular Languages

true. But if it is SOME n, for n ≥ 1, then at most n elements of the set X
are generated, before picking the simplest one, and the boolean result is false if
this n isn’t enough to generate all of X. The function globallySimplify works
identically, except it doesn’t issue tracing messages.

For even quite small regular expressions, globallySimplified will fail to
run to completion in an acceptable time-frame, and one will have to bound the
size of the set X in order for globallySimplify and globallySimplifyTrace

to run to completion in an acceptable time-frame.
Here are some examples of how these functions can be used.

- Reg.globallySimplifyTrace

= (NONE, false, Reg.obviousSubset)

= (Reg.fromString "(00*1)*");

considering candidates with explanations of length 0

simplest result now: (00*1)*

considering candidates with explanations of length 1

simplest result now: (00*1)* transformed by reduction rule 16 at

position [] to % + 0(0 + 10)*1

considering candidates with explanations of length 2

simplest result now: (00*1)* transformed by reduction rule 16 at

position [] to % + 0(0 + 10)*1 transformed by reduction rule 22 at

position [2, 2, 1, 1] to % + 0((% + 1)0)*1

considering candidates with explanations of length 3

considering candidates with explanations of length 4

considering candidates with explanations of length 5

considering candidates with explanations of length 6

considering candidates with explanations of length 7

search completed after considering 36 candidates with maximum size

12

(00*1)* transformed by reduction rule 16 at position [] to

% + 0(0 + 10)*1 transformed by reduction rule 22 at position

[2, 2, 1, 1] to % + 0((% + 1)0)*1 is globally simplified

val it = (true,-) : bool * reg

- locSimp NONE (Reg.fromString "(00*11*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 00*1(% + (0 + 1)*1)

val it = () : unit

- fun globSimp(nOpt, b) =

= Reg.globallySimplify(nOpt, b, Reg.obviousSubset);

val globSimp = fn : int option * bool -> reg -> bool * reg

- globSimp (NONE, false) (Reg.fromString "(00*11*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 0(0 + 1)*1

val it = () : unit

Finally, here are two examples showing how using the distributive rules can make
a difference:

3.3 Simplification of Regular Expressions 119

- globSimp (NONE, false) (Reg.fromString "% + 0*(0 + 1)");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 0*(0 + 1)

val it = () : unit

- Reg.globallySimplifyTrace

= (NONE, true, Reg.obviousSubset)

= (Reg.fromString "% + 0*(0 + 1)");

considering candidates with explanations of length 0

simplest result now: % + 0*(0 + 1)

considering candidates with explanations of length 1

considering candidates with explanations of length 2

considering candidates with explanations of length 3

considering candidates with explanations of length 4

simplest result now: % + 0*(0 + 1) transformed by distributive

rule 1 at position [2] to % + 0*0 + 0*1 transformed by structural

rule 2 at position [] to (% + 0*0) + 0*1 transformed by reduction

rule 26 at position [1] to 0* + 0*1 transformed by reduction rule

21 at position [] to 0*(% + 1)

considering candidates with explanations of length 5

considering candidates with explanations of length 6

considering candidates with explanations of length 7

considering candidates with explanations of length 8

considering candidates with explanations of length 9

considering candidates with explanations of length 10

considering candidates with explanations of length 11

search completed after considering 76 candidates with maximum size

11

% + 0*(0 + 1) transformed by distributive rule 1 at position [2]

to % + 0*0 + 0*1 transformed by structural rule 2 at position []

to (% + 0*0) + 0*1 transformed by reduction rule 26 at position

[1] to 0* + 0*1 transformed by reduction rule 21 at position [] to

0*(% + 1) is globally simplified

val it = (true,-) : bool * reg

- globSimp (NONE, false) (Reg.fromString "(0(0(0 + 1))*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 0(0(% + 0 + 1))*

val it = () : unit

- globSimp (NONE, true) (Reg.fromString "(0(0(0 + 1))*)*");

val it = (true,-) : bool * reg

- Reg.output("", #2 it);

% + 0(0(% + 1))*

val it = () : unit

120 Regular Languages

3.3.4 Notes

Although books on formal language theory usually study various regular expres-
sion equivalences, we have gone much further, giving three at least partly novel
algorithms for regular expression simplification. Although many of the simplifi-
cation and structural rules used in the simplification algorithms are well-known,
some were invented, as was the concept of closure complexity.

3.4 Finite Automata and Labeled Paths

In this section, we: say what finite automata (FA) are, and show how they can
be processed using Forlan; say what labeled paths are, and show how they can
be processed using Forlan; and use the notion of labeled path to say what finite
automata mean.

3.4.1 Finite Automata

A finite automaton (FA) M consists of:

• a finite set QM of symbols (we call the elements of QM the states of M);

• an element sM of QM (we call sM the start state of M);

• a subset AM of QM (we call the elements of AM the accepting states of
M);

• a finite subset TM of { (q, x, r) | q, r ∈ QM and x ∈ Str } (we call the
elements of TM the transitions of M , and we often write (q, x, r) as

q
x

→ r

or q, x→ r).

We order transitions first by their left-hand sides, then by their middles, and
then by their right-hand sides, using our total orderings on symbols and strings.
This gives us a total ordering on transitions.

We often abbreviate QM , sM , AM and TM to Q, s, A and T , when it’s clear
which FA we are working with. Whenever possible, we will use the mathematical
variables p, q and r to name states. We write FA for the set of all finite automata,
which is a countably infinite set.

As an example, we can define an FA M as follows:

• QM = {A,B,C};

• sM = A;

3.4 Finite Automata and Labeled Paths 121

• AM = {A,C}; and

• TM = {(A, 1,A), (B, 11,B), (C, 111,C), (A, 0,B), (A, 2,B), (A, 0,C), (A, 2,C),
(B, 0,C), (B, 2,C)}.

Finite automata are nondeterministic machines that take strings as inputs.
When a machine is run on a given input, it begins in its start state.

If, after some number of steps, the machine is in state p, the machine’s
remaining input begins with x, and one of the machine’s transitions is p, x→ q,
then the machine may read x from its input and switch to state q. If p, y → r
is also a transition, and the remaining input begins with y, then consuming y
and switching to state r will also be possible, etc. The case when x = %, i.e.,
when we have a %-transition, is interesting: a state switch can happen without
reading anything.

If at least one execution sequence consumes all of the machine’s input and
takes it to one of its accepting states, then we say that the input is accepted
by the machine; otherwise, we say that the input is rejected. The meaning of a
machine is the language consisting of all strings that it accepts.

Here is how our example FA M can be expressed in Forlan’s syntax:

{states}

A, B, C

{start state}

A

{accepting states}

A, C

{transitions}

A, 1 -> A; B, 11 -> B; C, 111 -> C;

A, 0 -> B; A, 2 -> B;

A, 0 -> C; A, 2 -> C;

B, 0 -> C; B, 2 -> C

Since whitespace characters are ignored by Forlan’s input routines, the preceding
description of M could have been formatted in many other ways. States are
separated by commas, and transitions are separated by semicolons. The order
of states and transitions is irrelevant.

Transitions that only differ in their right-hand states can be merged into
single transition families. E.g., we can merge

A, 0 -> B

and

A, 0 -> C

into the transition family

A, 0 -> B | C

122 Regular Languages

The Forlan module FA defines an abstract type fa (in the top-level environ-
ment) of finite automata, as well as a large number of functions and constants
for processing FAs, including:

val input : string -> fa

val output : string * fa -> unit

Remember that it’s possible to read input from a file, and to write output
to a file. During printing, Forlan merges transitions into transition families
whenever possible.

Suppose that our example FA is in the file 3.4-fa. We can input this FA
into Forlan, and then output it to the standard output, as follows:

- val fa = FA.input "3.4-fa";

val fa = - : fa

- FA.output("", fa);

{states} A, B, C {start state} A {accepting states} A, C

{transitions}

A, 0 -> B | C; A, 1 -> A; A, 2 -> B | C; B, 0 -> C; B, 2 -> C;

B, 11 -> B; C, 111 -> C

val it = () : unit

We also make use of graphical notation for finite automata. Each of the
states of a machine is circled, and its accepting states are double-circled. The
machine’s start state is pointed to by an arrow coming from “Start”, and each
transition p, x→ q is drawn as an arrow from state p to state q that is labeled
by the string x. Multiple labeled arrows from one state to another can be
abbreviated to a single arrow, whose label consists of the comma-separated list
of the labels of the original arrows.

Here is how our FA M can be described graphically:

0, 2

11

0, 2
Start A B C

0, 2

1111

The Java program JForlan, can be used to view and edit finite automata.
It can be invoked directly, or run via Forlan. See the Forlan website for more
information.

We define a function alphabet ∈ FA → Alp by: for all M ∈ FA,
alphabetM is { a ∈ Sym | there are q, x, r such that q, x → r ∈ TM and
a ∈ alphabetx }. I.e., alphabetM is all of the symbols appearing in the
strings of M ’s transitions. We say that alphabetM is the alphabet of M . For
example, the alphabet of our example FA M is {0, 1, 2}.

We say that an FA M is a sub-FA of an FA N iff:

3.4 Finite Automata and Labeled Paths 123

• QM ⊆ QN ;

• sM = sN ;

• AM ⊆ AN ; and

• TM ⊆ TN .

Thus M = N iff M is a sub-FA of N and N is a sub-FA of M .
The Forlan module FA contains the functions

val equal : fa * fa -> bool

val numStates : fa -> int

val numTransitions : fa -> int

val alphabet : fa -> sym set

val sub : fa * fa -> bool

The function equal tests whether two FAs are equal, i.e., whether they have
the same states, start states, accepting states and transitions. The functions
numStates and numTransitions return the numbers of states and transitions,
respectively, of an FA. The function alphabet returns the alphabet of an FA.
And the function sub tests whether a first FA is a sub-FA of a second FA.

For example, we can continue out Forlan session as follows:

- val fa’ = FA.input "";

@ {states} A, B, C

@ {start state} A

@ {accepting states} C

@ {transitions}

@ A, 0 -> B; A, 2 -> B; A, 0 -> C; A, 2 -> C;

@ B, 0 -> C; B, 2 -> C

@ .

val fa’ = - : fa

- FA.equal(fa’, fa);

val it = false : bool

- FA.sub(fa’, fa);

val it = true : bool

- FA.sub(fa, fa’);

val it = false : bool

- FA.numStates fa;

val it = 3 : int

- FA.numTransitions fa;

val it = 9 : int

- SymSet.output("", FA.alphabet fa);

0, 1, 2

val it = () : unit

124 Regular Languages

3.4.2 Labeled Paths and FA Meaning

We will formally explain when strings are accepted by finite automata using
the notion of a labeled path. A labeled path consists of a pair (xs , q), where
xs ∈ List(Sym × Str) and q ∈ Sym, and the set LP of labeled paths is
List(Sym× Str)× Sym. Clearly, LP is countably infinite. We typically write
([(q1, x1), (q2, x2) . . . , (qn, xn)], qn + 1) ∈ LP as:

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1

or

q1, x1 ⇒ q2, x2 ⇒ · · · qn, xn ⇒ qn+1.

This path describes a way of getting from state q1 to state qn+1 in some unspec-
ified machine, by reading the strings x1, . . . , xn from the machine’s input. We
start out in state q1, make use of the transition q1, x1 → q2 to read x1 from the
input and switch to state q2, etc.

Let lp = (xs , q) ∈ LP. We say that:

• the start state of lp (startState lp) is the left-hand side of the first element
of xs , if xs is nonempty, and is q, if xs is empty;

• the end state of lp (endState lp) is q;

• the length of lp (|lp|) is |xs |; and

• the label of lp (label lp) is the result of concatenating the right-hand sides
of xs (%, if xs is empty).

This defines functions startState ∈ LP→ Sym, endState ∈ LP→ Sym and
label ∈ LP→ Str. For example A = ([],A) is a labeled path whose start and
end states are both A, whose length is 0, and whose label is %. And

A
0

⇒ B
11

⇒ B
2

⇒ C

is a labeled path whose start state is A, end state is C, length is 3, and label is
(0)(11)(2) = 0112.

We can join compatible paths together. Let Join = { (lp1, lp2) ∈ LP×LP |
endState lp1 = startState lp2 }, and define join ∈ Join → LP by: for all
xs , ys ∈ List(Sym × Str) and q, r ∈ Sym, if ((xs , q), (ys , r)) ∈ Join, then
join((xs , q), (ys , r)) = (xs @ ys , r). E.g., if lp1 and lp2 are defined by

lp1 = A
0

⇒ B
11

⇒ B, and lp2 = B
11

⇒ B
2

⇒ C,

3.4 Finite Automata and Labeled Paths 125

then join(lp1, lp2) is

A
0

⇒ B
11

⇒ B
11

⇒ B
2

⇒ C.

A labeled path (xs , q) ∈ LP is valid for an FA M iff

• for all i ∈ [1 : |xs | − 1], ♯1(xs i), ♯2(xs i)→ ♯1(xs(i+ 1));

• if xs is nonempty, then ♯1(xs |xs |), ♯2(xs |xs |)→ q; and

• q ∈ QM .

(The last of these conditions is redundant whenever xs is nonempty.)
Recall our example FA M :

0, 2

11

0, 2
Start A B C

0, 2

1111

The labeled path A = ([],A) is valid for M , since A ∈ QM . And

A
0

⇒ B
11

⇒ B
2

⇒ C

is valid for M , since A
0

→ B, B
11

→ B and B
2

→ C are in TM (and C ∈ QM). But
the labeled path

A
%
⇒ A

is not valid for M , since A,%→ A 6∈ TM .
A string w is accepted by a finite automaton M iff there is a labeled path lp

such that

• lp is valid for M ;

• the label of lp is w;

• the start state of lp is the start state of M ; and

• the end state of lp is an accepting state of M .

126 Regular Languages

For example, 0112 is accepted by M because of the labeled path

A
0

⇒ B
11

⇒ B
2

⇒ C,

since this labeled path is valid for M , is labeled by 0112 = (0)(11)(2), has a
start state (A) that is M ’s start state, and has an end state (C) that is one of
M ’s accepting states.

Clearly, if w is accepted by M , then alphabetw ⊆ alphabetM . Thus
{w ∈ Str | w is accepted by M } ⊆ (alphabetM)∗, so we may define the
language accepted by a finite automaton M (L(M)) to be

{w ∈ Str | w is accepted by M }.

Furthermore:

Proposition 3.4.1
Suppose M is a finite automaton. Then alphabet(L(M)) ⊆ alphabetM .

In other words, every symbol of every string that is accepted by M comes
from the alphabet of M , i.e., appears in the label of one of M ’s transitions.

Going back to our example, we have that

L(M) = {1}∗ ∪

{1}∗{0, 2}{11}∗{0, 2}{111}∗ ∪

{1}∗{0, 2}{111}∗ .

For example, %, 11, 110112111 and 2111111 are accepted by M . But 21112 and
2211 are not accepted by M .

Suppose that M is a sub-FA of N . Then any labeled path that is valid for
M will also be valid for N . Furthermore, we have that:

Proposition 3.4.2
If M is a sub-FA of N , then L(M) ⊆ L(N).

We say that finite automata M and N are equivalent iff L(M) = L(N). In
other words, M and N are equivalent iff M and N accept the same language.
We define a relation ≈ on FA by: M ≈ N iff M and N are equivalent. It is
easy to see that ≈ is reflexive on FA, symmetric and transitive.

The Forlan module LP defines an abstract type lp (in the top-level environ-
ment) of labeled paths, as well as various functions for processing labeled paths,
including:

val input : string -> lp

val output : string * lp -> unit

val equal : lp * lp -> bool

val startState : lp -> sym

3.4 Finite Automata and Labeled Paths 127

val endState : lp -> sym

val label : lp -> str

val length : lp -> int

val join : lp * lp -> lp

The function equal tests whether two labeled paths are equal. The functions
startState, endState, label and length return the start state, end state,
label and length, respectively, of a labeled path. And the function join joins
two compatible paths, and issues an error message when given paths that are
incompatible.

The module FA also defines the functions

val checkLP : fa -> lp -> unit

val validLP : fa -> lp -> bool

for checking whether a labeled path is valid in a finite automaton. These are
curried functions—functions that return functions as their results. The function
checkLP takes in an FA M and returns a function that checks whether a labeled
path lp is valid for M . When lp is not valid for M , the function explains why
it isn’t; otherwise, it prints nothing. And, the function validLP takes in an FA
M and returns a function that tests whether a labeled path lp is valid for M ,
silently returning true, if it is, and silently returning false, otherwise.

Here are some examples of labeled path and FA processing (fa is still our
example FA):

- val lp = LP.input "";

@ A, 1 => A, 0 => B, 11 => B, 2 => C, 111 => C

@ .

val lp = - : lp

- Sym.output("", LP.startState lp);

A

val it = () : unit

- Sym.output("", LP.endState lp);

C

val it = () : unit

- LP.length lp;

val it = 5 : int

- Str.output("", LP.label lp);

10112111

val it = () : unit

- val checkLP = FA.checkLP fa;

val checkLP = fn : lp -> unit

- checkLP lp;

val it = () : unit

- val lp’ = LP.fromString "A";

val lp’ = - : lp

- LP.length lp’;

val it = 0 : int

128 Regular Languages

- Str.output("", LP.label lp’);

%

val it = () : unit

- checkLP lp’;

val it = () : unit

- val lp’’ = LP.input "";

@ A, % => A, 1 => B

@ .

val lp’’ = - : lp

- checkLP lp’’;

invalid transition: "A, % -> A"

uncaught exception Error

- val lp’’’ = LP.input "";

@ B, 2 => C, 34 => D

@ .

val lp’’’ = - : lp

- LP.output("", LP.join(lp’’, lp’’’));

A, % => A, 1 => B, 2 => C, 34 => D

val it = () : unit

- LP.output("", LP.join(lp’’’, lp’’));

incompatible labeled paths

uncaught exception Error

3.4.3 Design of Finite Automata

In this subsection, we give two examples of finite automata design. First, let’s
find a finite automaton that accepts the set of all strings of 0’s and 1’s with
an even number of 0’s. Thus, we should be looking for an FA whose alphabet
is {0, 1}∗. It seems reasonable that our machine have two states: an accepting
state A corresponding to the strings of 0’s and 1’s with an even number of zeros,
and a state B corresponding to the strings of 0’s and 1’s with an odd number of
zeros. Processing a 1 in either state should cause us to stay in that state, but
processing a 0 in one of the states should cause us to switch to the other state.
The above considerations lead us to the FA

1

Start A

1

0

0

B

For the second example, let’s find an FA that accepts the language X =
{w ∈ {0, 1, 2}∗ | for all substrings x of w, if |x| = 2, then x ∈ {01, 12, 20} }. We
have that 0, 01, 012, 0120, etc., are in X, and so are 1, 12, 120, 1201, etc., and
2, 20, 201, 2012, etc. On the other hand, no string containing 00, 02, 11, 10, 22
or 20 is in X. The above observations suggest that part of our machine should
look like:

3.4 Finite Automata and Labeled Paths 129

1

2

0
B C D

But how should the machine get started? The simplest approach is to make use
of %-transitions from the start state, giving us the FA

2

D

%

%

% 0

1

B

CAStart

Exercise 3.4.3
Let X = {w ∈ {0, 1}∗ | 010 is not a substring of w }. Find a finite automaton
M such that L(M) = X.

Exercise 3.4.4
Let

A = {001, 011, 101, 111}, and

B = {w ∈ {0, 1}∗ | for all x, y ∈ {0, 1}∗, if w = x0y, then there is a z ∈ A

such that z is a prefix of y }.

Find a finite automaton M such that L(M) = B. Hint: see the second example
of Subsection 3.2.2.

3.4.4 Notes

Finite automata are normally defined via transition functions, δ, which is sim-
ple to do for deterministric finite automata, but increasingly complicated as one
adds degrees of nontermininism. Furthermore, this approach means that a de-
terministic finite automaton (DFA) is not a nondeterministic finite automaton
(NFA), and that an NFA is not an ǫ-NFA, because the transition function of a
DFA is not one for an NFA, and the transition function for an NFA is not one
of an ǫ-NFA. And formalizing our FAs, whose transition labels can be strings
of length greater than one, is very messy if done via transition functions, which
probably accounts for why such machines are not normally considered. Fur-
thermore, in the standard approach, to say when strings are accepted by finite

130 Regular Languages

automata, one must first extend the different kinds of transition functions to
work on strings.

In contrast, our approach is very simple. Instead of transition functions,
we work with finite sets of transitions, enabling us to define the deterministric
finite automata, nondeterministic finite automata, and nondeterministic with
%-moves (which we call empty-string finite automata) as restrictions on finite
automata. Furthermore, using labeled paths to say when—and how—strings
are accepted by finite automata is simple, natural and diagrammatic. It’s the
analogue of using parse trees to say when—and how—strings are generated by
grammars.

3.5 Isomorphism of Finite Automata

3.5.1 Definition and Algorithm

Let M and N be the finite automata

(N)

C

1 1

(M)

C

0 1

Start AStart A B
0

0

B
1

0

How are M and N related? Although they are not equal, they do have the same
“structure”, in that M can be turned into N by replacing A, B and C by A, C
and B, respectively. When FAs have the same structure, we will say they are
“isomorphic”.

In order to say more formally what it means for two FAs to be isomorphic, we
define the notion of an isomorphism from one FA to another. An isomorphism
h from an FA M to an FA N is a bijection from QM to QN such that:

• h sM = sN ;

• {h q | q ∈ AM } = AN ; and

• { (h q), x → (h r) | q, x→ r ∈ TM } = TN .

We define a relation iso on FA by: M iso N iff there is an isomorphism from
M to N . We say that M and N are isomorphic iff M isoN .

Consider our example FAs M and N , and let h be the function

{(A,A), (B,C), (C,B)}.

Then it is easy to check that h is an isomorphism from M to N . Hence M isoN .

3.5 Isomorphism of Finite Automata 131

Proposition 3.5.1
The relation iso is reflexive on FA, symmetric and transitive.

Proof. If M is an FA, then idM is an isomorphism from M to M .
If M,N are FAs, and h is a isomorphism from M to N , then h−1 is an

isomorphism from N to M .
If M1,M2,M3 are FAs, f is an isomorphism from M1 to M2, and g is an

isomorphism from M2 to M3, then g ◦ f an isomorphism from M1 to M3. ✷

Next, we see that, if M and N are isomorphic, then every string accepted
by M is also accepted by N .

Proposition 3.5.2
Suppose M and N are isomorphic FAs. Then L(M) ⊆ L(N).

Proof. Let h be an isomorphism from M to N . Suppose w ∈ L(M). Then,
there is a labeled path

lp = q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

such that w = x1x2 · · · xn, lp is valid for M , q1 = sM and qn+1 ∈ AM . Let

lp ′ = h q1
x1

⇒ h q2
x2

⇒ · · · h qn
xn

⇒ h qn+1.

Then the label of lp′ is w, lp′ is valid for N , h q1 = h sM = sN and h qn+1 ∈ AN ,
showing that w ∈ L(N). ✷

A consequence of the two preceding propositions is that isomorphic FAs are
equivalent. Of course, the converse is not true, in general, since there are many
FAs that accept the same language and yet don’t have the same structure.

Proposition 3.5.3
Suppose M and N are isomorphic FAs. Then M ≈ N .

Proof. Since M isoN , we have that N isoM , by Proposition 3.5.1. Thus, by
Proposition 3.5.2, we have that L(M) ⊆ L(N) ⊆ L(M). Hence L(M) = L(N),
i.e., M ≈ N . ✷

The function renameStates takes in a pair (M,f), where M ∈ FA and f
is a bijection from QM to some set of symbols, and returns the FA produced
from M by renaming M ’s states using the bijection f .

Proposition 3.5.4
Suppose M is an FA and f is a bijection from QM to some set of symbols. Then
renameStates(M,f) isoM .

132 Regular Languages

The following function is a special case of renameStates. The function
renameStatesCanonically ∈ FA→ FA renames the states of an FA M to:

• A, B, etc., when the automaton has no more than 26 states (the smallest
state of M will be renamed to A, the next smallest one to B, etc.); or

• 〈1〉, 〈2〉, etc., otherwise.

Of course, the resulting automaton will always be isomorphic to the original one.
Next, we consider an algorithm that finds an isomorphism from an FA M

to an FA N , if one exists, and that indicates that no such isomorphism exists,
otherwise.

Our algorithm is based on the following lemma.

Lemma 3.5.5
Suppose that h is a bijection from QM to QN . Then

{h q
x

→ h r | q
x

→ r ∈ TM } = TN

iff, for all (q, r) ∈ h and x ∈ Str, there is a subset of h that is a bijection from

{ p ∈ QM | q
x

→ p ∈ TM }

to

{ p ∈ QN | r
x

→ p ∈ TN }.

If any of the following conditions are true, then the algorithm reports that
there is no isomorphism from M to N :

• |QM | 6= |QN |;

• |AM | 6= |AN |;

• |TM | 6= |TN |;

• sM ∈ AM , but sN 6∈ AN ; and

• sN ∈ AN , but sM 6∈ AM .

Otherwise, it calls its main, recursive function, findIso.
The function findIso is called with an argument (f, [C1, . . . , Cn]), where:

• f is a bijection from a subset of QM to a subset of QN , and

• the Ci are constraints of the form (X,Y), where X ⊆ QM , Y ⊆ QN and
|X| = |Y |.

3.5 Isomorphism of Finite Automata 133

It returns an element of OptionX, where X is the set of bijections from QM to
QN . none is returned to indicate failure, and some h is returned when it has
produced the bijection h. We say that a bijection satisfies a constraint (X,Y)
iff it has a subset that is a bijection from X to Y .

We say that the weight of a constraint (X,Y) is 3|X|. Thus, we have the
following facts:

• If (X,Y) is a constraint, then its weight is at least 30 = 1.

• If ({p} ∪X, {q} ∪ Y) is a constraint, p 6∈ X, q 6∈ Y and |X| ≥ 1, then the
weight of ({p} ∪X, {q} ∪ Y) is 31+|X| = 3 · 3|X|, the weight of ({p}, {q}) is
31 = 3, and the weight of (X,Y) is 3|X|. Because |X| ≥ 1, it follows that
the sum of the weights of ({p}, {q}) and (X,Y) (3 + 3|X|) is strictly less
than the weight of ({p} ∪X, {q} ∪ Y).

Each argument to a recursive call of findIso will be strictly smaller than
the argument to the original call in the termination relation in which argument
(f, [C1, . . . , Cn]) is less than argument (f ′, [C ′

1, . . . , C
′
m]) iff either:

• |f | > |f ′| (remember that |f | ≤ |QM | = |QN |); or

• |f | = |f ′| but the sum of the weights of the constraints C1, . . . , Cn is
strictly less than the sum of the weights of the constraints C ′

1, . . . , C
′
m.

Thus every call of findIso will terminate.
When findIso is called with argument (f, [C1, . . . , Cn]), the following prop-

erty, which we call (†), will hold: for all bijections h from a subset of QM to a
subset of QN , if h ⊇ f and h satisfies all of the Ci’s, then:

• h is a bijection from QM to QN ;

• h sM = sN ;

• {h q | q ∈ AM } = AN ; and

• for all (q, r) ∈ f and x ∈ Str, there is a subset of h that is a bijection from
{ p ∈ QM | q, x→ p ∈ TM } to { p ∈ QN | r, x→ p ∈ TN }.

Thus, if findIso is called with a bijection f and an empty list of constraints, it
will follow, by Lemma 3.5.5, that f is an isomorphism from M to N .

Initially, the algorithm calls findIso with the initial argument :

(∅, [({sM}, {sN}), (U, V), (X,Y)]),

where U = AM − {sM}, V = AN − {sN}, X = (QM − AM) − {sM} and
Y = (QN −AN)− {sN}.

If findIso is called with argument (f, []), then it returns some f .

134 Regular Languages

Otherwise, if findIso is called with argument (f, [(∅, ∅), C2, . . . , Cn]), then it
calls itself recursively with argument (f, [C2, . . . , Cn]). (The size of the bijection
has been preserved, but the sum of the weights of the constraints has gone down
by one.)

Otherwise, if findIso is called with argument (f, [({q}, {r}), C2, . . . , Cn]),
then it proceeds as follows:

• If (q, r) ∈ f , then it calls itself recursively with argument (f, [C2, . . . , Cn])
and returns what the recursive call returns. (The size of the bijection has
been preserved, but the sum of the weights of the constraints has gone
down by three.)

• Otherwise, if q ∈ domain f or r ∈ range f , then findIso returns none.

• Otherwise, it works its way through the strings appearing in the transitions
of M and N , forming a list of new constraints, C ′

1, . . . , C
′
m. Given such

a string, x, it lets Ax = { p ∈ QM | q, x → p ∈ TM } and Bx = { p ∈
QN | r, x → p ∈ TN }. If |Ax| 6= |Bx|, then it returns none. Otherwise,
it adds the constraint (Ax, Bx) to our list of new constraints. When all
such strings have been exhausted, it calls itself recursively with argument
(f ∪{(q, r)}, [C ′

1, . . . , C
′
m, C2, . . . , Cn]) and returns what this recursive call

returns. (The size of the bijection has been increased by one.)

Otherwise, findIso has been called with argument (f, [(A,A′), C2, . . . , Cn]),
where |A| > 1, and it proceeds as follows. It picks the smallest symbol q ∈ A,
and lets B = A − {q}. Then, it works its way through the elements of A′.
Given r ∈ A′, it lets B′ = A′ − {r}. Then, it tries calling itself recursively
with argument (f, [({q}, {r}), (B,B′), C2, . . . , Cn]). (The size of the bijection
has been preserved, but the sum of the sizes of the weights of the constraints
has gone down by 2 · 3|B1| − 3 ≥ 3.) If this call returns a result of form someh,
then it returns this to its caller. But if the call returns none, it tries the next
element of A′. If it exhausts the elements of A′, then it returns none.

Lemma 3.5.6
If findIso is called with an argument (f, [C1, . . . , Cn]) satisfying property (†),
then it returns none, if there is no isomorphism from M to N that is a superset
of f and satisfies the constaints C1, . . . , Cn, and returns some h where h is such
an isomorphism, otherwise.

Proof. By well-founded induction on our termination relation. I.e., when
proving the result for (f, [C1, . . . , Cn]), we may assume that the result holds
for all arguments (f ′, [C ′

1, . . . , C
′
m]) that are strictly smaller in our termination

ordering. ✷

3.5 Isomorphism of Finite Automata 135

Theorem 3.5.7
If findIso is called with its initial argument, then it returns none, if there is
no isomorphism from M to N , and returns someh where h is an isomorphism
from M to N , otherwise.

Proof. Follows easily from Lemma 3.5.6. ✷

3.5.2 Isomorphism Finding/Checking in Forlan

The Forlan module FA also defines the functions

val isomorphism : fa * fa * sym_rel -> bool

val findIsomorphism : fa * fa -> sym_rel

val isomorphic : fa * fa -> bool

val renameStates : fa * sym_rel -> fa

val renameStatesCanonically : fa -> fa

The function isomorphism checks whether a relation on symbols is an isomor-
phism from one FA to another. The function findIsomorphism tries to find an
isomorphism from one FA to another; it issues an error message if there isn’t one.
The function isomorphic checks whether two FAs are isomorphic. The function
renameStates issues an error message if the supplied relation isn’t a bijection
from the set of states of the supplied FA to some set; otherwise, it returns the
result of renameStates. And the function renameStatesCanonically acts like
renameStatesCanonically.

Suppose fa1 and fa2 have been bound to our example our example finite
automata M and N :

(N)

C

1 1

(M)

C

0 1

Start AStart A B
0

0

B
1

0

Then, here are some example uses of the above functions:

- val rel = FA.findIsomorphism(fa1, fa2);

val rel = - : sym_rel

- SymRel.output("", rel);

(A, A), (B, C), (C, B)

val it = () : unit

- FA.isomorphism(fa1, fa2, rel);

val it = true : bool

- FA.isomorphic(fa1, fa2);

136 Regular Languages

val it = true : bool

- val rel’ = FA.findIsomorphism(fa1, fa1);

val rel’ = - : sym_rel

- SymRel.output("", rel’);

(A, A), (B, B), (C, C)

val it = () : unit

- FA.isomorphism(fa1, fa1, rel’);

val it = true : bool

- FA.isomorphism(fa1, fa2, rel’);

val it = false : bool

- val rel’’ = SymRel.input "";

@ (A, 2), (B, 1), (C, 0)

@ .

val rel’’ = - : sym_rel

- val fa3 = FA.renameStates(fa1, rel’’);

val fa3 = - : fa

- FA.output("", fa3);

{states} 0, 1, 2 {start state} 2 {accepting states} 0, 1, 2

{transitions} 0, 1 -> 1; 2, 0 -> 1 | 2; 2, 1 -> 0

val it = () : unit

- val fa4 = FA.renameStatesCanonically fa3;

val fa4 = - : fa

- FA.output("", fa4);

{states} A, B, C {start state} C {accepting states} A, B, C

{transitions} A, 1 -> B; C, 0 -> B | C; C, 1 -> A

val it = () : unit

- FA.equal(fa4, fa1);

val it = false : bool

- FA.isomorphic(fa4, fa1);

val it = true : bool

3.5.3 Notes

Books on formal language theory rarely formalize the isomorphism of finite au-
tomata, although most note or prove that the minimization of deterministic
finite automata yields a result that is unique up to the renaming of states. Our
algorithm for trying to find an isomorphism between finite automata will be
unsurprising to those familiar with graph algorithms.

3.6 Checking Acceptance and Finding Accepting
Paths

In this section we study algorithms for checking whether a string is accepted by
a finite automaton, and for finding a labeled path that explains why a string is
accepted by a finite automaton.

3.6 Checking Acceptance and Finding Accepting Paths 137

3.6.1 Processing a String from a Set of States

Suppose M is a finite automaton. We define a function ∆M ∈ P QM × Str→
P QM by: ∆M (P,w) is the set of all r ∈ QM such that there is an lp ∈ LP such
that

• w is the label of lp;

• lp is valid for M ;

• the start state of lp is in P ; and

• r is the end state of lp.

In other words, ∆M (P,w) consists of all of the states that can be reached from
elements of P by labeled paths that are labeled by w and valid for M . When
the FA M is clear from the context, we sometimes abbreviate ∆M to ∆.

Suppose M is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

Then, ∆M({A}, 12111111) = {B,C}, since

A
1

⇒ A
2

⇒ B
11

⇒ B
11

⇒ B
11

⇒ B and A
1

⇒ A
2

⇒ C
111

⇒ C
111

⇒ C

are all of the labeled paths that are labeled by 12111111, valid in M and whose
start states are A. Furthermore, ∆M ({A,B,C}, 11) = {A,B}, since

A
1

⇒ A
1

⇒ A and B
11

⇒ B

are all of the labeled paths that are labeled by 11 and valid in M .
Suppose M is a finite automaton, P ⊆ QM and w ∈ Str. We can calculate

∆M (P,w) as follows.
Let S be the set of all suffixes of w. Given y ∈ S, we write pre y for the

unique x such that w = xy.
First, we generate the least subset X of QM × S such that:

(1) for all p ∈ P , (p,w) ∈ X; and

(2) for all q, r ∈ QM and x, y ∈ Str, if (q, xy) ∈ X and q, x → r ∈ TM , then
(r, y) ∈ X.

138 Regular Languages

We start by using rule (1), adding (p,w) to X, whenever p ∈ P . Then X (and
any superset of X) will satisfy property (1). Then, rule (2) is used repeatedly
to add more pairs to X. Since QM × S is a finite set, eventually X will satisfy
property (2).

If M is our example finite automaton, then here are the elements of X, when
P = {A} and w = 2111:

• (A, 2111);

• (B, 111), because of (A, 2111) and the transition A, 2→ B;

• (C, 111), because of (A, 2111) and the transition A, 2→C (now, we’re done
with (A, 2111));

• (B, 1), because of (B, 111) and the transition B, 11 → B (now, we’re done
with (B, 111));

• (C,%), because of (C, 111) and the transition C, 111→C (now, we’re done
with (C, 111)); and

• nothing can be added using (B, 1) and (C,%), and so we’ve found all the
elements of X.

The following lemma explains when pairs show up in X.

Lemma 3.6.1
For all q ∈ QM and y ∈ S,

(q, y) ∈ X iff q ∈ ∆M (P,pre y).

Proof. The “only if” (left-to-right) direction is by induction on X: we show
that, for all (q, y) ∈ X, q ∈ ∆M (P,pre(y)).

• Suppose p ∈ P . Then p ∈ ∆M (P,%). But pre(w) = %, so that p ∈
∆M (P,pre(w)).

• Suppose q, r ∈ QM , x, y ∈ Str, (q, xy) ∈ X and (q, x, r) ∈ TM . Assume
the inductive hypothesis: q ∈ ∆M(P,pre(xy)). Thus there is an lp ∈ LP
such that pre(xy) is the label of lp, lp is valid for M , the start state of lp
is in P , and q is the end state of lp. Let lp′ ∈ LP be the result of adding
the step q, x ⇒ r at the end of lp. Thus pre(y) is the label of lp′, lp ′ is
valid for M , the start state of lp′ is in P , and r is the end state of lp′,
showing that r ∈ ∆M (P,pre(y)).

For the ‘if” (right-to-left) direction, we have that there is a labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn−1

xn−1

⇒ qn,

3.6 Checking Acceptance and Finding Accepting Paths 139

that is valid for M and where pre(y) = x1x2 · · · xn−1, q1 ∈ P and qn = q. Since
q1 ∈ P and w = pre(y)y = x1x2 · · · xn−1y, we have that (q1, x1x2 · · · xn−1y) =
(q1, w) ∈ X. But (q1, x1, q2) ∈ TM , and thus (q2, x2 · · · xn−1y) ∈ X. Continuing
on in this way, (we could do this by mathematical induction), we finally get that
(q, y) = (qn, y) ∈ X. ✷

Lemma 3.6.2
For all q ∈ QM , (q,%) ∈ X iff q ∈ ∆M (P,w).

Proof. Suppose (q,%) ∈ X. Lemma 3.6.1 tells us that q ∈ ∆M (P,pre%).
But pre% = w, and thus q ∈ ∆M(P,w).

Suppose q ∈ ∆M (P,w). Since w = pre%, we have that q ∈ ∆M (P,pre%).
Lemma 3.6.1 tells us that (q,%) ∈ X. ✷

By Lemma 3.6.2, we have that

∆M (P,w) = { q ∈ QM | (q,%) ∈ X }.

Thus, we return the set of all states q that are paired with % in X.

3.6.2 Checking String Acceptance and Finding Accepting Paths

Proposition 3.6.3
Suppose M is a finite automaton. Then

L(M) = {w ∈ Str | ∆M ({sM}, w) ∩AM 6= ∅ }.

Proof. Suppose w ∈ L(M). Then w is the label of a labeled path lp such that
lp is valid in M , the start state of lp is sM and the end state of lp is in AM .
Let q be the end state of lp. Thus q ∈ ∆M ({sM}, w) and q ∈ AM , showing that
∆M ({sM}, w) ∩AM 6= ∅.

Suppose ∆M ({sM}, w) ∩ AM 6= ∅, so that there is a q such that q ∈
∆M ({sM}, w) and q ∈ AM . Thus w is the label of a labeled path lp such
that lp is valid in M , the start state of lp is sM , and the end state of lp is
q ∈ AM . Thus w ∈ L(M). ✷

According to Proposition 3.6.3, to check if a string w is accepted by a finite
automaton M , we simply use our algorithm to generate ∆M({sM}, w), and then
check if this set contains at least one accepting state.

Given a finite automaton M , subsets P,R of QM and a string w, how do
we search for a labeled path that is labeled by w, valid in M , starts from an
element of P , and ends with an element of R? What we need to do is associate
with each pair

(q, y)

140 Regular Languages

of the set X that we generate when computing ∆M (P,w) a labeled path lp such
that lp is labeled by pre(y), lp is valid in M , the start state of lp is an element of
P , and the end state of lp is q. If we process the elements of X in a breadth-first
(rather than depth-first) manner, this will ensure that these labeled paths are
as short as possible. As we generate the elements of X, we look for a pair of the
form (q,%), where q ∈ R. Our answer will then be the labeled path associated
with this pair.

The Forlan module FA also contains the following functions for processing
strings and checking string acceptance:

val processStr : fa -> sym set * str -> sym set

val accepted : fa -> str -> bool

The function processStr takes in a finite automaton M , and returns a function
that takes in a pair (P,w) and returns ∆M (P,w). And, the function accepted

takes in a finite automaton M , and returns a function that checks whether a
string x is accepted by M .

The Forlan module FA also contains the following functions for finding labeled
paths:

val findLP : fa -> sym set * str * sym set -> lp

val findAcceptingLP : fa -> str -> lp

The function findLP takes in a finite automaton M , and returns a function that
takes in a triple (P,w,R) and tries to find a labeled path lp that is labeled by
w, valid for M , starts out with an element of P , and ends up at an element of
R. It issues an error message when there is no such labeled path. The function
findAcceptingLP takes in a finite automaton M , and returns a function that
looks for a labeled path lp that explains why a string w is accepted by M . It
issues an error message when there is no such labeled path. The labeled paths
returned by these functions are always of minimal length.

Suppose fa is the finite automaton

0, 2

11

0, 2
Start A B C

0, 2

1111

We begin by applying our five functions to fa, and giving names to the resulting
functions:

- val processStr = FA.processStr fa;

val processStr = fn : sym set * str -> sym set

- val accepted = FA.accepted fa;

val accepted = fn : str -> bool

3.6 Checking Acceptance and Finding Accepting Paths 141

- val findLP = FA.findLP fa;

val findLP = fn : sym set * str * sym set -> lp

- val findAcceptingLP = FA.findAcceptingLP fa;

val findAcceptingLP = fn : str -> lp

Next, we’ll define a set of states and a string to use later:

- val bs = SymSet.input "";

@ A, B, C

@ .

val bs = - : sym set

- val x = Str.input "";

@ 11

@ .

val x = [-,-] : str

Here are some example uses of our functions:

- SymSet.output("", processStr(bs, x));

A, B

val it = () : unit

- accepted(Str.input "");

@ 12111111

@ .

val it = true : bool

- accepted(Str.input "");

@ 1211

@ .

val it = false : bool

- LP.output("", findLP(bs, x, bs));

B, 11 => B

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 12111111

@ .

A, 1 => A, 2 => C, 111 => C, 111 => C

val it = () : unit

- LP.output("", findAcceptingLP(Str.input ""));

@ 222

@ .

no such labeled path exists

uncaught exception Error

3.6.3 Notes

The material in this section is original. Our definition of the meaning of FAs
via labeled paths allows us not simply to test whether an FA accepts a string w,
but to ask for evidence—in the form of a labeled path—for why FA accepts w.

142 Regular Languages

3.7 Simplification of Finite Automata

In this section, we: say what it means for a finite automaton to be simplified;
study an algorithm for simplifying finite automata; and see how finite automata
can be simplified in Forlan.

Suppose M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

M is odd for two distinct reasons. First, there are no valid labeled paths from the
start state to D and E, and so these states are redundant. Second, there are no
valid labeled paths from C to an accepting state, and so it is also redundant. We
will say that C is not “live” (C is “dead”), and that D and E are not “reachable”.

Suppose M is a finite automaton. We say that a state q ∈ QM is:

• reachable in M iff there is a labeled path lp such that lp is valid for M ,
the start state of lp is sM , and the end state of lp is q;

• live in M iff there is a labeled path lp such that lp is valid for M , the start
state of lp is q, and the end state of lp is in AM ;

• dead in M iff q is not live in M ; and

• useful in M iff q is both reachable and live in M .

Let M be our example finite automaton. The reachable states of M are: A,
B and C. The live states of M are: A, B, D and E. And, the useful states of M
are: A and B.

There is a simple algorithm for generating the set of reachable states of a
finite automaton M . We generate the least subset X of QM such that:

• sM ∈ X; and

• for all q, r ∈ QM and x ∈ Str, if q ∈ X and (q, x, r) ∈ TM , then r ∈ X.

The start state of M is added to X, since sM is always reachable, by the zero-
length labeled path sM . Then, if q is reachable, and (q, x, r) is a transition of M ,
then r is clearly reachable. Thus all of the elements of X are indeed reachable.
And, it’s not hard to show that every reachable state will be added to X.

Similarly, there is a simple algorithm for generating the set of live states of
a finite automaton M . We generate the least subset Y of QM such that:

• AM ⊆ Y ; and

• for all q, r ∈ QM and x ∈ Str, if r ∈ Y and (q, x, r) ∈ TM , then q ∈ Y .

3.7 Simplification of Finite Automata 143

This time it’s the accepting states of M that initially added to our set, since
each accepting state is trivially live. Then, if r is live, and (q, x, r) is a transition
of M , then q is clearly live.

Thus, we can generate the set of useful states of an FA by generating the set
of reachable states, generating the set of live states, and intersecting those sets
of states.

Now, suppose N is the FA

1

Start A

0

%, 0, 1
B

Here, the transitions (A, 0,B) and (A, 1,B) are redundant, in the sense that
if N ′ is the result of removing these transitions from N , we still have that
B ∈ ∆N ′({A}, 0) and B ∈ ∆N ′({A}, 1).

Given an FA M and a finite subset U of { (q, x, r) | q, r ∈ QM and x ∈ Str },
we write M/U for the FA that is identical to M except that its set of transitions
is U . If M is an FA and (p, x, q) ∈ TM , we say that:

• (p, x, q) is redundant in M iff q ∈ ∆N ({p}, x), where N = M/(TM −
{(p, x, q)}); and

• (p, x, q) is irredundant in M iff (p, x, q) is not redundant in M .

We say that a finite automaton M is simplified iff either

• every state of M is useful, and every transition of M is irredundant; or

• |QM | = 1 and AM = TM = ∅.

Thus the FA

Start A

is simplified, even though its start state is not live, and is thus not useful.

Proposition 3.7.1
If M is a simplified finite automaton, then alphabetM = alphabet(L(M)).

We always have that alphabet(L(M)) ⊆ alphabetM . But, when M is
simplified, we also have that alphabetM ⊆ alphabet(L(M)), i.e., that every
symbol appearing in a string of one of M ’s transitions also appears in one of the
strings accepted by M .

To give our simplification algorithm for finite automta, we need an auxiliary
function for removing redundant transitions from an FA. Given an FA M , p, q ∈
QM and x ∈ Str, we say that (p, x, q) is implicit in M iff q ∈ ∆M({p}, x).

144 Regular Languages

Given an FA M , we define a function remRedunM ∈ P TM ×P TM →P TM

(we often drop theM when it’s clear from the context) by well-founded recursion
on the size of its second argument. For U, V ⊆ TM , remRedun(U, V) proceeds
as follows:

• If V = ∅, then it returns U .

• Otherwise, let v be the greatest element of V , and V ′ = V − {v}. If v
is implicit in M/(U ∪ V ′), then remRedun returns the result of evalu-
ating remRedun(U, V ′). Otherwise, it returns the result of evaluating
remRedun(U ∪ {v}, V ′).

In general, there are multiple—incompatible—ways of removing redundant
transitions from an FA. remRedun is defined so as to favor removing transitions
that are larger in our total ordering on transitions.

Proposition 3.7.2
Suppose M is a finite automaton. For all U, V ⊆ TM , if all the elements
of U are irredundant in M/(U ∪ V), and, for all p, q ∈ QM and x ∈ Str,
(p, x, q) is implicit in M iff (p, x, q) is implicit in M/(U ∪ V), then all the ele-
ments of remRedun(U, V) are irredundant in M/remRedun(U, V), and, for
all p, q ∈ QM and x ∈ Str, (p, x, q) is implicit in M iff (p, x, q) is implicit in
M/remRedun(U, V).

Proof. By well-founded induction on the size of the second argument to
remRedun. ✷

Now we can give an algorithm for simplifying finite automata. We define
a function simplify ∈ FA → FA by: simplifyM is the finite automaton N
produced by the following process.

• First, the useful states are M are determined.

• If sM is not useful in M , the N is defined by:

– QN = {sM};

– sN = sM ;

– AN = ∅; and

– TN = ∅.

• And, if sM is useful in M , then N is defined by:

– QN = { q ∈ QM | q is useful in M };

– sN = sM ;

– AN = AM ∩QN = { q ∈ AM | q ∈ QN }; and

3.7 Simplification of Finite Automata 145

– TN = remRedun(∅, { (q, x, r) ∈ TM | q, r ∈ QN }).

Proposition 3.7.3
Suppose M is a finite automaton. Then:

(1) simplifyM is simplified;

(2) simplifyM ≈ M ; and

(3) alphabet(simplifyM) = alphabet(L(M)) ⊆ alphabetM .

Proof. Follows easily using Propositions 3.7.1 and 3.7.2. ✷

If M is the finite automaton

D E

0

0

1

%
Start A B C

%

20

then simplifyM is the finite automaton

1

Start A B
%

0

And if N is the finite automaton

1

Start A

0

%, 0, 1
B

then simplifyN is the finite automaton

1

Start A

0

%
B

The Forlan module FA includes the following functions relating to the sim-
plification of finite automata:

val simplify : fa -> fa

val simplified : fa -> bool

The function simplify corresponds to simplify, and simplified tests whether
an FA is simplified.

In the following, suppose fa1 is the finite automaton

146 Regular Languages

D E

0

0

1

%
Start A B C

%

20

fa2 is the finite automaton

1

Start A

0

%, 0, 1
B

and fa3 is the finita automaton

%

B

C

%

%

% %
%

AStart

Here are some example uses of simplify and simplified:

- FA.simplified fa1;

val it = false : bool

- val fa1’ = FA.simplify fa1;

val fa1’ = - : fa

- FA.output("", fa1’);

{states} A, B {start state} A {accepting states} B

{transitions} A, % -> B; A, 0 -> A; B, 1 -> B

val it = () : unit

- FA.simplified fa1’;

val it = true : bool

- val fa2’ = FA.simplify fa2;

val fa2’ = - : fa

- FA.output("", fa2’);

{states} A, B {start state} A {accepting states} B

{transitions} A, % -> B; A, 0 -> A; B, 1 -> B

val it = () : unit

- val fa3’ = FA.simplify fa3;

val fa3’ = - : fa

- FA.output("", fa3’);

{states} A, B, C {start state} A {accepting states} A

{transitions} A, % -> B | C; B, % -> A; C, % -> A

val it = () : unit

Thus the simplification of fa3 resulted in the removal of the %-transitions be-
tween B and C.

3.8 Proving the Correctness of Finite Automata 147

Exercise 3.7.4
In the simplification of fa3, if transitions had been considered for removal due
to being redundant in other orders, what FAs could have resulted.

3.7.1 Notes

The removal of useless states is analogous to the standard approach to ridding
grammars of useless variables. The idea of removing redundant transitions,
though, seems to be novel.

3.8 Proving the Correctness of Finite Automata

In this section, we consider techniques for proving the correctness of finite au-
tomata, i.e., for proving that finite automata accept the languages we want them
to.

We begin by defining an indexed family of languages, Λ.

3.8.1 Definition of Λ

Proposition 3.8.1
Suppose M is a finite automaton.

(1) For all q ∈ QM , q ∈ ∆M ({q},%).

(2) For all q, r ∈ QM and w ∈ Str, if q, w → r ∈ TM , then r ∈ ∆M ({q}, w).

(3) For all p, q, r ∈ QM and x, y ∈ Str, if q ∈ ∆M ({p}, x) and r ∈ ∆M ({q}, y),
then r ∈ ∆M ({p}, xy).

Suppose M is a finite automaton and q ∈ QM . Then we define

ΛM,q = {w ∈ Str | q ∈ ∆M ({sM}, w) }.

In other words, ΛM,q is the labels of all of the valid labeled paths for M that
start at state sM and end at q, i.e., it’s all strings that can take us to state
q when processed by M . Clearly, ΛM,q ⊆ (alphabetM)∗, for all FAs M and
q ∈ QM . If it’s clear which FA we are talking about, we sometimes abbreviate
ΛM,q to Λq.

Let our example FA, M , be

0

0

1

Start A B

1

Then:

148 Regular Languages

• 01101 ∈ ΛA, because of the labeled path

A
0

⇒ B
1

⇒ B
1

⇒ B
0

⇒ A
1

⇒ A,

• 01100 ∈ ΛB, because of the labeled path

A
0

⇒ B
1

⇒ B
1

⇒ B
0

⇒ A
0

⇒ B.

Proposition 3.8.2
Suppose M is an FA. Then L(M) =

⋃

{ΛM,q | q ∈ AM }, i.e., for all w, w ∈
L(M) iff w ∈ ΛM,q for some q ∈ AM .

Proof.

(only if) Suppose w ∈ L(M). By Proposition 3.5.3, we have that
∆M (sM , w)∩AM 6= ∅, so that there is a q ∈ AM such that q ∈ ∆M(sM , w).
Thus w ∈ ΛM,q.

(if) Suppose w ∈ ΛM,q for some q ∈ AM . Thus q ∈ ∆M(sM , w) and q ∈ AM ,
so that ∆M (sM , w) ∩AM 6= ∅. Hence w ∈ L(M), by Proposition 3.5.3.

✷

Proposition 3.8.3
Suppose M is a finite automaton.

(1) % ∈ ΛM,sM .

(2) For all q, r ∈ QM and w, x ∈ Str. If w ∈ ΛM,q and q, x→ r ∈ TM , then
wx ∈ ΛM,r.

Proof.

(1) By Proposition 3.8.1(1), we have that sM ∈ ∆({sM},%), so that % ∈ ΛM,sM .

(2) Suppose q, r ∈ QM , w, x ∈ Str, w ∈ ΛM,q and q, x → r ∈ TM . Thus q ∈
∆({sM}, w). Because q, x→ r ∈ TM , Proposition 3.8.1(2) tells us that r ∈
∆({q}, x). Hence by Proposition 3.8.1(3), we have that r ∈ ∆({sM}, wx),
so that wx ∈ ΛM,r.

✷

Our main example will be the FA, M :

0

0

1

Start A B

1

3.8 Proving the Correctness of Finite Automata 149

Let

X = {w ∈ {0, 1}∗ | w has an even number of 0’s }, and

Y = {w ∈ {0, 1}∗ | w has an odd number of 0’s }.

We want to prove that L(M) = X. Because AM = {A}, Proposition 3.8.2
tells us that L(M) = ΛM,A. Thus it will suffice to show that ΛM,A = X. But
our approach will also involve showing ΛM,B = Y . We would cope with more
states analogously, having one language per state.

3.8.2 Proving that Enough is Accepted

First, we study techniques for showing that everything we want an automaton
to accept is really accepted.

Since X,Y ⊆ {0, 1}∗, to prove that X ⊆ ΛM,A and Y ⊆ ΛM,B, it will suffice
to use strong string induction to show that, for all w ∈ {0, 1}∗:

(A) if w ∈ X, then w ∈ ΛM,A; and

(B) if w ∈ Y , then w ∈ ΛM,B.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the
inductive hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then:

(A) if x ∈ X, then x ∈ ΛA; and

(B) if x ∈ Y , then x ∈ ΛB.

We must prove that:

(A) if w ∈ X, then w ∈ ΛA; and

(B) if w ∈ Y , then w ∈ ΛB.

There are two parts to show.

(A) Suppose w ∈ X, so that w has an even number of 0’s. We must show
that w ∈ ΛA. There are three cases to consider.

• Suppose w = %. By Proposition 3.8.3(1), we have that w = % ∈ ΛA.

• Suppose w = x0, for some x ∈ {0, 1}∗. Thus x has an odd number
of 0’s, so that x ∈ Y . Because x is a proper substring of w, part (B)
of the inductive hypothesis tells us that x ∈ ΛB. Furthermore,
B, 0→ A ∈ T , so that w = x0 ∈ ΛA, by Proposition 3.8.3(2).

• Suppose w = x1, for some x ∈ {0, 1}∗. Thus x has an even number
of 0’s, so that x ∈ X. Because x is a proper substring of w, part (A)
of the inductive hypothesis tells us that x ∈ ΛA. Furthermore,
A, 1→ A ∈ T , so that w = x1 ∈ ΛA, by Proposition 3.8.3(2).

150 Regular Languages

(B) Suppose w ∈ Y , so that w has an odd number of 0’s. We must show that
w ∈ ΛB. There are three cases to consider.

• Suppose w = %. But the number of 0’s in % is 0, which is even—
contradiction. Thus w ∈ ΛB.

• Suppose w = x0, for some x ∈ {0, 1}∗. Thus x has an even number
of 0’s, so that x ∈ X. Because x is a proper substring of w, part
(A) of the inductive hypothesis tells us that x ∈ ΛA. Furthermore,
A, 0→ B ∈ T , so that w = x0 ∈ ΛB, by Proposition 3.8.3(2).

• Suppose w = x1, for some x ∈ {0, 1}∗. Thus x has an odd number
of 0’s, so that x ∈ Y . Because x is a proper substring of w, part
(B) of the inductive hypothesis tells us that x ∈ ΛB. Furthermore,
B, 1→ B ∈ T , so that w = x1 ∈ ΛB, by Proposition 3.8.3(2).

Let N be the finite automaton

%

11

Start A B

0

Here we hope that ΛN,A = {0}∗ and L(N) = ΛN,B = {0}∗{11}∗, but if we try to
prove that

{0}∗ ⊆ ΛN,A, and

{0}∗{11}∗ ⊆ ΛN,B

using our standard technique, there is a complication related to the %-transition.
We use strong string induction to show that, for all w ∈ {0, 1}∗:

(A) if w ∈ {0}∗, then w ∈ ΛA; and

(B) if w ∈ {0}∗{11}∗, then w ∈ ΛB.

In part (B), we assume that w ∈ {0}∗{11}∗, so that w = 0n(11)m for some
n,m ∈ N. We must show that w ∈ ΛB. We consider two cases: m = 0 and
m ≥ 1. The second of these is straightforward, so let’s focus on the first. Then
w = 0n ∈ {0}∗. We want to use part (A) of the inductive hypothesis to conclude
that 0n ∈ ΛA, but there is a problem: 0n is not a proper substring of 0n = w.

So, we must consider two subcases, when n = 0 and n ≥ 1. In the first
subcase, because % ∈ ΛA and A,%→ B ∈ T , we have that w = % = %% ∈ ΛB.

In the second subcase, we have that w = 0n−10. By part (A) of the inductive
hypothesis, we have that 0n−1 ∈ ΛA. Thus, because A, 0→A ∈ T and A,%→B ∈
T , we can conclude w = 0n = 0n−10% ∈ ΛB.

Because there are no transitions from B back to A, we could first prove that,
for all w ∈ {0, 1}∗,

3.8 Proving the Correctness of Finite Automata 151

(A) if w ∈ {0}∗, then w ∈ ΛA,

and then use (A) to prove that for all w ∈ {0, 1}∗,

(B) if w ∈ {0}∗{11}∗, then w ∈ ΛB.

This works whenever one part of a machine has transitions to another part,
but there are no transitions from that second part back to the first part, i.e.,
when the two parts are not mutually recursive.

In the case of N , we could use mathematical induction instead of strong
string induction:

(A) for all n ∈ N, 0n ∈ ΛA, and

(B) for all n,m ∈ N, 0n(11)m ∈ ΛB (do induction on m, fixing n).

3.8.3 Proving that Everything Accepted is Wanted

It’s tempting to try to prove that everything accepted by a finite automaton is
wanted using string string induction, with implications like

(A) if w ∈ ΛA, then w ∈ X.

Unfortunately, this doesn’t work when a finite automaton contains %-transitions.
Instead, we do such proofs using a new induction principle that we call induction
on Λ.

Theorem 3.8.4 (Principle of Induction on Λ)
Suppose M is a finite automaton, and Pq(w) is a property of a w ∈ ΛM,q, for all
q ∈ QM . If

• PsM (%) and

• for all q, r ∈ QM , x ∈ Str and w ∈ ΛM,q,
if q, x→ r ∈ TM and (†) Pq(w), then Pr(wx),

then

for all q ∈ QM , for all w ∈ ΛM,q, Pq(w).

We refer to (†) as the inductive hypothesis.

Proof. It suffices to show that, for all lp ∈ LP, for all q ∈ QM , if lp is valid
for M , startState lp = sM and endState lp = q, then Pq(label lp). We prove
this by well-founded induction on the length of lp. ✷

152 Regular Languages

In the case of our example FA, M , we can let PA(w) and PB(w) be w ∈ X
and w ∈ Y , respectively, where, as before,

X = {w ∈ {0, 1}∗ | w has an even number of 0’s }, and

Y = {w ∈ {0, 1}∗ | w has an odd number of 0’s }.

Then the principle of induction on Λ tells us that

(A) for all w ∈ ΛA, w ∈ X, and

(B) for all w ∈ ΛB, w ∈ Y ,

follows from showing

(empty string) % ∈ X,

(A, 0→ B) for all w ∈ ΛA, if (†) w ∈ X, then w0 ∈ Y ,

(A, 1→ A) for all w ∈ ΛA, if (†) w ∈ X, then w1 ∈ X,

(B, 0→ A) for all w ∈ ΛB, if (†) w ∈ Y , then w0 ∈ X, and

(B, 1→ B) for all w ∈ ΛB, if (†) w ∈ Y , then w1 ∈ Y .

We refer to (†) as the inductive hypothesis.
In fact, when setting this proof up, instead of explicitly mentioning PA and

PB, we can simply say that we are proving

(A) for all w ∈ ΛA, w ∈ X, and

(B) for all w ∈ ΛB, w ∈ Y ,

by induction on Λ.
There are five steps to show.

(empty string) Because % ∈ {0, 1}∗ and % has no 0’s, we have that % ∈ X.

(A, 0→ B) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X.
Hence w ∈ {0, 1}∗ and w has an even number of 0’s. Thus w0 ∈ {0, 1}∗

and w0 has an odd number of 0’s, so that w0 ∈ Y .

(A, 1→ A) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X.
Then w1 ∈ X.

(B, 0→ A) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ Y .
Then w0 ∈ X.

(B, 1→ B) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ Y .
Then w1 ∈ Y .

3.9 Empty-string Finite Automata 153

Because of

(A) for all w ∈ ΛA, w ∈ X, and

(B) for all w ∈ ΛB, w ∈ Y ,

we have that ΛA ⊆ X and ΛB ⊆ Y .
Because X ⊆ ΛA and Y ⊆ ΛB, we can conclude that L(M) = ΛA = X and

ΛB = Y .
Consider our second example, N , again:

%

11

Start A B

0

We can use induction on Λ to prove that

(A) for all w ∈ ΛA, w ∈ {0}∗, and

(B) for all w ∈ ΛB, w ∈ {0}∗{11}∗.

Thus ΛA ⊆ {0}∗ and ΛB ⊆ {0}∗{11}∗. Because {0}∗ ⊆ ΛA and {0}∗{11}∗ ⊆ ΛB,
we can conclude that ΛA = {0}∗ and L(N) = ΛB = {0}∗{11}∗.

3.8.4 Notes

Books on formal language theory typically give short shrift to the proof of cor-
rectness of finite automata, carrying out one or two correctness proofs using
induction on the length of strings. In contrast, we have introduced and applied
elegant techniques for proving the correctness of FAs. Of particular note is our
principle of induction on Λ.

3.9 Empty-string Finite Automata

In this and the following two sections, we will study three progressively more
restricted kinds of finite automata:

• empty-string finite automata (EFAs);

• nondeterministic finite automata (NFAs); and

• deterministic finite automata (DFAs).

Every DFA will be an NFA; every NFA will be an EFA; and every EFA will be
an FA. Thus, L(M) will be well-defined, if M is a DFA, NFA or EFA.

The more restricted kinds of automata will be easier to process on the com-
puter than the more general kinds; they will also have nicer reasoning principles

154 Regular Languages

than the more general kinds. We will give algorithms for converting the more
general kinds of automata into the more restricted kinds. Thus even the de-
terministic finite automata will accept the same set of languages as the finite
automata. On the other hand, it will sometimes be easier to find one of the
more general kinds of automata that accepts a given language rather than one
of the more restricted kinds accepting the language. And, there are languages
where the smallest DFA accepting the language is exponentially bigger than the
smallest FA accepting the language.

3.9.1 Definition of EFAs

An empty-string finite automaton (EFA) M is a finite automaton such that

TM ⊆ { q, x→ r | q, r ∈ Sym and x ∈ Str and |x| ≤ 1 }.

In other words, an FA is an EFA iff every string of every transition of the FA is
either % or has a single symbol.

For example, A,%→B and A, 1→B are legal EFA transitions, but A, 11→B

is not legal. We write EFA for the set of all empty-string finite automata. Thus
EFA (FA.

The following proposition obviously holds.

Proposition 3.9.1
Suppose M is an EFA.

• For all N ∈ FA, if M isoN , then N is an EFA.

• For all bijections f from QM to some set of symbols, renameStates(M,f)
is an EFA.

• renameStatesCanonicallyM is an EFA.

• simplifyM is an EFA.

3.9.2 Converting FAs to EFAs

If we want to convert an FA into an equivalent EFA, we can proceed as follows.
Every state of the FA will be a state of the EFA, the start and accepting states
are unchanged, and every transition of the FA that is a legal EFA transition will
be a transition of the EFA. If our FA has a transition

p, b1b2 · · · bn → r,

where n ≥ 2 and the bi are symbols, then we replace this transition with the n
transitions

p
b1
→ q1, q1

b2
→ q2, . . . , qn−1

bn
→ r,

3.9 Empty-string Finite Automata 155

where q1, . . . , qn−1 are n− 1 new, non-accepting, states.
For example, we can convert the FA

345

Start A B
12

0

into the EFA

3

45

21

Start A B

0

C

D

E

We have to be careful how we choose our new states. The symbols we choose
can’t be states of the original machine, and we can’t choose the same symbol
twice. Instead of making a series of random choices, we will use structured
symbols in such a way that one will be able to look at a resulting EFA and tell
what the original FA was.

First, the algorithm renames each old state q to 〈1, q〉. Then it can replace
a transition

p
b1b2···bn
→ r,

where n ≥ 2 and the bi are symbols, with the transitions

〈1, p〉
b1
→ 〈2, 〈p, b1, b2 · · · bn, r〉〉,

〈2, 〈p, b1, b2 · · · bn, r〉〉
b2
→ 〈2, 〈p, b1b2, b3 · · · bn, r〉〉,

. . . ,

〈2, 〈p, b1b2 · · · bn−1, bn, r〉〉
bn
→, 〈1, r〉.

We define a function faToEFA ∈ FA→EFA that converts FAs into EFAs
by saying that faToEFAM is the result of running the above algorithm on
input M .

Theorem 3.9.2
For all M ∈ FA:

• faToEFAM ≈ M ; and

• alphabet(faToEFAM) = alphabetM .

156 Regular Languages

3.9.3 Processing EFAs in Forlan

The Forlan module EFA defines an abstract type efa (in the top-level environ-
ment) of empty-string finite automata, along with various functions for process-
ing EFAs. Values of type efa are implemented as values of type fa, and the
module EFA provides functions

val injToFA : efa -> fa

val projFromFA : fa -> efa

for making a value of type efa have type fa, i.e., “injecting” an efa into type
fa, and for making a value of type fa that is an EFA have type efa, i.e.,
“projecting” an fa that is an EFA to type efa. If one tries to project an fa

that is not an EFA to type efa, an error is signaled. The functions injToFA

and projFromFA are available in the top-level environment as injEFAToFA and
projFAToEFA, respectively.

The module EFA also defines the functions:

val input : string -> efa

val fromFA : fa -> efa

The function input is used to input an EFA, i.e., to input a value of type fa

using FA.input, and then attempt to project it to type efa. The function
fromFA corresponds to our conversion function faToEFA, and is available in
the top-level environment with that name:

val faToEFA : fa -> efa

Finally, most of the functions for processing FAs that were introduced in
previous sections are inherited by EFA:

val output : string * efa -> unit

val numStates : efa -> int

val numTransitions : efa -> int

val equal : efa * efa -> bool

val alphabet : efa -> sym set

val checkLP : efa -> lp -> unit

val validLP : efa -> lp -> bool

val isomorphism : efa * efa * sym_rel -> bool

val findIsomorphism : efa * efa -> sym_rel

val isomorphic : efa * efa -> bool

val renameStates : efa * sym_rel -> efa

val renameStatesCanonically : efa -> efa

val processStr : efa -> sym set * str -> sym set

val accepted : efa -> str -> bool

val findLP : efa -> sym set * str * sym set -> lp

val findAcceptingLP : efa -> str -> lp

val simplified : efa -> bool

val simplify : efa -> efa

3.9 Empty-string Finite Automata 157

Suppose that fa is the finite automaton

345

Start A B
12

0

Here are some example uses of a few of the above functions:

- projFAToEFA fa;

invalid label in transition: "12"

uncaught exception Error

- val efa = faToEFA fa;

val efa = - : efa

- EFA.output("", efa);

{states}

<1,A>, <1,B>, <2,<A,1,2,B>>, <2,<B,3,45,B>>, <2,<B,34,5,B>>

{start state} <1,A> {accepting states} <1,B>

{transitions}

<1,A>, 0 -> <1,A>; <1,A>, 1 -> <2,<A,1,2,B>>;

<1,B>, 3 -> <2,<B,3,45,B>>; <2,<A,1,2,B>>, 2 -> <1,B>;

<2,<B,3,45,B>>, 4 -> <2,<B,34,5,B>>; <2,<B,34,5,B>>, 5 -> <1,B>

val it = () : unit

- val efa’ = EFA.renameStatesCanonically efa;

val efa’ = - : efa

- EFA.output("", efa’);

{states} A, B, C, D, E {start state} A {accepting states} B

{transitions}

A, 0 -> A; A, 1 -> C; B, 3 -> D; C, 2 -> B; D, 4 -> E; E, 5 -> B

val it = () : unit

- val rel = EFA.findIsomorphism(efa, efa’);

val rel = - : sym_rel

- SymRel.output("", rel);

(<1,A>, A), (<1,B>, B), (<2,<A,1,2,B>>, C), (<2,<B,3,45,B>>, D),

(<2,<B,34,5,B>>, E)

val it = () : unit

- LP.output("", FA.findAcceptingLP fa (Str.input ""));

@ 012345

@ .

A, 0 => A, 12 => B, 345 => B

val it = () : unit

- LP.output("", EFA.findAcceptingLP efa’ (Str.input ""));

@ 012345

@ .

A, 0 => A, 1 => C, 2 => B, 3 => D, 4 => E, 5 => B

val it = () : unit

158 Regular Languages

3.9.4 Notes

The algorithm for converting FAs to EFAs is obvious, but our use of structured
state names so as to make the resulting EFAs self-documenting is novel.

3.10 Nondeterministic Finite Automata

In this section, we study the second of our more restricted kinds of finite au-
tomata: nondeterministic finite automata.

3.10.1 Definition of NFAs

A nondeterministic finite automaton (NFA) M is a finite automaton such that

TM ⊆ { q, x→ r | q, r ∈ Sym and x ∈ Str and |x| = 1 }.

In other words, an FA is an NFA iff every string of every transition of the FA has
a single symbol. For example, A, 1→ B is a legal NFA transition, but A,%→ B

and A, 11→ B are not legal. We write NFA for the set of all nondeterministic
finite automata. Thus NFA (EFA (FA.

The following proposition obviously holds.

Proposition 3.10.1
Suppose M is an NFA.

• For all N ∈ FA, if M isoN , then N is an NFA.

• For all bijections f from QM to some set of symbols, renameStates(M,f)
is an NFA.

• renameStatesCanonicallyM is an NFA.

• simplifyM is an NFA.

3.10.2 Converting EFAs to NFAs

Suppose M is the EFA

Start A B

0

%

1

C

2

%

To convert M into an equivalent NFA, we will have to:

3.10 Nondeterministic Finite Automata 159

• replace the transitions A,%→ B and B,%→ C with legal transitions (for
example, because of the valid labeled path

A
%
⇒ B

1

⇒ B
%
⇒ C,

we will add the transition A, 1→ C);

• make (at least) A be an accepting state (so that % is accepted by the
NFA).

Before defining a general procedure for converting EFAs to NFAs, we first
say what we mean by the empty-closure of a set of states. Suppose M is a finite
automaton and P ⊆ QM . The empty-closure of P (emptyCloseM P) is the
least subset X of QM such that

• P ⊆ X; and

• for all q, r ∈ QM , if q ∈ X and q,%→ r ∈ TM , then r ∈ X.

We sometimes abbreviate emptyCloseM P to emptyCloseP , when M is clear
from the context. For example, if M is our example EFA and P = {A}, then:

• A ∈ X;

• B ∈ X, since A ∈ X and A,%→ B ∈ TM ;

• C ∈ X, since B ∈ X and B,%→ C ∈ TM .

Thus emptyCloseP = {A,B,C}.
SupposeM is a finite automaton and P ⊆ QM . The backwards empty-closure

of P (emptyCloseBackwardsM P) is the least subset X of QM such that

• P ⊆ X; and

• for all q, r ∈ QM , if r ∈ X and q,%→ r ∈ TM , then q ∈ X.

We sometimes drop the M from emptyCloseBackwardsM , when it’s clear
from the context. For example, if M is our example EFA and P = {C}, then:

• C ∈ X;

• B ∈ X, since C ∈ X and B,%→ C ∈ TM ;

• A ∈ X, since B ∈ X and A,%→ B ∈ TM .

Thus emptyCloseBackwardsP = {A,B,C}.

Proposition 3.10.2
Suppose M is a finite automaton. For all P ⊆ QM ,

emptyCloseM P = ∆M (P,%).

160 Regular Languages

In other words, emptyCloseM P is all of the states that can be reached
from elements of P by sequences of %-transitions.

Proposition 3.10.3
Suppose M is a finite automaton. For all P ⊆ QM ,

emptyCloseBackwardsM P = { q ∈ QM | ∆M({q},%) ∩ P 6= ∅ }.

In other words, emptyCloseBackwardsM P is all of the states from which
it is possible to reach elements of P by sequences of %-transitions.

We define a function/algorithm efaToNFA ∈ EFA → NFA that converts
EFAs into NFAs by saying that efaToNFAM is the NFA N such that:

• QN = QM ;

• sN = sM ;

• AN = emptyCloseBackwardsAM ; and

• TN is the set of all transitions q′, a→ r′ such that q′, r′ ∈ QM , a ∈ Sym,
and there are q, r ∈ QM such that:

– q, a→ r ∈ TM ;

– q′ ∈ emptyCloseBackwards {q}; and

– r′ ∈ emptyClose {r}.

To compute the set TN , we process each transition q, x→ r of M as follows.
If x = %, then we generate no transitions. Otherwise, our transition is q, a→ r
for some symbol a. We then compute the backwards empty-closure of {q}, and
call the result X, and compute the (forwards) empty-closure of {r}, and call the
result Y . We then add all of the elements of

{ q′, a→ r′ | q′ ∈ X and r′ ∈ Y }

to TN .
Because the algorithm defines AN to be emptyCloseBackwardsAM , it

could let TN be the set of all transitions q′, a→r such that q′, r ∈ QM , a ∈ Sym,
and there is a q ∈ QM such that:

• q, a→ r ∈ TM ; and

• q′ ∈ emptyCloseBackwards {q}.

This would mean that N would have fewer transitions. However, for esthetic
reasons, we’ll stick with the symmetric definition of TN .

Let M be our example EFA

3.10 Nondeterministic Finite Automata 161

Start A B

0

%

1

C

2

%

and let N = efaToNFAM . Then

• QN = QM = {A,B,C};

• sN = sM = A;

• AN = emptyCloseBackwardsAM = emptyCloseBackwards {C} =
{A,B,C}.

Now, let’s work out what TN is, by processing each of M ’s transitions.

• From the transitions A,%→ B and B,%→ C, we get no elements of TN .

• Consider the transition A, 0 → A. Since emptyCloseBackwards {A} =
{A} and emptyClose {A} = {A,B,C}, we add A, 0 → A, A, 0 → B and
A, 0→ C to TN .

• Consider the transition B, 1 → B. Since emptyCloseBackwards {B} =
{A,B} and emptyClose {B} = {B,C}, we add A, 1→B, A, 1→C, B, 1→B

and B, 1→ C to TN .

• Consider the transition C, 2 → C. Since emptyCloseBackwards {C} =
{A,B,C} and emptyClose {C} = {C}, we add A, 2 → C, B, 2 → C and
C, 2→ C to TN .

Thus our NFA N is

0, 1, 2

Start A B

0

0, 1

1

C

2

1, 2

Theorem 3.10.4
For all M ∈ EFA:

• efaToNFAM ≈ M ; and

• alphabet(efaToNFAM) = alphabetM .

162 Regular Languages

3.10.3 Converting EFAs to NFAs, and Processing NFAs in For-
lan

The Forlan module FA defines the following functions for computing forwards
and backwards empty-closures:

val emptyClose : fa -> sym set -> sym set

val emptyCloseBackwards : fa -> sym set -> sym set

For example, if fa is bound to the finite automaton

Start A B

0

%

1

C

2

%

then we can compute the empty-closure of {A} as follows:

- SymSet.output("", FA.emptyClose fa (SymSet.input ""));

@ A

@ .

A, B, C

val it = () : unit

The Forlan module NFA defines an abstract type nfa (in the top-level envi-
ronment) of nondeterministic finite automata, along with various functions for
processing NFAs. Values of type nfa are implemented as values of type fa, and
the module NFA provides the following injection and projection functions:

val injToFA : nfa -> fa

val injToEFA : nfa -> efa

val projFromFA : fa -> nfa

val projFromEFA : efa -> nfa

The functions injToFA, injToEFA, projFromFA and textttprojFromEFA are
available in the top-level environment as textttinjNFAToFA, injNFAToEFA,
projFAToNFA and textttprojEFAToNFA, respectively.

The module NFA also defines the functions:

val input : string -> nfa

val fromEFA : efa -> nfa

The function input is used to input an NFA, and the function fromEFA corre-
sponds to our conversion function efaToNFA, and is available in the top-level
environment with that name:

val efaToNFA : efa -> nfa

Most of the functions for processing FAs that were introduced in previous
sections are inherited by NFA:

3.10 Nondeterministic Finite Automata 163

val output : string * nfa -> unit

val numStates : nfa -> int

val numTransitions : nfa -> int

val alphabet : nfa -> sym set

val equal : nfa * nfa -> bool

val checkLP : nfa -> lp -> unit

val validLP : nfa -> lp -> bool

val isomorphism : nfa * nfa * sym_rel -> bool

val findIsomorphism : nfa * nfa -> sym_rel

val isomorphic : nfa * nfa -> bool

val renameStates : nfa * sym_rel -> nfa

val renameStatesCanonically : nfa -> nfa

val processStr : nfa -> sym set * str -> sym set

val accepted : nfa -> str -> bool

val findLP : nfa -> sym set * str * sym set -> lp

val findAcceptingLP : nfa -> str -> lp

val simplified : nfa -> bool

val simplify : nfa -> nfa

Finally, the functions for computing forwards and backwards empty-closures are
inherited by the EFA module

val emptyClose : efa -> sym set -> sym set

val emptyCloseBackwards : efa -> sym set -> sym set

Suppose that efa is the efa

Start A B

0

%

1

C

2

%

Here are some example uses of a few of the above functions:

- projEFAToNFA efa;

invalid label in transition: "%"

uncaught exception Error

- val nfa = efaToNFA efa;

val nfa = - : nfa

- NFA.output("", nfa);

{states} A, B, C {start state} A {accepting states} A, B, C

{transitions}

A, 0 -> A | B | C; A, 1 -> B | C; A, 2 -> C; B, 1 -> B | C;

B, 2 -> C; C, 2 -> C

val it = () : unit

- LP.output("", EFA.findAcceptingLP efa (Str.input ""));

@ 012

@ .

A, 0 => A, % => B, 1 => B, % => C, 2 => C

164 Regular Languages

val it = () : unit

- LP.output("", NFA.findAcceptingLP nfa (Str.input ""));

@ 012

@ .

A, 0 => A, 1 => B, 2 => C

val it = () : unit

3.10.4 Notes

Because we have defined the meaning of finite automata via labeled paths in-
stead of transition functions, our EFA to NFA conversion algorithm is easy to
understand and prove correct.

3.11 Deterministic Finite Automata

In this section, we study the third of our more restricted kinds of finite automata:
deterministic finite automata.

3.11.1 Definition of DFAs

A deterministic finite automaton (DFA) M is a finite automaton such that:

• TM ⊆ { q, x→ r | q, r ∈ Sym and x ∈ Str and |x| = 1 }; and

• for all q ∈ QM and a ∈ alphabetM , there is a unique r ∈ QM such that
q, a→ r ∈ TM .

In other words, an FA is a DFA iff it is an NFA and, for every state q of the
automaton and every symbol a of the automaton’s alphabet, there is exactly
one state that can be entered from state q by reading a from the automaton’s
input. We write DFA for the set of all deterministic finite automata. Thus
DFA (NFA (EFA (FA.

Let M be the finite automaton

C
0

1

Start A B

1

0

1

It turns out that L(M) = {w ∈ {0, 1}∗ | 000 is not a substring of w }. Although
M is an NFA, it’s not a DFA, since 0 ∈ alphabetM but there is no transition
of the form C, 0 → r. However, we can make M into a DFA by adding a dead
state D:

3.11 Deterministic Finite Automata 165

DC
00

1

0, 1Start A B

1

0

1

We will never need more than one dead state in a DFA.
The following proposition obviously holds.

Proposition 3.11.1
Suppose M is a DFA.

• For all N ∈ FA, if M isoN , then N is a DFA.

• For all bijections f from QM to some set of symbols, renameStates(M,f)
is a DFA.

• renameStatesCanonicallyM is a DFA.

Now, we prove a proposition that doesn’t hold for arbitary NFAs.

Proposition 3.11.2
Suppose M is a DFA. For all q ∈ QM and w ∈ (alphabetM)∗, |∆M ({q}, w)| =
1.

Proof. An easy left string induction on w. ✷

Suppose M is a DFA. Because of Proposition 3.11.2, we can define the tran-
sition function δM for M , δM ∈ QM × (alphabetM)∗ →QM , by:

δM (q, w) = the unique r ∈ QM such that r ∈ ∆M({q}, w).

In other words, δM (q, w) is the unique state r of M that is the end of a valid
labeled path for M that starts at q and is labeled by w. Thus, for all q, r ∈ QM

and w ∈ (alphabetM)∗,

δM (q, w) = r iff r ∈ ∆M ({q}, w).

We sometimes abbreviate δM (q, w) to δ(q, w).
For example, if M is the DFA

DC
00

1

0, 1Start A B

1

0

1

166 Regular Languages

then δ(A,%) = A, δ(A, 0100) = C and δ(B, 000100) = D.
Having defined the δ function, we can study its properties.

Proposition 3.11.3
Suppose M is a DFA.

(1) For all q ∈ QM , δM (q,%) = q.

(2) For all q ∈ QM and a ∈ alphabetM , δM (q, a) = the unique r ∈ QM

such that q, a→ r ∈ TM .

(3) For all q ∈ QM and x, y ∈ (alphabetM)∗, δM (q, xy) = δM (δM (q, x), y).

Suppose M is a DFA. By part (2) of the proposition, we have that, for all
q, r ∈ QM and a ∈ alphabetM ,

δM (q, a) = r iff q, a→ r ∈ TM .

Now we can use the δ function to explain when a string is accepted by an
FA.

Proposition 3.11.4
Suppose M is a DFA. L(M) = {w ∈ (alphabetM)∗ | δM (sM , w) ∈ AM }.

Proof. To see that the left-hand side is a subset of the right-hand side,
suppose w ∈ L(M). Then w ∈ (alphabetM)∗ and there is a q ∈ AM such that
q ∈ ∆M ({sM}, w). Thus δM (sM , w) = q ∈ AM .

To see that the right-hand side is a subset of the left-hand side, suppose
w ∈ (alphabetM)∗ and δM (sM , w) ∈ AM . Then δM (sM , w) ∈ ∆M ({sM}, w),
and thus w ∈ L(M). ✷

The preceding propositions give us an efficient algorithm for checking
whether a string is accepted by a DFA. For example, suppose M is the DFA

DC
00

1

0, 1Start A B

1

0

1

To check whether 0100 is accepted by M , we need to determine whether
δ(A, 0100) ∈ {A,B,C}.

3.11 Deterministic Finite Automata 167

For instance, we have that:

δ(A, 0100) = δ(δ(A, 0), 100)

= δ(B, 100)

= δ(δ(B, 1), 00)

= δ(A, 00)

= δ(δ(A, 0), 0)

= δ(B, 0)

= C

∈ {A,B,C}.

Thus 0100 is accepted by M .

3.11.2 Proving the Correctness of DFAs

Since every DFA is an FA, we could prove the correctness of DFAs using the
techniques that we have already studied. But it turns out that giving a separate
proof that enough is accepted by a DFA is unnecessary—it will follow from the
proof that everything accepted is wanted.

Proposition 3.11.5
Suppose M is a DFA. Then, for all w ∈ (alphabetM)∗ and q ∈ QM ,

w ∈ ΛM,q iff δM (sM , w) = q.

Proof. Suppose w ∈ (alphabetM)∗ and q ∈ QM .

(only if) Suppose w ∈ Λq. Then q ∈ ∆({s}, w). Thus δ(s,w) = q.

(if) Suppose δ(s,w) = q. Then q ∈ ∆({s}, w), so that w ∈ Λq.

✷

We already know that, if M is an FA, then L(M) =
⋃

{Λq | q ∈ AM }.

Proposition 3.11.6
Suppose M is a DFA.

(1) (alphabetM)∗ =
⋃

{Λq | q ∈ QM }.

(2) For all q, r ∈ QM , if q 6= r, then Λq ∩ Λr = ∅.

Suppose M is the DFA

168 Regular Languages

DC
00

1

0, 1Start A B

1

0

1

and let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. We will show that
L(M) = X. Note that, for all w ∈ {0, 1}∗:

• w ∈ X iff 000 is not a substring of w.

• w 6∈ X iff 000 is a substring of w.

First, we use induction on Λ, to prove that:

(A) for all w ∈ ΛA, w ∈ X and 0 is not a suffix of w;

(B) for all w ∈ ΛB, w ∈ X and 0, but not 00, is a suffix of w;

(C) for all w ∈ ΛC, w ∈ X and 00 is a suffix of w; and

(D) for all w ∈ ΛD, w 6∈ X.

There are nine steps (1 + the number of transitions) to show.

(empty string) We must show that % ∈ X and 0 is not a suffix of %. This
follows since % has no 0’s.

(A, 0→ B) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X
and 0 is not a suffix of w. We must show that w0 ∈ X and 0, but not 00,
is a suffix of w0. Because w ∈ X and 0 is not a suffix of w, we have that
w0 ∈ X. Clearly, 0 is a suffix of w0. And, since 0 is not a suffix of w, we
have that 00 is not a suffix of w0.

(A, 1→ A) Suppose w ∈ ΛA, and assume the inductive hypothesis: w ∈ X
and 0 is not a suffix of w. We must show that w1 ∈ X and 0 is not a suffix
of w1. Since w ∈ X, we have that w1 ∈ X. And, 0 is not a suffix of w1.

(B, 0→ C) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ X
and 0, but not 00, is a suffix of w. We must show that w0 ∈ X and 00

is a suffix of w0. Because w ∈ X and 00 is not suffix of w, we have that
w0 ∈ X. And since 0 is a suffix of w, it follows that 00 is a suffix of w0.

(B, 1→ A) Suppose w ∈ ΛB, and assume the inductive hypothesis: w ∈ X
and 0, but not 00, is a suffix of w. We must show that w1 ∈ X and 0 is
not a suffix of w1. Because w ∈ X, we have that w1 ∈ X. And, 0 is not a
suffix of w1.

3.11 Deterministic Finite Automata 169

(C, 0→ D) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ X
and 00 is a suffix of w. We must show that w0 6∈ X. Because 00 is a suffix
of w, we have that 000 is a suffix of w0. Thus w0 6∈ X.

(C, 1→ A) Suppose w ∈ ΛC, and assume the inductive hypothesis: w ∈ X
and 00 is a suffix of w. We must show that w1 ∈ X and 0 is not a suffix of
w1. Because w ∈ X, we have that w1 ∈ X. And, 0 is not a suffix of w1.

(D, 0→ D) Suppose w ∈ ΛD, and assume the inductive hypothesis: w 6∈ X.
We must show that w0 6∈ X. Because w 6∈ X, we have that w0 6∈ X.

(D, 1→ D) Suppose w ∈ ΛD, and assume the inductive hypothesis: w 6∈ X.
We must show that w1 6∈ X. Because w 6∈ X, we have that w1 6∈ X.

Now, we use the result of our induction on Λ to show that L(M) = X.

(L(M) ⊆ X) Suppose w ∈ L(M). Because AM = {A,B,C}, we have that
w ∈ L(M) = ΛA ∪ΛB ∪ΛC. Thus, by parts (A)–(C), we have that w ∈ X.

(X ⊆ L(M)) Suppose w ∈ X. Since X ⊆ {0, 1}∗, we have that w ∈ {0, 1}∗.
Suppose, toward a contradiction, that w 6∈ L(M). Because w 6∈ L(M) =
ΛA ∪ ΛB ∪ ΛC and w ∈ {0, 1}∗ = (alphabetM)∗ = ΛA ∪ ΛB ∪ ΛC ∪ ΛD,
we must have that w ∈ ΛD. But then part (D) tells us that w 6∈ X—
contradiction. Thus w ∈ L(M).

For the above approach to work, when proving L(M) = X for a DFA M and
language X, we simply need that:

• the property associated with each accepting state implies being in X; and

• the property associated with each non-accepting state implies not being in
X.

3.11.3 Simplification of DFAs

Let M be our example DFA

DC
00

1

0, 1Start A B

1

0

1

Then M is not simplified, since the state D is dead. But if we get rid of D, then
we won’t have a DFA anymore. Thus, we will need:

• a notion of when a DFA is simplified that is more liberal than our standard
notion; and

170 Regular Languages

• a corresponding simplification procedure for DFAs.

We say that a DFA M is deterministically simplified iff

• every element of QM is reachable; and

• at most one element of QM is dead.

For example, both of the following DFAs, which accept ∅, are deterministically
simplified:

(M1) (M2)

Start A

0

Start A

We define a simplification algorithm for DFAs that takes in

• a DFA M and

• an alphabet Σ

and returns a DFA N such that

• N is deterministically simplified,

• N ≈ M , and

• alphabetN = alphabet(L(M)) ∪ Σ.

Thus, the alphabet of N will consist of all symbols that either appear in strings
that are accepted by M or are in Σ.

The algorithm begins by letting the FA M ′ be simplifyM , i.e., the result of
running our simplification algorithm for FAs on M . M ′ will have the following
properties.

• M ′ is simplified.

• M ′ ≈ M .

• alphabetM ′ = alphabet(L(M ′)) = alphabet(L(M)).

• For all q ∈ QM ′ and a ∈ alphabetM ′, there is at most one r ∈ QM ′ such
that q, a→ r ∈ TM ′ . This property holds since M is a DFA and M ′ was
formed by removing states and transitions from M .

Let Σ′ = alphabetM ′ ∪ Σ = alphabet(L(M)) ∪ Σ. If M ′ is a DFA and
alphabetM ′ = Σ′, then the algorithm returns M ′. Otherwise, it must turn M ′

into a DFA whose alphabet is Σ′. We have that

3.11 Deterministic Finite Automata 171

• alphabetM ′ ⊆ Σ′; and

• for all q ∈ QM ′ and a ∈ Σ′, there is at most one r ∈ QM ′ such that
q, a→ r ∈ TM ′ .

SinceM ′ is simplified, there are two cases to consider. IfM ′ has no accepting
states, then sM ′ is the only state of M ′ and M ′ has no transitions. Thus the
algorithm can return the DFA N defined by:

• QN = QM ′ = {sM ′};

• sN = sM ′ ;

• AN = AM ′ = ∅; and

• TN = { sM ′ , a→ sM ′ | a ∈ Σ′ }.

Alternatively, M ′ has at least one accepting state. Thus, M ′ has no dead
states. So it can return the DFA N defined by:

• QN = QM ′ ∪ {〈dead〉} (we put enough brackets around 〈dead〉 so that it’s
not in QM ′);

• sN = sM ′ ;

• AN = AM ′ ; and

• TN = TM ′ ∪T ′, where T ′ is the set of all transitions q, a→〈dead〉 such that
either

– q ∈ QM ′ and a ∈ Σ′, but there is no r ∈ QM ′ such that q, a→r ∈ TM ′ ;
or

– q = 〈dead〉 and a ∈ Σ′.

We define a function determSimplify ∈ DFA × Alp → DFA by:
determSimplify(M,Σ) is the result of running the above algorithm on M and
Σ.

Theorem 3.11.7
For all M ∈ DFA and Σ ∈ Alp:

• determSimplify(M,Σ) is deterministically simplified;

• determSimplify(M,Σ) ≈ M ; and

• alphabet(determSimplify(M,Σ)) = alphabet(L(M)) ∪ Σ.

For example, suppose M is the DFA

172 Regular Languages

0, 1DC
00

1

A B

1

0

1

Start

Then determSimplify(M, {2}) is the DFA

2

C
0

1

〈dead〉

0, 1, 2

2 0, 2

Start A B

1

1

0

3.11.4 Converting NFAs to DFAs

Suppose M is the NFA

C
1

0

Start A B

1

1

Our algorithm for converting NFAs to DFAs will convert M into a DFA N whose
states represent the elements of the set

{∆M ({A}, w) | w ∈ {0, 1}∗ }.

For example, one the states of N will be 〈A,B〉, which represents {A,B} =
∆M ({A}, 1). This is the state that our DFA will be in after processing 1 from
the start state.

Before describing our conversion algorithm, we first state a proposition con-
cerning the ∆ function for NFAs, and say how we will represent finite sets of
symbols as symbols.

Proposition 3.11.8
Suppose M is an NFA.

(1) For all P ⊆ QM , ∆M(P,%) = P .

(2) For all P ⊆ QM and a ∈ alphabetM ,

∆M(P, a) = { r ∈ QM | p, a→ r ∈ TM , for some p ∈ P }.

3.11 Deterministic Finite Automata 173

(3) For all P ⊆ QM and x, y ∈ (alphabetM)∗,

∆M(P, xy) = ∆M (∆M (P, x), y).

Given a finite set of symbols P , we write P for the symbol

〈a1, . . . , an〉,

where a1, . . . , an are all of the elements of P , in order according to our total
ordering on Sym, and without repetition. For example, {B,A} = 〈A,B〉 and
∅ = 〈〉. It is easy to see that, if P and R are finite sets of symbols, then P = R
iff P = R.

We convert an NFA M into a DFA N as follows. First, we generate the least
subset X of P QM such that:

• {sM} ∈ X; and

• for all P ∈ X and a ∈ alphabetM , ∆M(P, a) ∈ X.

Thus |X| ≤ 2|QM |. Then we define the DFA N as follows:

• QN = {P | P ∈ X };

• sN = {sM} = 〈sM 〉;

• AN = {P | P ∈ X and P ∩AM 6= ∅ }; and

• TN = { (P , a,∆M (P, a)) | P ∈ X and a ∈ alphabetM }.

Then N is a DFA with alphabet alphabetM and, for all P ∈ X and a ∈
alphabetM , δN (P , a) = ∆M (P, a).

Suppose M is the NFA

C
1

0

Start A B

1

1

Let’s work out what the DFA N is.

• To begin with, {A} ∈ X, so that 〈A〉 ∈ QN . And 〈A〉 is the start state of
N . It is not an accepting state, since A 6∈ AM .

• Since {A} ∈ X, and ∆({A}, 0) = ∅, we add ∅ to X, 〈〉 to QN and 〈A〉, 0→〈〉
to TN .

Since {A} ∈ X, and ∆({A}, 1) = {A,B}, we add {A,B} to X, 〈A,B〉 to
QN and 〈A〉, 1→ 〈A,B〉 to TN .

174 Regular Languages

• Since ∅ ∈ X, ∆(∅, 0) = ∅ and ∅ ∈ X, we don’t have to add anything to X
or QN , but we add 〈〉, 0→ 〈〉 to TN .

Since ∅ ∈ X, ∆(∅, 1) = ∅ and ∅ ∈ X, we don’t have to add anything to X
or QN , but we add 〈〉, 1→ 〈〉 to TN .

• Since {A,B} ∈ X, ∆({A,B}, 0) = ∅ and ∅ ∈ X, we don’t have to add
anything to X or QN , but we add 〈A,B〉, 0→ 〈〉 to TN .

Since {A,B} ∈ X, ∆({A,B}, 1) = {A,B} ∪ {C} = {A,B,C}, we add
{A,B,C} to X, 〈A,B,C〉 to QN , and 〈A,B〉, 1 → 〈A,B,C〉 to TN . Since
{A,B,C} contains (the only) one of M ’s accepting states, we add 〈A,B,C〉
to AN .

• Since {A,B,C} ∈ X and ∆({A,B,C}, 0) = ∅ ∪ ∅ ∪ {C} = {C}, we add {C}
to X, 〈C〉 to QN and 〈A,B,C〉, 0→ 〈C〉 to TN . Since {C} contains one of
M ’s accepting states, we add 〈C〉 to AN .

Since {A,B,C} ∈ X, ∆({A,B,C}, 1) = {A,B} ∪ {C} ∪ ∅ = {A,B,C} and
{A,B,C} ∈ X, we don’t have to add anything to X or QN , but we add
〈A,B,C〉, 1→ 〈A,B,C〉 to TN .

• Since {C} ∈ X, ∆({C}, 0) = {C} and {C} ∈ X, we don’t have to add
anything to X or QN , but we add 〈C〉, 0→ 〈C〉 to TN .

Since {C} ∈ X, ∆({C}, 1) = ∅ and ∅ ∈ X, we don’t have to add anything
to X or QN , but we add 〈C〉, 1→ 〈〉 to TN .

Since there are no more elements to add to X, we are done. Thus, the DFA N
is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

The following two lemmas show why our conversion process is correct.

Lemma 3.11.9
For all w ∈ (alphabetM)∗:

• ∆M ({sM}, w) ∈ X; and

• δN (sN , w) = ∆M({sM}, w).

3.11 Deterministic Finite Automata 175

Proof. By left string induction.

(Basis Step) We have that ∆M ({sM},%) = {sM} ∈ X and δN (sN ,%) =
sN = {sM} = ∆M ({sM},%).

(Inductive Step) Suppose a ∈ alphabetM and w ∈ (alphabetM)∗. As-
sume the inductive hypothesis: ∆M({sM}, w) ∈ X and δN (sN , w) =
∆M ({sM}, w). Since ∆M ({sM}, w) ∈ X and a ∈ alphabetM , we have
that ∆M ({sM}, wa) = ∆M (∆M ({sM}, w), a) ∈ X. Thus

δN (sN , wa) = δN (δN (sN , w), a)

= δN (∆M ({sM}, w), a) (ind. hyp.)

= ∆M (∆M ({sM}, w), a)

= ∆M ({sM}, wa).

✷

Lemma 3.11.10
L(N) = L(M).

Proof.

(L(M) ⊆ L(N)) Suppose w ∈ L(M), so that w ∈ (alphabetM)∗ =
(alphabetN)∗ and ∆M ({sM}, w) ∩ AM 6= ∅. By Lemma 3.11.9, we
have that ∆M ({sM}, w) ∈ X and δN (sN , w) = ∆M ({sM}, w). Since
∆M ({sM}, w) ∈ X and ∆M ({sM}, w) ∩ AM 6= ∅, it follows that
δN (sN , w) = ∆M({sM}, w) ∈ AN . Thus w ∈ L(N).

(L(N) ⊆ L(M)) Suppose w ∈ L(N), so that w ∈ (alphabetN)∗ =
(alphabetM)∗ and δN (sN , w) ∈ AN . By Lemma 3.11.9, we have
that δN (sN , w) = ∆M ({sM}, w). Thus ∆M ({sM}, w) ∈ AN , so that
∆M ({sM}, w) ∩AM 6= ∅. Thus w ∈ L(M).

✷

We define a function nfaToDFA ∈ NFA→DFA by: nfaToDFAM is the
result of running the preceding algorithm with input M .

Theorem 3.11.11
For all M ∈ NFA:

• nfaToDFAM ≈ M ; and

• alphabet(nfaToDFAM) = alphabetM .

176 Regular Languages

3.11.5 Processing DFAs in Forlan

The Forlan module DFA defines an abstract type dfa (in the top-level environ-
ment) of deterministic finite automata, along with various functions for process-
ing DFAs. Values of type dfa are implemented as values of type fa, and the
module DFA provides the following injection and projection functions

val injToFA : dfa -> fa

val injToEFA : dfa -> efa

val injToNFA : dfa -> nfa

val projFromFA : fa -> dfa

val projFromEFA : efa -> dfa

val projFromNFA : nfa -> dfa

These functions are available in the top-level environment with the names
injDFAToFA, injDFAToEFA, injDFAToNFA, projFAToDFA, projEFAToDFA and
projNFAToDFA.

The module DFA also defines the functions:

val input : string -> dfa

val determProcStr : dfa -> sym * str -> sym

val determAccepted : dfa -> str -> bool

val determSimplified : dfa -> bool

val determSimplify : dfa * sym set -> dfa

val fromNFA : nfa -> dfa

The function input is used to input a DFA. The function determProcStr is used
to compute δM (q, w) for a DFA M , using the properties of δM . The function
determAccepted uses determProcStr to check whether a string is accepted by a
DFA. The function determSimplified tests whether a DFA is deterministically
simplified, and the function determSimplify corresponds to determSimplify.
The function fromNFA corresponds to our conversion function nfaToDFA, and
is available in the top-level environment with that name:

val nfaToDFA : nfa -> dfa

Most of the functions for processing FAs that were introduced in previous
sections are inherited by DFA:

val output : string * dfa -> unit

val numStates : dfa -> int

val numTransitions : dfa -> int

val alphabet : dfa -> sym set

val equal : dfa * dfa -> bool

val checkLP : dfa -> lp -> unit

val validLP : dfa -> lp -> bool

val isomorphism : dfa * dfa * sym_rel -> bool

val findIsomorphism : dfa * dfa -> sym_rel

val isomorphic : dfa * dfa -> bool

3.11 Deterministic Finite Automata 177

val renameStates : dfa * sym_rel -> dfa

val renameStatesCanonically : dfa -> dfa

val processStr : dfa -> sym set * str -> sym set

val accepted : dfa -> str -> bool

val findLP : dfa -> sym set * str * sym set -> lp

val findAcceptingLP : dfa -> str -> lp

Suppose dfa is the DFA

DC
00

1

0, 1Start A B

1

0

1

We can turn dfa into an equivalent deterministically simplified DFA whose al-
phabet is the union of the alphabet of the language of dfa and {2}, i.e., whose
alphabet is {0, 1, 2}, as follows:

- val dfa’ = DFA.determSimplify(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states} A, B, C, <dead> {start state} A

{accepting states} A, B, C

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C; B, 1 -> A;

B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A; C, 2 -> <dead>;

<dead>, 0 -> <dead>; <dead>, 1 -> <dead>; <dead>, 2 -> <dead>

val it = () : unit

Thus dfa’ is

C
0

1

〈dead〉

0, 1, 2

2 0, 22

Start A B

1

0

1

Suppose that nfa is the NFA

C
1

0

Start A B

1

1

178 Regular Languages

We can convert nfa to a DFA as follows:

- val dfa = nfaToDFA nfa;

val dfa = - : dfa

- DFA.output("", dfa);

{states} <>, <A>, <C>, <A,B>, <A,B,C> {start state} <A>

{accepting states} <C>, <A,B,C>

{transitions}

<>, 0 -> <>; <>, 1 -> <>; <A>, 0 -> <>; <A>, 1 -> <A,B>;

<C>, 0 -> <C>; <C>, 1 -> <>; <A,B>, 0 -> <>; <A,B>, 1 -> <A,B,C>;

<A,B,C>, 0 -> <C>; <A,B,C>, 1 -> <A,B,C>

val it = () : unit

Thus dfa is

1

1

0

0

0, 1

0 10

〈A,
B,C〉 〈C〉

〈〉

Start
1

〈A,B〉〈A〉

And we can see why nfa and dfa accept 111100, as follows:

- LP.output

= ("",

= NFA.findAcceptingLP nfa (Str.fromString "111100"));

A, 1 => A, 1 => A, 1 => B, 1 => C, 0 => C, 0 => C

val it = () : unit

- LP.output

= ("",

= DFA.findAcceptingLP dfa (Str.fromString "111100"));

<A>, 1 => <A,B>, 1 => <A,B,C>, 1 => <A,B,C>, 1 => <A,B,C>, 0 =>

<C>, 0 => <C>

val it = () : unit

Finally, we see an example in which an NFA with 4 states is converted to a
DFA with 16 states; there is a state of the DFA corresponding to every element
of the power set of the set of states of the NFA. Suppose nfa’ is the NFA

2

C
0, 1

2

D

2

0, 1
B

0, 1

1
Start A

Then we can convert nfa’ into a DFA, as follows:

3.12 Closure Properties of Regular Languages 179

- val dfa’ = nfaToDFA nfa’;

val dfa’ = - : dfa

- DFA.numStates dfa’;

val it = 16 : int

- DFA.output("", dfa’);

{states}

<>, <A>, , <C>, <D>, <A,B>, <A,C>, <A,D>, <B,C>, <B,D>, <C,D>,

<A,B,C>, <A,B,D>, <A,C,D>, <B,C,D>, <A,B,C,D>

{start state} <A>

{accepting states}

<D>, <A,D>, <B,D>, <C,D>, <A,B,D>, <A,C,D>, <B,C,D>, <A,B,C,D>

{transitions}

<>, 0 -> <>; <>, 1 -> <>; <>, 2 -> <>; <A>, 0 -> <A>;

<A>, 1 -> <A,B>; <A>, 2 -> <>; , 0 -> <C>; , 1 -> <C>;

, 2 -> ; <C>, 0 -> <D>; <C>, 1 -> <D>; <C>, 2 -> <C>;

<D>, 0 -> <>; <D>, 1 -> <>; <D>, 2 -> <D>; <A,B>, 0 -> <A,C>;

<A,B>, 1 -> <A,B,C>; <A,B>, 2 -> ; <A,C>, 0 -> <A,D>;

<A,C>, 1 -> <A,B,D>; <A,C>, 2 -> <C>; <A,D>, 0 -> <A>;

<A,D>, 1 -> <A,B>; <A,D>, 2 -> <D>; <B,C>, 0 -> <C,D>;

<B,C>, 1 -> <C,D>; <B,C>, 2 -> <B,C>; <B,D>, 0 -> <C>;

<B,D>, 1 -> <C>; <B,D>, 2 -> <B,D>; <C,D>, 0 -> <D>;

<C,D>, 1 -> <D>; <C,D>, 2 -> <C,D>; <A,B,C>, 0 -> <A,C,D>;

<A,B,C>, 1 -> <A,B,C,D>; <A,B,C>, 2 -> <B,C>; <A,B,D>, 0 -> <A,C>;

<A,B,D>, 1 -> <A,B,C>; <A,B,D>, 2 -> <B,D>; <A,C,D>, 0 -> <A,D>;

<A,C,D>, 1 -> <A,B,D>; <A,C,D>, 2 -> <C,D>; <B,C,D>, 0 -> <C,D>;

<B,C,D>, 1 -> <C,D>; <B,C,D>, 2 -> <B,C,D>;

<A,B,C,D>, 0 -> <A,C,D>; <A,B,C,D>, 1 -> <A,B,C,D>;

<A,B,C,D>, 2 -> <B,C,D>

val it = () : unit

In Section 3.13, we will use Forlan to show that there is no DFA with fewer than
16 states that accepts the language accepted by nfa’ and dfa’.

3.11.6 Notes

In contrast to the standard approach, the transition function δ for a DFA M
is not part of the definition of M , but is derived from the definition. Our
approach to proving the correctness of DFAs, using induction on Λ plus proof
by contradiction, is novel, simple and elegant. The material on deterministic
simplification is original, but straightforward. And the algorithm for converting
NFAs to DFAs is standard.

3.12 Closure Properties of Regular Languages

In this section, we show how to convert regular expressions to finite automata,
as well as how to convert finite automata to regular expressions. As a result, we

180 Regular Languages

will be able to conclude that the following statements about a language L are
equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA; and

• L is accepted by a DFA.

Also, we will introduce:

• operations on FAs corresponding to union, concatenation and closure;

• an operation on EFAs corresponding to intersection; and

• an operation on DFAs corresponding to set difference.

As a result, we will have that the set RegLan of regular languages is closed
under union, concatenation, closure, intersection and set difference. I.e., we will
have that, if L,L1, L2 ∈ RegLan, then L1 ∪L2, L1L2, L

∗, L1 ∩L2 and L1 −L2

are in RegLan.
We will also show several additional closure properties of regular languages,

in addition to giving the corresponding operations on regular expressions and
automata.

3.12.1 Converting Regular Expressions to FAs

In order to give an algorithm for converting regular expressions to finite au-
tomata, we must first define several constants and operations on FAs.

We write emptyStr for the canonical finite automaton for %,

Start A

And we write emptySet for canonical finite automaton for ∅,

Start A

Thus, we have that L(emptyStr) = {%} and L(emptySet) = ∅. Furthermore
both emptyStr and emptySet are DFAs, so that they are also NFAs and EFAs.
Thus, we also refer to emptyStr as the canonical DFA/NFA/EFA/FA for %,
and emptySet as the canonical DFA/NFA/EFA/FA for ∅.

Next, we define a function strToFA ∈ Str → FA by: strToFA x is the
canonical finite automaton for x,

3.12 Closure Properties of Regular Languages 181

B
x

Start A

Thus, for all x ∈ Str, L(strToFA x) = {x}. It is also convenient to define a
function symToNFA ∈ Sym→NFA by: symToNFA a = strToFA a. Then,
for all a ∈ Sym, L(symToNFA a) = {a}. Of course, symToNFA is also an
element of Sym→EFA and Sym→FA, and we say that symToNFA a is the
canonical NFA/EFA/FA for a.

Next, we define a function/algorithm union ∈ FA × FA → FA such that
L(union(M1,M2)) = L(M1) ∪ L(M2), for all M1,M2 ∈ FA. If M1,M2 ∈ FA,
then union(M1,M2), the union of M1 and M2, is the FA N such that:

• QN = {A} ∪ { 〈1, q〉 | q ∈ QM1
} ∪ { 〈2, q〉 | q ∈ QM2

};

• sN = A;

• AN = { 〈1, q〉 | q ∈ AM1
} ∪ { 〈2, q〉 | q ∈ AM2

}; and

• TN =

{A,%→ 〈1, sM1
〉}

∪ {A,%→ 〈2, sM2
〉}

∪ { 〈1, q〉, a → 〈1, r〉 | q, a→ r ∈ TM1
}

∪ { 〈2, q〉, a → 〈2, r〉 | q, a→ r ∈ TM2
}.

For example, if M1 and M2 are the FAs

B
11

0

(M1)

Start A

(M2)

B
11

0

AStart

then union(M1,M2) is the FA

%

〈2,A〉 〈2,B〉

%

〈1,A〉 〈1,B〉

0

0

11

11

AStart

182 Regular Languages

Proposition 3.12.1
For all M1,M2 ∈ FA:

• L(union(M1,M2)) = L(M1) ∪ L(M2); and

• alphabet(union(M1,M2)) = alphabetM1 ∪ alphabetM2.

Proposition 3.12.2
For all M1,M2 ∈ EFA, union(M1,M2) ∈ EFA.

Next, we define a function/algorithm concat ∈ FA × FA → FA such that
L(concat(M1,M2)) = L(M1)L(M2), for all M1,M2 ∈ FA. If M1,M2 ∈ FA,
then concat(M1,M2), the concatentation of M1 and M2, is the FA N such
that:

• QN = { 〈1, q〉 | q ∈ QM1
} ∪ { 〈2, q〉 | q ∈ QM2

};

• sN = 〈1, sM1
〉;

• AN = { 〈2, q〉 | q ∈ AM2
}; and

• TN =

{ 〈1, q〉,%→ 〈2, sM2
〉 | q ∈ AM1

}

∪ { 〈1, q〉, a → 〈1, r〉 | q, a→ r ∈ TM1
}

∪ { 〈2, q〉, a → 〈2, r〉 | q, a→ r ∈ TM2
}.

For example, if M1 and M2 are the FAs

(M1)

B
11

0

AStart B
11

0

(M2)

Start A

then concat(M1,M2) is the FA

〈2,A〉
11%

%

0

11
〈1,A〉 〈1,B〉 〈2,B〉

0

Start

Proposition 3.12.3
For all M1,M2 ∈ FA:

• L(concat(M1,M2)) = L(M1)L(M2); and

3.12 Closure Properties of Regular Languages 183

• alphabet(concat(M1,M2)) = alphabetM1 ∪ alphabetM2.

Proposition 3.12.4
For all M1,M2 ∈ EFA, concat(M1,M2) ∈ EFA.

Next, we define a function/algorithm closure ∈ FA → FA such that
L(closureM) = L(M)∗, for all M ∈ FA. If M ∈ FA, then closureM , the
closure of M , is the FA N such that:

• QN = {A} ∪ { 〈q〉 | q ∈ QM };

• sN = A;

• AN = {A}; and

• TN =

{A,%→ 〈sM 〉}

∪ { 〈q〉,%→ A | q ∈ AM }

∪ { 〈q〉, a→ 〈r〉 | q, a→ r ∈ TM }.

For example, if M is the FA

1

11

0

0

0

CBAStart

then closureM is the FA

%

1

〈C〉
00

0
A 〈B〉

11

0

%

%

〈A〉Start

Proposition 3.12.5
For all M ∈ FA,

• L(closureM) = L(M)∗; and

• alphabet(closureM) = alphabetM .

Proposition 3.12.6
For all M ∈ EFA, closureM ∈ EFA.

We define a function/algorithm regToFA ∈ Reg → FA by well-founded
recursion on the height of regular expressions, as follows. The goal is for
L(regToFAα) to be equal to L(α), for all regular expressions α.

184 Regular Languages

• regToFA% = emptyStr;

• regToFA $ = emptySet;

• for all α ∈ Reg, regToFA(α∗) = closure(regToFAα);

• for all α, β ∈ Reg, regToFA(α+ β) = union(regToFAα, regToFA β);

• for all n ∈ N − {0} and a1, . . . , an ∈ Sym, regToFA(a1 · · · an) =
strToFA(a1 · · · an);

• for all n ∈ N − {0}, a1, . . . , an ∈ Sym and α ∈ Reg, if α
doesn’t consist of a single symbol, and doesn’t have the form b β
for some b ∈ Sym and β ∈ Reg, then regToFA(a1 · · · an α) =
concat(strToFA(a1 · · · an), regToFAα); and

• for all α, β ∈ Reg, if α doesn’t consist of a single symbol, then
regToFA(αβ) = concat(regToFAα, regToFA β).

For example, regToFA(0101∗) = concat(strToFA(010), regToFA(1∗)).

Theorem 3.12.7
For all α ∈ Reg:

• L(regToFAα) = L(α); and

• alphabet(regToFAα) = alphabetα.

Proof. Because of the form of recursion used, the proof uses well-founded
induction on the height of α. ✷

For example, regToFA(0∗11+ 001∗) is isomorphic to the FA

%

G

J K

%

%

% %

0

% 11

00 %

%

1

B

H I

C D

E F

Start A

3.12 Closure Properties of Regular Languages 185

The Forlan module FA includes these constants and functions for building
finite automata and converting regular expressions to finite automata:

val emptyStr : fa

val emptySet : fa

val fromStr : str -> fa

val fromSym : sym -> fa

val union : fa * fa -> fa

val concat : fa * fa -> fa

val closure : fa -> fa

val fromReg : reg -> fa

emptyStr and emptySet correspond to emptyStr and emptySet, respectively.
The functions fromStr and fromSym correspond to strToFA and symToNFA,
and are also available in the top-level environment with the names

val strToFA : str -> fa

val symToFA : sym -> fa

union and concat and closure correspond to union, concat and closure,
respectively. The function fromReg corresponds to regToFA and is available in
the top-level environment with that name:

val regToFA : reg -> fa

The constants emptyStr and emptySet are inherited by the modules DFA,
NFA and EFA. The function fromSym is inherited by the modules NFA and EFA,
and is available in the top-level environment with the names

val symToNFA : sym -> nfa

val symToEFA : sym -> efa

The functions union, concat and closure are inherited by the module EFA.
Here is how the regular expression 0∗11+ 001∗ can be converted to an FA

in Forlan:

- val reg = Reg.input "";

@ 0*11 + 001*

@ .

val reg = - : reg

- val fa = regToFA reg;

val fa = - : fa

- FA.output("", fa);

{states}

A, <1,<1,A>>, <1,<2,A>>, <1,<2,B>>, <2,<1,A>>, <2,<1,B>>,

<2,<2,A>>, <1,<1,<A>>>, <1,<1,>>, <2,<2,<A>>>, <2,<2,>>

{start state} A {accepting states} <1,<2,B>>, <2,<2,A>>

{transitions}

A, % -> <1,<1,A>> | <2,<1,A>>;

<1,<1,A>>, % -> <1,<2,A>> | <1,<1,<A>>>;

186 Regular Languages

<1,<2,A>>, 11 -> <1,<2,B>>; <2,<1,A>>, 00 -> <2,<1,B>>;

<2,<1,B>>, % -> <2,<2,A>>; <2,<2,A>>, % -> <2,<2,<A>>>;

<1,<1,<A>>>, 0 -> <1,<1,>>; <1,<1,>>, % -> <1,<1,A>>;

<2,<2,<A>>>, 1 -> <2,<2,>>; <2,<2,>>, % -> <2,<2,A>>

val it = () : unit

- val fa’ = FA.renameStatesCanonically fa;

val fa’ = - : fa

- FA.output("", fa’);

{states} A, B, C, D, E, F, G, H, I, J, K {start state} A

{accepting states} D, G

{transitions}

A, % -> B | E; B, % -> C | H; C, 11 -> D; E, 00 -> F; F, % -> G;

G, % -> J; H, 0 -> I; I, % -> B; J, 1 -> K; K, % -> G

val it = () : unit

Thus fa’ is the finite automaton

%

G

J K

%

%

% %

0

% 11

00 %

%

1

B

H I

C D

E F

Start A

Putting together our algorithm for converting regular expressions to finite
automata with our algorithm for checking whether strings are accepted by finite
automata, we are now able to check whether strings are generated by regular
expressions:

- fun generated reg =

= let val fa = FA.renameStatesCanonically(regToFA reg)

= in FA.accepted fa end;

val generated = fn : reg -> str -> bool

- val generated = generated reg;

val generated = fn : str -> bool

- generated(Str.fromString "000011");

val it = true : bool

- generated(Str.fromString "001111");

val it = true : bool

- generated(Str.fromString "000111");

val it = false : bool

3.12 Closure Properties of Regular Languages 187

3.12.2 Converting FAs to Regular Expressions

Our algorithm for converting FAs to regular expressions makes use of a more
general kind of finite automata that we call regular expression finite automata.

A regular expression finite automaton (RFA) M consists of:

• a finite set QM of symbols;

• an element sM of QM ;

• a subset AM of QM ; and

• a finite subset TM of { (q, α, r) | q, r ∈ QM and α ∈ Reg } such that, for
all q, r ∈ QM , there is at most one α ∈ Reg such that (q, α, r) ∈ TM .

As usual QM consists of M ’s states, sM is M ’s start state, AM consists of M ’s
accepting states, and TM consists of M ’s transitions. We often write a transition
(q, α, r) as

q
α

→ r

or q, α→ r. We write RFA for the set of all RFAs, which is a countably infinite
set. RFAs are drawn analogously to FAs, and the Forlan syntax for RFAs is
analogous to that of FAs.

For example, the RFA M whose states are A and B, start state is A, only
accepting state is B, and transitions are (A, 2,A), (A, 00∗,B), (B, 3,B) and
(B, 11∗,A) can be drawn as

2

B

00∗

11∗

3

Start A

and expressed in Forlan as

{states} A, B {start state} A {accepting states} B

{transitions} A, 2 -> A; A, 00* -> B; B, 3 -> B; B, 11* -> A

We define a function alphabet ∈ RFA → Alp by: for all M ∈ RFA,
alphabetM is { a ∈ Sym | there are q, α, r such that q, α → r ∈ TM and
a ∈ alphabetα }. I.e., alphabetM is the union of the alphabets of all of the
regular expressions appearing in M ’s transitions. We say that alphabetM is
the alphabet of M . For example, the alphabet of our example FA M is {0, 1, 2}.

The Forlan module RFA defines an abstract type rfa (in the top-level en-
vironment) of regular expression finite automata, as well as some functions for
processing RFAs including:

188 Regular Languages

val input : string -> rfa

val output : string * rfa -> unit

val alphabet : rfa -> sym set

val numStates : rfa -> int

val numTransitions : rfa -> int

val equal : rfa * rfa -> bool

JForlan can be used to view and edit regular expression finite automata.
It can be invoked directly, or run via Forlan. See the Forlan website for more
information.

The isomorphism relation between RFAs is defined in an analogous
way to this relation for FAs. And the functions renameStates and
renameStatesCanonically are also defined analogously, and have analogous
properties. The RFA module has the functions

val renameStates : rfa * sym_rel -> rfa

val renameStatesCanonically : rfa -> rfa

A labeled path

q1
x1

⇒ q2
x2

⇒ · · · qn
xn

⇒ qn+1,

is valid for an RFA M iff, for all i ∈ [1 : n],

xi ∈ L(α), for some α ∈ Reg such that qi, α→ qi+1,

and qn+1 ∈ QM . For example, the labeled path

A
000

⇒ B
3
⇒ B

is valid for our example FA M , because

• 000 ∈ L(00∗) and A, 00∗ → B ∈ T , and

• 3 ∈ L(3) and B, 3→ B ∈ T .

The RFA module contains the functions

val checkLP : (str * reg -> bool) * rfa -> lp -> unit

val validLP : (str * reg -> bool) * rfa -> lp -> bool

which are analogous to the identically named functions provided by FA, except
that they take a first argument whose job is to test whether a string is generated
by a regular expression. For example, we can proceed as follows:

- val rfa = RFA.input "";

@ {states} A, B {start state} A {accepting states} B

@ {transitions} A, 2 -> A; A, 00* -> B; B, 3 -> B; B, 11* -> A

3.12 Closure Properties of Regular Languages 189

@ .

val rfa = - : rfa

- fun memb(x, reg) = FA.accepted (regToFA reg) x;

val memb = fn : str * reg -> bool

- val lp = LP.input "";

@ A, 000 => B, 3 => B

@ .

val lp = - : lp

- RFA.validLP (memb, rfa) lp;

val it = true : bool

- val lp’ = LP.input "";

@ A, 0 => B, 0 => A

@ .

val lp’ = - : lp

- RFA.checkLP (memb, rfa) lp’;

transition from "B" to "A" has regular expression that doesn’t

generate "0"

uncaught exception Error

A string w is accepted by an RFA M iff there is a labeled path lp such that

• the label of lp is w;

• lp is valid for M ;

• the start state of lp is the start state of M ; and

• the end state of lp is an accepting state of M .

We have that, if w is accepted by M , then alphabetw ⊆ alphabetM . The
language accepted by an RFA M (L(M)) is

{w ∈ Str | w is accepted by M }.

Consider our example RFA M :

2

B

00∗

11∗

3

Start A

We have that 20 and 0000111103 are accepted by M , but that 23 and 122 are
not accepted by M .

We define a function combineTrans that takes in a pair (simp, U) such that

• simp ∈ Reg→Reg and

• U is a finite subset of { p, α→ q | p, q ∈ Sym and α ∈ Reg },

190 Regular Languages

and returns a finite subset V of { p, α→ q | p, q ∈ Sym and α ∈ Reg } with the
property that, for all p, q ∈ Sym, there is at most one β such that p, β→ q ∈ V .
Given such a pair (simp, U), combineTrans returns the set of all transitions
p, α→ q such that {β | p, β→ q ∈ U } is nonempty, and α = simp(β1+ · · ·+βn),
where β1, . . . , βn are all of the elements of this set, listed in increasing order and
without repetition.

Now, we define a function/algorithm

faToRFA ∈ (Reg→Reg)→ FA→RFA.

faToRFA takes in simp ∈ Reg → Reg, and returns a function that takes in
M ∈ FA, and returns the RFA N such that:

• QN = QM ;

• sN = sM ;

• AN = AM ; and

• TN = combineTrans(simp, { p, strToReg x→ q | p, x→ q ∈ TM }).

For example, if the FA M is

3, 34

B

0

1, 2
AStart

and simp is
♯2 ◦ locallySimplify(none,obviousSubset),

then faToRFA simpM is the RFA

3(% + 4)

B

0

1+ 2
AStart

Proposition 3.12.8
Suppose simp ∈ Reg → Reg and M ∈ FA. If, for all α ∈ Reg, L(simp α) =
L(α) and alphabet(simp α) ⊆ alphabetα, then

(1) L(faToRFA simpM) = L(M), and

(2) alphabet(faToRFA simpM) = alphabetM .

The RFA module has a function

val fromFA : (reg -> reg) -> fa -> rfa

3.12 Closure Properties of Regular Languages 191

that corresponds to faToRFA. Here is how our conversion example can be
carried out in Forlan:

- val simp = #2 o Reg.locallySimplify(NONE, Reg.obviousSubset);

val simp = fn : reg -> reg

- val fa = FA.input "";

@ {states} A, B {start state} A {accepting states} B

@ {transitions}

@ A, 0 -> A; A, 1 -> B; A, 2 -> B;

@ B, 3 -> B; B, 34 -> B

@ .

val fa = - : fa

- val rfa = RFA.fromFA simp fa;

val rfa = - : rfa

- RFA.output("", rfa);

{states} A, B {start state} A {accepting states} B

{transitions} A, 0 -> A; A, 1 + 2 -> B; B, 3(% + 4) -> B

val it = () : unit

We say that an RFA M is standard iff

• M ’s start state is not an accepting state, and there are no transitions into
M ’s start state (even from sM to itself); and

• M has a single accepting state, and there are no transitions from that
state (even from the accepting state to itself).

Proposition 3.12.9
Suppose M is a standard RFA with only two states, and that q is M ′s accepting
state.

(1) For all α ∈ Reg, if sM , α→ q, then L(M) = L(α).

(2) If there is no α ∈ Reg such that sM , α→ q, then L(M) = ∅.

We define a function standardize ∈ RFA → RFA that standardizes an
RFA, as follows. Given an argument M , it returns the RFA N such that:

• QN = { 〈q〉 | q ∈ QM } ∪ {A,B};

• sN = A;

• AN = {B}; and

• TN

= {A,%→ 〈sM 〉}

∪ { 〈q〉,%→ B | q ∈ AM }

∪ { 〈q〉, α→ 〈r〉 | q, α→ r ∈ TM }.

192 Regular Languages

For example, if M is the RFA

3(% + 4)

B

0

1+ 2
AStart

then standardizeM is the RFA

%

3(% + 4)0

B
%

A 〈B〉
1+ 2

〈A〉Start

Proposition 3.12.10
Suppose M is an RFA. Then:

• standardizeM is standard;

• L(standardizeM) = L(M); and

• alphabet(standardizeM) = alphabetM .

The RFA module has functions

val standard : rfa -> bool

val standardize : rfa -> rfa

The function standard tests whether an RFA is standard, and the function
standardize corresponds to standardize.

Here is how the above example can be carried out in Forlan:

- RFA.standard rfa;

val it = false : bool

- val rfa’ = RFA.standardize rfa;

val rfa’ = - : rfa

- RFA.output("", rfa’);

{states} A, B, <A>, {start state} A {accepting states} B

{transitions}

A, % -> <A>; <A>, 0 -> <A>; <A>, 1 + 2 -> ; , % -> B;

, 3(% + 4) ->

val it = () : unit

- RFA.standard rfa’;

val it = true : bool

Next, we define a function eliminateState that takes in a function simp ∈
Reg→Reg, and returns a function that takes in a pair (M, q), where M is an
RFA and q ∈ QM − ({sM} ∪AM), and returns an RFA. When called with such
a simp and (M, q), eliminateState returns the RFA N such that:

• QN = QM − {q};

3.12 Closure Properties of Regular Languages 193

• sN = sM ;

• AN = AM ; and

• TN = combineTrans(simp, U ∪ V), where

– U = { p, α→ r ∈ TM | p 6= q and r 6= q },

– V = { p, simp(αβ∗γ)→ r | p 6= q, r 6= q, p, α→ q ∈ TM and q, γ → r ∈
TM }, and

– β is the unique α ∈ Reg such that q, α→ q ∈ TM , if such an α exists,
and is %, otherwise.

Suppose simp is ♯2 ◦ locallySimplify(none,obviousSubset) and M is the
FA

4
C

0
D

1

2

3

BAStart

Then eliminateState simp (M,B) is

4
C D

01

3+ 21

AStart

And, we can eliminate C from this RFA, yielding

D
01(3 + 21)∗4

Start A

Alternatively, we could eliminate C from

4
C

0
D

1

2

3

BAStart

yielding

13∗4
B D

0

13∗2

AStart

And could then eliminate B from this RFA, yielding

194 Regular Languages

D
01(3 + 21)∗4

Start A

(simp(0(13∗2)∗(13∗4)) = 01(3 + 21)∗4.)
If we had an efficient regular expression simplifier that produced optimal

results, then the order in which we eliminated states would be irrelevant. But
using our existing simplifiers, it turns out that eliminating states in some or-
ders produces much better results than doing so in other orders. Instead of
eliminating first C and then B, we could have renamed M ’s states using the
bijection

{(A,A), (B,C), (C,B), (D,D)}

and then have eliminted states in ascending order, according to our usual order-
ing on symbols: first B and then C. This is the approach we’ll use when looking
for alternative answers.

Proposition 3.12.11
Suppose simp ∈ Reg→Reg, M is an RFA and q ∈ QM − ({sM} ∪AM). Then:

(1) eliminateState simp (M, q) has one less state than M .

(2) If M is standard, then eliminateState simp (M, q) is standard.

(3) If, for all α ∈ Reg, L(simp α) = L(α), then

L(eliminateState simp (M, q)) = L(M).

(4) If, for all α ∈ Reg, alphabet(simp α) ⊆ alphabetα, then

alphabet(eliminateState simp (M, q)) ⊆ alphabetM.

The RFA module has a function

val eliminateState : (reg -> reg) -> rfa * sym -> rfa

that corresponds to eliminateState. Here is how our state-elimination exam-
ples can be carried out in Forlan:

- val rfa = RFA.input "";

@ {states} A, B, C, D {start state} A {accepting states} D

@ {transitions}

@ A, 0 -> B; B, 1 -> C; C, 2 -> B; C, 3 -> C; C, 4 -> D

@ .

val rfa = - : rfa

- val eliminateState = RFA.eliminateState simp;

val eliminateState = fn : rfa * sym -> rfa

- val rfa’ = eliminateState(rfa, Sym.fromString "B");

3.12 Closure Properties of Regular Languages 195

val rfa’ = - : rfa

- RFA.output("", rfa’);

{states} A, C, D {start state} A {accepting states} D

{transitions} A, 01 -> C; C, 4 -> D; C, 3 + 21 -> C

val it = () : unit

- val rfa’’ = eliminateState(rfa’, Sym.fromString "C");

val rfa’’ = - : rfa

- RFA.output("", rfa’’);

{states} A, D {start state} A {accepting states} D

{transitions} A, 01(3 + 21)*4 -> D

val it = () : unit

- val rfa’’’ = eliminateState(rfa, Sym.fromString "C");

val rfa’’’ = - : rfa

- RFA.output("", rfa’’’);

{states} A, B, D {start state} A {accepting states} D

{transitions} A, 0 -> B; B, 13*2 -> B; B, 13*4 -> D

val it = () : unit

- val rfa’’’’ = eliminateState(rfa’’’, Sym.fromString "B");

val rfa’’’’ = - : rfa

- RFA.output("", rfa’’’’);

{states} A, D {start state} A {accepting states} D

{transitions} A, 01(3 + 21)*4 -> D

val it = () : unit

And eliminateState stops us from eliminating a start state or an accepting
state:

- eliminateState(rfa, Sym.fromString "A");

cannot eliminate start state: "A"

uncaught exception Error

- eliminateState(rfa, Sym.fromString "D");

cannot eliminate accepting state: "D"

uncaught exception Error

Now, we use eliminateState to define a function/algorithm

rfaToReg ∈ (Reg→Reg)→RFA→Reg.

It takes elements simp ∈ Reg→Reg and M ∈ RFA, and returns

f(standardizeM),

where f is the function from standard RFAs to regular expressions that is defined
by well-founded recursion on the number of states of its input, M , as follows:

• If M has only two states, then f returns the label of the transition from sM
to M ’s accepting state, if such a transition exists, and returns $, otherwise.

196 Regular Languages

• Otherwise, f calls itself recursively on eliminateState simp (M, q), where
q is the least element (in the standard ordering on symbols) of QM −
({sM} ∪AM).

Proposition 3.12.12
Suppose M is an RFA and simp ∈ Reg → Reg has the property that, for all
α ∈ Reg, L(simp α) = L(α) and alphabet(simp α) ⊆ alphabetα. Then:

(1) L(rfaToReg simpM) = L(M); and

(2) alphabet(rfaToReg simpM) ⊆ alphabetM .

Finally, we define our RFA to regular expression conversion algo-
rithm/function:

faToReg ∈ (Reg→Reg)→ FA→Reg.

faToReg takes in simp ∈ Reg→Reg, and returns

rfaToReg simp ◦ faToRFA simp.

Proposition 3.12.13
Suppose M is an FA and simp ∈ Reg → Reg has the property that, for all
α ∈ Reg, L(simp α) = L(α) and alphabet(simp α) ⊆ alphabetα. Then:

(1) L(faToReg simpM) = L(M); and

(2) alphabet(faToReg simpM) ⊆ alphabetM .

The Forlan module RFA includes functions

val toReg : (reg -> reg) -> rfa -> reg

val faToReg : (reg -> reg) -> fa -> reg

val faToRegPerms : int option * (reg -> reg) -> fa -> reg

val faToRegPermsTrace : int option * (reg -> reg) -> fa -> reg

The function toReg corresponds to rfaToReg. The function faToReg is the
implementation of faToReg. If simp is a simplification function and M is an
FA, then faToRegPerms (NONE, simp)M applies faToReg to all of the FAs N
that can be formed by renaming M ’s states using bijections (i.e., permutations)
from QM to QM , and returns the simplest answer found (ties in complexity
are broken by selecting the smallest regular expression in our total ordering on
regular expressions.) faToRegPerms (SOMEn, simp)M , for n ≥ 1, works sim-
ilarly, except that only n ways of renaming M ’s state are considered. And
faToRegPermsTrace is like faToRegPerms except that it explains what it’s do-
ing. The functions faToReg, faToRegPerms and faToRegTrace are also available
in the top-level environment with those names:

3.12 Closure Properties of Regular Languages 197

val faToReg : (reg -> reg) -> fa -> reg

val faToRegPerms : int option * (reg -> reg) -> fa -> reg

val faToRegPermsTrace : int option * (reg -> reg) -> fa -> reg

Suppose fa is the FA

1

0

0

0

0

1 1 1

B

C D

Start A

which accepts {w ∈ {0, 1}∗ | w has an even number of 0 and 1’s }. converting
fa into a regular expression using faToReg and weaklySimplify yields a fairly
complicated answer:

- val reg = faToReg Reg.weaklySimplify fa;

val reg = - : reg

- Reg.output("", reg);

% + 00(00)* + (1 + 00(00)*1)(11 + 100(00)*1)*(1 + 100(00)*) +

(0(00)*1 + (1 + 00(00)*1)(11 + 100(00)*1)*(0 + 10(00)*1))

(1(00)*1 + (0 + 10(00)*1)(11 + 100(00)*1)*(0 + 10(00)*1))*

(10(00)* + (0 + 10(00)*1)(11 + 100(00)*1)*(1 + 100(00)*))

val it = () : unit

But by using faToRegPerms, we can do much better:

- val reg’ = faToRegPerms (NONE, Reg.weaklySimplify) fa;

val reg’ = - : reg

- Reg.output("", reg’);

(00 + 11 + (01 + 10)(00 + 11)*(01 + 10))*

val it = () : unit

By using faToRegPermsTrace, we can learn that this answer was found using
the renaming

(A,D), (B,A), (C,B), (D,C)

of M ’s states. That is, it was found by making M into a standard RFA, with
new start and accepting states, and then eliminating the states corresponding
to B, C, D and A, in that order.

3.12.3 Characterization of Regular Languages

Since we have algorithms for converting back and forth between regular expres-
sions and finite automata, as well as algorithms for converting FAs to RFAs,
RFAs to regular expressions, FAs to EFAs, EFAs to NFAs, and NFAs to DFAs,
we have the following theorem:

198 Regular Languages

Theorem 3.12.14
Suppose L is a language. The following statements are equivalent:

• L is regular;

• L is generated by a regular expression;

• L is accepted by a regular expression finite automaton;

• L is accepted by a finite automaton;

• L is accepted by an EFA;

• L is accepted by an NFA; and

• L is accepted by a DFA.

3.12.4 More Closure Properties/Algorithms

Consider the EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

How can we construct an EFA N such that L(N) = L(M1) ∩ L(M2)? The idea
is to make the states of N represent pairs of the form (q, r), where q ∈ QM1

and
r ∈ QM2

.
In order to define our intersection operation on EFAs, we first need to define

two auxiliary functions. Suppose M1 and M2 are EFAs. We define a function

nextSymM1,M2
∈ (QM1

×QM2
)× Sym→P(QM1

×QM2
)

by nextSymM1,M2
((q, r), a) =

{ (q′, r′) | q, a→ q′ ∈ TM1
and r, a→ r′ ∈ TM2

}.

We often abbreviate nextSymM1,M2
to nextSym. If M1 and M2 are our ex-

ample EFAs, then nextSym((A,A), 0) = ∅ and nextSym((A,B), 0) = {(A,B)}.
Suppose M1 and M2 are EFAs. We define a function

nextEmpM1,M2
∈ (QM1

×QM2
)→P(QM1

×QM2
)

by nextEmpM1,M2
(q, r) =

{ (q′, r) | q,%→ q′ ∈ TM1
} ∪ { (q, r′) | r,%→ r′ ∈ TM2

}.

3.12 Closure Properties of Regular Languages 199

We often abbreviate nextEmpM1,M2
to nextEmp. If M1 andM2 are our exam-

ple EFAs, then nextEmp(A,A) = {(B,A), (A,B)}, nextEmp(A,B) = {(B,B)},
nextEmp(B,A) = {(B,B)} and nextEmp(B,B) = ∅.

Now, we define a function/algorithm inter ∈ EFA×EFA→EFA such that
L(inter(M1,M2)) = L(M1) ∩ L(M2), for all M1,M2 ∈ EFA. Given EFAs M1

and M2, inter(M1,M2), the intersection of M1 and M2, is the EFA N that is
constructed as follows. First, we let Σ = alphabetM1 ∩ alphabetM2. Next,
we generate the least subset X of QM1

×QM2
such that

• (sM1
, sM2

) ∈ X;

• for all q ∈ QM1
, r ∈ QM2

and a ∈ Σ, if (q, r) ∈ X, then
nextSym((q, r), a) ⊆ X; and

• for all q ∈ QM1
and r ∈ QM2

, if (q, r) ∈ X, then nextEmp(q, r) ⊆ X.

Then, the EFA N is defined by:

• QN = { 〈q, r〉 | (q, r) ∈ X };

• sN = 〈sM1
, sM2

〉;

• AN = { 〈q, r〉 | (q, r) ∈ X and q ∈ AM1
and r ∈ AM2

}; and

• TN =

{ 〈q, r〉, a→ 〈q′, r′〉 | (q, r) ∈ X and a ∈ Σ and

(q′, r′) ∈ nextSym((q, r), a) }

∪ { 〈q, r〉,%→ 〈q′, r′〉 | (q, r) ∈ X and

(q′, r′) ∈ nextEmp(q, r) }.

Suppose M1 and M2 are our example EFAs. Then inter(M1,M2) is

%

% %

%

1

0

Start 〈A,A〉

〈B,A〉

〈A,B〉

〈B,B〉

Theorem 3.12.15
For all M1,M2 ∈ EFA:

200 Regular Languages

• L(inter(M1,M2)) = L(M1) ∩ L(M2); and

• alphabet(inter(M1,M2)) ⊆ alphabetM1 ∩ alphabetM2.

Proposition 3.12.16
For all M1,M2 ∈ NFA, inter(M1,M2) ∈ NFA.

Proposition 3.12.17
For all M1,M2 ∈ DFA:

(1) inter(M1,M2) ∈ DFA.

(2) alphabet(inter(M1,M2)) = alphabetM1 ∩ alphabetM2.

Next, we define a function complement ∈ DFA×Alp→DFA such that,
for all M ∈ DFA and Σ ∈ Alp,

L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M).

In the common case when L(M) ⊆ Σ∗, we will have that alphabet(L(M)) ⊆ Σ,
and thus that (alphabet(L(M)) ∪ Σ)∗ = Σ∗. Hence, it will be the case that

L(complement(M,Σ)) = Σ∗ − L(M).

Given a DFA M and an alphabet Σ, complement(M,Σ), the complement
of M with reference to Σ, is the DFA N that is produced as follows. First, we
let the DFA M ′ = determSimplify(M,Σ). Thus:

• M ′ is equivalent to M ; and

• alphabetM ′ = alphabet(L(M)) ∪ Σ.

Then, we define N by:

• QN = QM ′ ;

• sN = sM ′ ;

• AN = QM ′ −AM ′ ; and

• TN = TM ′ .

Then, for all w ∈ (alphabetM ′)∗ = (alphabetN)∗ = (alphabet(L(M))∪Σ)∗,

w ∈ L(N) iff δN (sN , w) ∈ AN

iff δN (sN , w) ∈ QM ′ −AM ′

iff δM ′(sM ′ , w) 6∈ AM ′

iff w 6∈ L(M ′)

iff w 6∈ L(M).

Hence:

3.12 Closure Properties of Regular Languages 201

Theorem 3.12.18
For all M ∈ DFA and Σ ∈ Alp:

• L(complement(M,Σ)) = (alphabet(L(M)) ∪ Σ)∗ − L(M); and

• alphabet(complement(M,Σ)) = alphabet(L(M)) ∪ Σ.

For example, suppose the DFA M is

0, 1DC
00

1

A B

1

0

1

Start

Then determSimplify(M, {2}) is the DFA

2

C
0

1

〈dead〉

0, 1, 2

2 0, 2

Start A B

1

1

0

Thus complement(M, {2}) is

2

C
0

1

〈dead〉

0, 1, 2

2 0, 2

0

A B

1

1

Start

Let X = {w ∈ {0, 1}∗ | 000 is not a substring of w }. Then
L(complement(M, {2})) is

(alphabet(L(M)) ∪ {2})∗ − L(M)

= ({0, 1} ∪ {2})∗ −X

= {w ∈ {0, 1, 2}∗ | w 6∈ X }

= {w ∈ {0, 1, 2}∗ | 2 ∈ alphabetw or 000 is a substring of w }.

202 Regular Languages

We define a function/algorithm minus ∈ DFA × DFA → DFA by:
minus(M1,M2), the difference of M1 and M2, is

inter(M1, complement(M2,alphabetM1)).

Theorem 3.12.19
For all M1,M2 ∈ DFA:

(1) L(minus(M1,M2)) = L(M1)− L(M2); and

(2) alphabet(minus(M1,M2)) = alphabetM1.

Proof. Suppose w ∈ Str. Then:

w ∈ L(minus(M1,M2))

iff w ∈ L(inter(M1, complement(M2,alphabetM1)))

iff w ∈ L(M1) and w ∈ L(complement(M2,alphabetM1))

iff w ∈ L(M1) and w ∈ (alphabet(L(M2)) ∪ alphabetM1)
∗ and

w 6∈ L(M2)

iff w ∈ L(M1) and w 6∈ L(M2)

iff w ∈ L(M1)− L(M2).

✷

To see why the second argument to complement is alphabetM1, in the
definition of minus(M1,M2), look at the “if” direction of the second-to-last step
of the preceding proof: since w ∈ L(M1), we have that w ∈ (alphabetM1)

∗, so
that w ∈ (alphabet(L(M2)) ∪ alphabet(M1))

∗.
For example, let M1 and M2 be the EFAs

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

Since L(M1) = {0}∗{1}∗ and L(M2) = {1}∗{0}∗, we have that

L(M1)− L(M2) = {0}∗{1}∗ − {1}∗{0}∗ = {0}{0}∗{1}{1}∗.

Define DFAs N1 and N2 by:

N1 = nfaToDFA(efaToNFAM1), and

N2 = nfaToDFA(efaToNFAM2).

3.12 Closure Properties of Regular Languages 203

Thus we have that

L(N1) = L(nfaToDFA(efaToNFA(M1)))

= L(efaToNFA(M1)) (Theorem 3.11.11)

= L(M1) (Theorem 3.10.4)

L(N2) = L(nfaToDFA(efaToNFA(M2)))

= L(efaToNFA(M2)) (Theorem 3.11.11)

= L(M2) (Theorem 3.10.4).

Let the DFA N = minus(N1, N2). Then

L(N) = L(minus(N1, N2))

= L(N1)− L(N2) (Theorem 3.12.19)

= L(M1)− L(M2)

= {0}{0}∗{1}{1}∗.

Next, we consider the reversal of languages, regular expressions, finite au-
tomata and empty-string finite automata. The reversal of a language L
(LR ∈ Lan) is {w | wR ∈ L } = {wR | w ∈ L }. I.e., LR is formed by re-
versing all of the elements of L. For example, {011, 1011}R = {110, 1101}.

Define rev ∈ Reg→Reg by recursion:

rev% = %;

rev $ = $;

rev a = a, for all a ∈ Sym;

rev(α∗) = (revα)∗, for all α ∈ Reg;

rev(αβ) = rev β revα, for all α, β ∈ Reg; and

rev(α+ β) = revα+ rev β, for all α, β ∈ Reg.

We say that revα is the reversal of α. For example rev(01 + (10)∗) =
10+ (01)∗.

Theorem 3.12.20
For all α ∈ Reg:

• L(revα) = L(α)R; and

• alphabet(revα) = alphabetα.

Proof. By induction on α. ✷

We can also define a reversal operation on FAs and EFAs. The idea is to
reverse all of the transitions, add a new start state, with %-transitions to all of
the original accepting states, and make the original start state be the unique
accepting state. Formally, we define a function rev ∈ FA → FA as follows.
Given an FA M , revM , the reversal of M , is the FA N such that

204 Regular Languages

• QN = {A} ∪ { 〈q〉 | q ∈ QM };

• sN = A;

• AN = {〈sM 〉}; and

• TN = { (〈r〉, xR, 〈q〉) | (q, x, r) ∈ TM } ∪ { (A,%, 〈q〉) | q ∈ AM }.

It is easy to see that, for all M ∈ EFA, revM ∈ EFA.
For example, if M is the FA

45

B C
01 23

Start A

then revM is

〈C〉
32

54

%

%

〈B〉A
10

〈A〉Start

We have that 012345 and 0123450123 are in L(M), and 543210 and 3210543210

are in L(revM) = L(M)R.

Theorem 3.12.21
For all M ∈ FA:

• L(revM) = L(M)R; and

• alphabet(revM) = alphabetM .

Next, we consider the prefix-, suffix- and substring-closures of languages, as
well as the associated operations on automata. Suppose L is a language. Then:

• The prefix-closure of L (LP) is {x | xy ∈ L, for some y ∈ Str }. I.e., LP

is all of the prefixes of elements of L. E.g., {012, 3}P = {%, 0, 01, 012, 3}.

• The suffix-closure of L (LS) is { y | xy ∈ L, for some x ∈ Str }. I.e., LS is
all of the suffixes of elements of L. E.g., {012, 3}S = {%, 2, 12, 012, 3}.

• The substring-closure of L (LSS) is { y | xyz ∈ L, for some x, z ∈ Str }.
I.e., LSS is all of the substrings of elements of L. E.g., {012, 3}SS =
{%, 0, 1, 2, 01, 12, 012, 3}.

The following proposition shows that we can express suffix- and substring-
closure in terms of prefix-closure and language reversal.

3.12 Closure Properties of Regular Languages 205

Proposition 3.12.22
For all languages L:

• LS = ((LR)P)R; and

• LSS = (LP)S .

Now, we define a function prefix ∈ EFA→ EFA such that L(prefixM) =
L(M)P , for all M ∈ EFA. Given an EFA M , prefixM , the prefix-closure of
M , is the EFA N that is constructed as follows. First, we simplify M , producing
an EFA M ′ that is equivalent to M and either has no useless states, or consists
of a single dead state and no-transitions. If M ′ has no useless states, then we
let N be the same as M ′ except that AN = QN = QM ′ , i.e., all states of N are
accepting states. If M ′ consists of a single dead state and no transitions, then
we let N = M ′.

For example, suppose M is the EFA

C
0

1

D
0

Start A B
0

so that L(M) = {001}∗. Then prefixM is the EFA

C
0

1

Start A B
0

which accepts {001}∗{%, 0, 00}.

Theorem 3.12.23
For all M ∈ EFA:

• L(prefixM) = L(M)P ; and

• alphabet(prefixM) = alphabet(L(M)).

Proposition 3.12.24
For all M ∈ NFA, prefixM ∈ NFA.

Now we can define suffix-closure and substring-closure operations on EFAs
as follows. The functions suffix, substring ∈ EFA→EFA are defined by:

suffixM = rev(prefix(revM))), and

substringM = suffix(prefixM)).

Theorem 3.12.25
For all M ∈ EFA:

206 Regular Languages

• L(suffixM) = L(M)S ; and

• L(substringM) = L(M)SS .

Next, we consider the renaming of regular expressions and finite automata
using bijections on symbols. If x is a string and f is a bijection from a set
of symbols that is a superset of alphabetx (maybe alphabetx itself, i.e., the
symbols appearing in x), then the renaming of x using f (xf ∈ Str) is the result
of applying f to each symbol of x. For example, if f = {(0, 1), (1, 2), (2, 3)}, then
%f = % and (01102)f = 12213.

If L is a language, and f is a bijection from a set of symbols that is a
superset of alphabetL (maybe alphabetL itself) to some set of symbols, then
the renaming of L using f (Lf ∈ Lan) is formed by applying f to every symbol
of every string of L. For example, if L = {012, 12} and f = {(0, 1), (1, 2), (2, 3)},
then Lf = {123, 23}.

Let X = { (α, f) | α ∈ Reg and f is a bijection from a set of symbols that
is a superset of alphabetα to some set of symbols }. Then, the function
renameAlphabet ∈ X→Reg takes in a pair (α, f) and returns the regular ex-
pression produced from α by renaming each sub-tree of the form a, for a ∈ Sym,
to f(a). For example, renameAlphabet(012 + 12, {(0, 1), (1, 2), (2, 3)}) =
123 + 23.

Theorem 3.12.26
For all α ∈ Reg and bijections f from sets of symbols that are supersets of
alphabetα to sets of symbols:

• L(renameAlphabet(α, f)) = L(α)f ; and

• alphabet(renameAlphabet(α, f)) = { f a | a ∈ alphabetα }.

For example, if f = {(0, 1), (1, 2), (2, 3)}, then

L(renameAlphabet(012 + 12, f)) = L(012 + 12)f = {012, 12}f

= {123, 23}.

Let X = { (M,f) | M ∈ FA and f is a bijection from a set of symbols that
is a superset of alphabetM to some set of symbols }. Then, the function
renameAlphabet ∈ X → FA takes in a pair (M,f) and returns the FA pro-
duced from M by renaming each symbol of each label of each transition using
f . For example, if M is the FA

C
11

101

Start A B
0

and f = {(0, 1), (1, 2)}, then renameAlphabet(M,f) is the FA

3.12 Closure Properties of Regular Languages 207

C
22

212

Start A B
1

Theorem 3.12.27
For all M ∈ FA and bijections f from sets of symbols that are supersets of
alphabetM to sets of symbols:

• L(renameAlphabet(M,f)) = L(M)f ;

• alphabet(renameAlphabet(M,f)) = { f a | a ∈ alphabetM };

• if M is an EFA, then renameAlphabet(M,f) is an EFA;

• if M is an NFA, then renameAlphabet(M,f) is an NFA; and

• if M is a DFA, then renameAlphabet(M,f) is a DFA.

Theorem 3.12.28
Suppose L,L1, L2 ∈ RegLan. Then:

(1) L1 ∪ L2 ∈ RegLan;

(2) L1L2 ∈ RegLan;

(3) L∗ ∈ RegLan;

(4) L1 ∩ L2 ∈ RegLan;

(5) L1 − L2 ∈ RegLan;

(6) LR ∈ RegLan;

(7) LP ∈ RegLan;

(8) LS ∈ RegLan;

(9) LSS ∈ RegLan; and

(10) Lf ∈ RegLan, where f is a bijection from a set of symbols that is a
superset of alphabetL to some set of symbols.

Proof. Parts (1)–(10) hold because of the operations union, concat and
closure on FAs, the operation inter on EFAs, the operation minus on DFAs,
the operation rev on regular expressions, the operations prefix, suffix and
substring on EFAs, the operation renameAlphabet on regular expressions,
and Theorem 3.12.14. ✷

The Forlan module EFA defines the function/algorithm

208 Regular Languages

val inter : efa * efa -> efa

which corresponds to inter. It is also inherited by the modules DFA and NFA.
The Forlan module DFA defines the functions

val complement : dfa * sym set -> dfa

val minus : dfa * dfa -> dfa

which correspond to complement and minus.
Suppose the identifiers efa1 and efa2 of type efa are bound to our example

EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

Then, we can construct inter(M1,M2) as follows:

- val efa = EFA.inter(efa1, efa2);

val efa = - : efa

- EFA.output("", efa);

{states} <A,A>, <A,B>, <B,A>, <B,B> {start state} <A,A>

{accepting states} <B,B>

{transitions}

<A,A>, % -> <A,B> | <B,A>; <A,B>, % -> <B,B>; <A,B>, 0 -> <A,B>;

<B,A>, % -> <B,B>; <B,A>, 1 -> <B,A>

val it = () : unit

Thus efa is bound to the EFA

%

% %

%

1

0

Start 〈A,A〉

〈B,A〉

〈A,B〉

〈B,B〉

Suppose dfa is bound to our example DFA M

0, 1DC
00

1

A B

1

0

1

Start

3.12 Closure Properties of Regular Languages 209

Then we can construct the DFA complement(M, {2}) as follows:

- val dfa’ = DFA.complement(dfa, SymSet.input "");

@ 2

@ .

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states} A, B, C, <dead> {start state} A {accepting states} <dead>

{transitions}

A, 0 -> B; A, 1 -> A; A, 2 -> <dead>; B, 0 -> C; B, 1 -> A;

B, 2 -> <dead>; C, 0 -> <dead>; C, 1 -> A; C, 2 -> <dead>;

<dead>, 0 -> <dead>; <dead>, 1 -> <dead>; <dead>, 2 -> <dead>

val it = () : unit

Thus dfa’ is bound to the DFA

2

C
0

1

〈dead〉

0, 1, 2

2 0, 2

0

A B

1

1

Start

Suppose the identifiers efa1 and efa2 of type efa are bound to our example
EFAs M1 and M2:

B

0 1

%

(M1)

B

1 0

%

(M2)

Start A Start A

We can construct an EFA that accepts L(M1)− L(M2) as follows:

- val dfa1 = nfaToDFA(efaToNFA efa1);

val dfa1 = - : dfa

- val dfa2 = nfaToDFA(efaToNFA efa2);

val dfa2 = - : dfa

- val dfa = DFA.minus(dfa1, dfa2);

val dfa = - : dfa

- val efa = injDFAToEFA dfa;

val efa = - : efa

- EFA.accepted efa (Str.input "");

@ 01

@ .

210 Regular Languages

val it = true : bool

- EFA.accepted efa (Str.input "");

@ 0

@ .

val it = false : bool

Next, we see how we can carry out the reversal and alphabet-renaming of
regular expressions in Forlan. The Forlan module Reg defines the functions

val rev : reg -> reg

val renameAlphabet : reg * sym_rel -> reg

which correspond to rev and renameAlphabet (renameAlphabet issues an
error message and raises an exception if its second argument isn’t legal). Here
is an example of how these functions can be used:

- val reg = Reg.fromString "(012)*(21)";

val reg = - : reg

- val rel = SymRel.fromString "(0, 1), (1, 2), (2, 3)";

val rel = - : sym_rel

- Reg.output("", Reg.rev reg);

(12)((21)0)*

val it = () : unit

- Reg.output("", Reg.renameAlphabet(reg, rel));

(123)*32

val it = () : unit

Next, we see how we can carry out the reversal of FAs and EFAs in Forlan.
The Forlan module FA defines the function

val rev : fa -> fa

which corresponds to rev. It is also inherited by the module EFA. Here is an
example of how this function can be used:

- val fa = FA.input "";

@ {states}

@ A, B, C

@ {start state}

@ A

@ {accepting states}

@ A, C

@ {transitions}

@ A, 01 -> B; B, 23 -> C; C, 45 -> A

@ .

val fa = - : fa

- val fa’ = FA.rev fa;

val fa’ = - : fa

- FA.output("", fa’);

{states} A, <A>, , <C> {start state} A {accepting states} <A>

3.12 Closure Properties of Regular Languages 211

{transitions}

A, % -> <A> | <C>; <A>, 54 -> <C>; , 10 -> <A>; <C>, 32 ->

val it = () : unit

Next, we see how we can carry out the prefix-closure of EFAs and NFAs in
Forlan. The Forlan module EFA defines the function

val prefix : efa -> efa

which corresponds to prefix. It is also inherited by the module NFA. Here is an
example of how one of these functions can be used:

- val nfa = NFA.input "";

@ {states}

@ A, B, C, D

@ {start state}

@ A

@ {accepting states}

@ A

@ {transitions}

@ A, 0 -> B; B, 0 -> C; C, 1 -> A; C, 0 -> D

@ .

val nfa = - : nfa

- val nfa’ = NFA.prefix nfa;

val nfa’ = - : nfa

- NFA.output("", nfa’);

{states} A, B, C {start state} A {accepting states} A, B, C

{transitions} A, 0 -> B; B, 0 -> C; C, 1 -> A

val it = () : unit

Finally, we see how we can carry out alphabet-renaming of finite automata
using Forlan. The Forlan module FA defines the function

val renameAlphabet : FA * sym_rel -> FA

which corresponds renameAlphabet (it issues an error message and raises an
exception if its second argument isn’t legal). This function is also inherited by
the modules DFA, NFA and EFA. Here is an example of how one of these functions
can be used:

- val dfa = DFA.input "";

@ {states}

@ A, B

@ {start state}

@ A

@ {accepting states}

@ A

@ {transitions}

@ A, 0 -> B; B, 0 -> A;

@ A, 1 -> A; B, 1 -> B

212 Regular Languages

@ .

val dfa = - : dfa

- val rel = SymRel.fromString "(0, a), (1, b)";

val rel = - : sym_rel

- val dfa’ = DFA.renameAlphabet(dfa, rel);

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states} A, B {start state} A {accepting states} A

{transitions} A, a -> B; A, b -> A; B, a -> A; B, b -> B

val it = () : unit

3.12.5 Notes

The material in this section is mostly standard, but is worked-out in more detail
than is common. We have given an intersection algorithm on EFAs, not just
on DFAs. By giving a complementation algorithm on DFAs that allows us
to partially control the alphabet of the resulting DFA, we are able to give an
algorithm for computing the difference of DFAs that works even when the DFAs
have different alphabets.

3.13 Equivalence-testing and Minimization of DFAs

In this section, we give algorithms for testing whether two DFAs are equivalent,
and for minimizing the alphabet size and number of states of a DFA. We also
see how these functions can be used in Forlan.

3.13.1 Testing the Equivalence of DFAs

Suppose M and N are DFAs. Our algorithm for checking whether they are
equivalent proceeds as follows. First, it converts M and N into DFAs with
identical alphabets. Let Σ = alphabetM ∪ alphabetN , and define the DFAs
M ′ and N ′ by:

M ′ = determSimplify(M,Σ), and

N ′ = determSimplify(N,Σ).

Since alphabet(L(M)) ⊆ alphabetM ⊆ Σ, we have that alphabetM ′ =
alphabet(L(M)) ∪ Σ = Σ. Similarly, alphabetN ′ = Σ. Furthermore, M ′ ≈
M and N ′ ≈ N , so that it will suffice to determine whether M ′ and N ′ are
equivalent.

For example, if M and N are the DFAs

3.13 Equivalence-testing and Minimization of DFAs 213

B

1 1

0

0

(M)

B

(N)

0

C

1

1

1

00

Start A Start A

then Σ = {0, 1}, M ′ = M and N ′ = N .
Next, the algorithm generates the least subset X of QM ′ ×QN ′ such that

• (sM ′ , sN ′) ∈ X; and

• for all q ∈ QM ′ , r ∈ QN ′ and a ∈ Σ, if (q, r) ∈ X, then
(δM ′(q, a), δN ′ (r, a)) ∈ X.

With our example DFAs M ′ and N ′, we have that

• (A,A) ∈ X;

• since (A,A) ∈ X, we have that (B,B) ∈ X and (A,C) ∈ X;

• since (B,B) ∈ X, we have that (again) (A,C) ∈ X and (again) (B,B) ∈ X;
and

• since (A,C) ∈ X, we have that (again) (B,B) ∈ X and (again) (A,A) ∈ X.

Back in the general case, we have the following lemmas.

Lemma 3.13.1
For all w ∈ Σ∗, (δM ′(sM ′ , w), δN ′ (sN ′ , w)) ∈ X.

Proof. By left string induction on w. ✷

Lemma 3.13.2
For all q ∈ QM ′ and r ∈ QN ′ , if (q, r) ∈ X, then there is a w ∈ Σ∗ such that
q = δM ′(sM ′ , w) and r = δN ′(sN ′ , w).

Proof. By induction on X. ✷

Finally, the algorithm checks that, for all (q, r) ∈ X,

q ∈ AM ′ iff r ∈ AN ′ .

If this is true, it says that the machines are equivalent; otherwise it says they
are not equivalent.

We can easily prove the correctness of our algorithm.

214 Regular Languages

Suppose every pair (q, r) ∈ X consists of two accepting states or of two non-
accepting states. Suppose, toward a contradiction, that L(M ′) 6= L(N ′). Then
there is a string w that is accepted by one of the machines but is not accepted
by the other. Since both machines have alphabet Σ, Lemma 3.13.1 tells us that
(δM ′(sM ′ , w), δN ′ (sN ′ , w)) ∈ X. But one side of this pair is an accepting state
and the other is a non-accepting one—contradiction. Thus L(M ′) = L(N ′).

Suppose we find a pair (q, r) ∈ X such that one of q and r is an accepting
state but the other is not. By Lemma 3.13.2, it will follow that there is a string
w that is accepted by one of the machines but not accepted by the other one,
i.e., that L(M ′) 6= L(N ′).

In the case of our example, we have that X = {(A,A), (B,B), (A,C)}. Since
(A,A) and (A,C) are pairs of accepting states, and (B,B) is a pair of non-
accepting states, it follows that L(M ′) = L(N ′). Hence L(M) = L(N).

By annotating each element (q, r) ∈ X with a string w such that q =
δM ′(sM ′ , w) and r = δN ′(sN ′ , w), instead of just reporting that M ′ and N ′

are not equivalent, we can explain why they are not equivalent,

• giving a string that is accepted by the first machine but not by the second;
and/or

• giving a string that is accepted by the second machine but not by the first.

We can even arrange for these strings to be of minimum length. The Forlan
implementation of our algorithm always produces minimum-length counterex-
amples.

The Forlan module DFA defines the functions:

val relationship : dfa * dfa -> unit

val subset : dfa * dfa -> bool

val equivalent : dfa * dfa -> bool

The function relationship figures out the relationship between the languages
accepted by two DFAs (are they equal, is one a proper subset of the other, is
neither a subset of the other), and supplies minimum-length counterexamples to
justify negative answers. The function subset tests whether its first argument’s
language is a subset of its second argument’s language. The function equivalent

tests whether two DFAs are equivalent.
Note that subset (when turned into a function of type reg * reg -> bool—

see below) can be used in conjunction with the local and global simplification
algorithms of Section 3.3.

For example, suppose dfa1 and dfa2 of type dfa are bound to our example
DFAs M and N , respectively:

3.13 Equivalence-testing and Minimization of DFAs 215

B

1 1

0

0

(M)

B

(N)

0

C

1

1

1

00

Start A Start A

We can verify that these machines are equivalent as follows:

- DFA.relationship(dfa1, dfa2);

languages are equal

val it = () : unit

On the other hand, suppose that dfa3 and dfa4 of type textttdfa are bound
to the DFAs:

B

1 1

0

0

B
0

C

1

1
0, 10

Start A Start A

We can find out why these machines are not equivalent as follows:

- DFA.relationship(dfa3, dfa4);

neither language is a subset of the other language: "11" is in

first language but is not in second language; "110" is in second

language but is not in first language

val it = () : unit

We can find the relationship between the languages generated by regular
expressions reg1 and reg2 by:

• converting reg1 and reg2 to DFAs textttdfa1 and dfa2, and then

• running DFA.relationship(dfa1, dfa2) to find the relationship between
those DFAs.

Of course, we can define an ML/Forlan function that carries out these ac-
tions:

- fun regToDFA reg =

= nfaToDFA(efaToNFA(faToEFA(regToFA reg)));

val regToDFA = fn : reg -> dfa

- fun relationshipReg(reg1, reg2) =

= DFA.relationship(regToDFA reg1, regToDFA reg2);

val relationshipReg = fn : reg * reg -> unit

216 Regular Languages

3.13.2 Minimization of DFAs

Now, we consider an algorithm for minimizing the sizes of the alphabet and set
of states of a DFA M . First, the algorithm minimizes the size of M ’s alpha-
bet, and makes the automaton be deterministically simplified, by letting M ′ =
determSimplify(M, ∅). ThusM ′ ≈ M and alphabetM ′ = alphabet(L(M)).

For example, if M is the DFA

B
0

0FE

D

0 0

1

1

0, 1

1

0, 1

1

C

Start A

then M ′ = M .
Next, the algorithm generates the least subset X of QM ′ ×QM ′ such that:

(1) AM ′ × (QM ′ −AM ′) ⊆ X;

(2) (QM ′ −AM ′)×AM ′ ⊆ X; and

(3) for all q, q′, r, r′ ∈ QM ′ and a ∈ alphabetM ′, if (q, r) ∈ X, (q′, a, q) ∈ TM ′

and (r′, a, r) ∈ TM ′ , then (q′, r′) ∈ X.

We read “(q, r) ∈ X” as “q and r cannot be merged”. The idea of (1) and
(2) is that an accepting state can never be merged with a non-accepting state.
And (3) says that if q and r can’t be merged, and we can get from q′ to q by
processing an a, and from r′ to r by processing an a, then q′ and r′ also can’t
be merged—since if we merged q′ and r′, there would have to be an a-transition
from the merged state to the merging of q and r.

In the case of our example M ′, (1) tells us to add the pairs (E,A), (E,B),
(E,C), (E,D), (F,A), (F,B), (F,C) and (F,D) to X. And, (2) tells us to add the
pairs (A,E), (B,E), (C,E), (D,E), (A,F), (B,F), (C,F) and (D,F) to X.

Now we use rule (3) to compute the rest of X’s elements. To begin with, we
must handle each pair that has already been added to X.

• Since there are no transitions leading into A, no pairs can be added using
(E,A), (A,E), (F,A) and (A,F).

• Since there are no 0-transitions leading into E, and there are no 1-
transitions leading into B, no pairs can be added using (E,B) and (B,E).

• Since (E,C), (C,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and (A, 1,C) are
the 1-transitions leading into E and C, we add (B,A) and (A,B), and (D,A)
and (A,D) to X; we would also have added (F,A) and (A,F) to X if they
hadn’t been previously added. Since there are no 0-transitions into E,
nothing can be added to X using (E,C) and (C,E) and 0-transitions.

3.13 Equivalence-testing and Minimization of DFAs 217

• Since (E,D), (D,E) ∈ X and (B, 1,E), (D, 1,E), (F, 1,E) and (C, 1,D) are
the 1-transitions leading into E and D, we add (B,C) and (C,B), and (D,C)
and (C,D) to X; we would also have added (F,C) and (C,F) to X if they
hadn’t been previously added. Since there are no 0-transitions into E,
nothing can be added to X using (E,D) and (D,E) and 0-transitions.

• Since (F,B), (B,F) ∈ X and (E, 0,F), (F, 0,F), (A, 0,B), and (D, 0,B) are
the 0-transitions leading into F and B, we would have to add the following
pairs to X, if they were not already present: (E,A), (A,E), (E,D), (D,E),
(F,A), (A,F), (F,D), (D,F). Since there are no 1-transitions leading into
B, no pairs can be added using (F,B) and (B,F) and 1-transitions.

• Since (F,C), (C,F) ∈ X and (E, 1,F) and (A, 1,C) are the 1-transitions
leading into F and C, we would have to add (E,A) and (A,E) to X if these
pairs weren’t already present. Since there are no 0-transitions leading into
C, no pairs can be added using (F,C) and (C,F) and 0-transitions.

• Since (F,D), (D,F) ∈ X and (E, 0,F), (F, 0,F), (B, 0,D) and (C, 0,D) are
the 0-transitions leading into F and D, we would add (E,B), (B,E), (E,C),
(C,E), (F,B), (B,F), (F,C), and (C,F) to X, if these pairs weren’t already
present. Since (F,D), (D,F) ∈ X and (E, 1,F) and (C, 1,D) are the 1-
transitions leading into F and D, we would add (E,C) and (C,E) to X, if
these pairs weren’t already in X.

We’ve now handled all of the elements of X that were added using rules (1)
and (2). We must now handle the pairs that were subsequently added: (A,B),
(B,A), (A,D), (D,A), (B,C), (C,B), (C,D), (D,C).

• Since there are no transitions leading into A, no pairs can be added using
(A,B), (B,A), (A,D) and (D,A).

• Since there are no 1-transitions leading into B, and there are no 0-
transitions leading into C, no pairs can be added using (B,C) and (C,B).

• Since (C,D), (D,C) ∈ X and (A, 1,C) and (C, 1,D) are the 1-transitions
leading into C and D, we add the pairs (A,C) and (C,A) to X. Since there
are no 0-transitions leading into C, no pairs can be added to X using (C,D)
and (D,C) and 0-transitions.

Now, we must handle the pairs that were added in the last phase: (A,C) and
(C,A).

• Since there are no transitions leading into A, no pairs can be added using
(A,C) and (C,A).

Since we have handled all the pairs we added to X, we are now done. Here
are the 26 elements of X: (A,B), (A,C), (A,D), (A,E), (A,F), (B,A), (B,C),

218 Regular Languages

(B,E), (B,F), (C,A), (C,B), (C,D), (C,E), (C,F), (D,A), (D,C), (D,E), (D,F),
(E,A), (E,B), (E,C), (E,D), (F,A), (F,B), (F,C), (F,D).

Back in the general case, we have the following lemmas.

Lemma 3.13.3
For all (q, r) ∈ X, there is a w ∈ (alphabetM ′)∗, such that exactly one of
δM ′(q, w) and δM ′(r, w) is in AM ′ .

Proof. By induction on X. ✷

Lemma 3.13.4
For all w ∈ (alphabetM ′)∗, for all q, r ∈ QM ′ , if exactly one of δM ′(q, w) and
δM ′(r, w) is in AM ′ , then (q, r) ∈ X.

Proof. By right string induction. ✷

Next, the algorithm lets the relation Y = (QM ′ × QM ′) − X. We read
“(q, r) ∈ Y ” as “q and r can be merged”. Back with our example, we have that
Y is

{(A,A), (B,B), (C,C), (D,D), (E,E), (F,F)}

∪

{(B,D), (D,B), (F,E), (E,F)}.

Lemma 3.13.5
(1) For all q, r ∈ QM ′ , (q, r) ∈ Y iff, for all w ∈ (alphabetM ′)∗, δM ′(q, w) ∈

AM ′ iff δM ′(r, w) ∈ AM ′ .

(2) For all q, r ∈ QM ′ , if (q, r) ∈ Y , then q ∈ AM ′ iff r ∈ AM ′ .

(3) For all q, r ∈ QM ′ and a ∈ alphabetM ′, if (q, r) ∈ Y , then
(δM ′(q, a), δM ′(r, a)) ∈ Y .

Proof.

(1) Follows using Lemmas 3.13.3 and 3.13.4.

(2) Follows by Part (1), when w = %.

(3) Follows by Part (1).

✷

The following lemma says that Y is an equivalence relation on QM ′ .

Lemma 3.13.6
Y is reflexive on QM ′ , symmetric and transitive.

3.13 Equivalence-testing and Minimization of DFAs 219

Proof. Follows from Lemma 3.13.5(1). ✷

In order to define the DFAN that is the result of our minimization algorithm,
we need a bit more notation. As in Section 3.10, we write P for the result of
coding a finite set of symbols P as a symbol. E.g., {B,A} = 〈A,B〉.

If q ∈ QM ′ , we write [q] for { r ∈ QM ′ | (r, q) ∈ Y }, which is called the
equivalence class of q. Using Lemma 3.13.6, it is easy to show that, q ∈ [q], for
all q ∈ QM ′ , and [q] = [r] iff (q, r) ∈ Y , for all q, r ∈ QM ′ .

If P is a nonempty, finite set of symbols, then we write min P for the least
element of P , according to our standard ordering on symbols.

The algorithm lets Z = { [q] | q ∈ QM ′ }, which is finite since QM ′ is finite.
In the case of our example, Z is

{{A}, {B,D}, {C}, {E,F}}.

Finally, the algorithm defines the DFA N as follows:

• QN = {P | P ∈ Z };

• sN = [sM ′];

• AN = {P | P ∈ Z and min P ∈ AM ′ }; and

• TN = { (P , a, [δM ′(min P, a)]) | P ∈ Z and a ∈ alphabetM ′ }.

Then N is a DFA with alphabet alphabetM ′ and, for all P ∈ Z and a ∈
alphabetM ′, δN (P , a) = [δM ′(min P, a)].

In the case of our example, we have that

• QN = {〈A〉, 〈B,D〉, 〈C〉, 〈E,F〉};

• sN = 〈A〉; and

• AN = {〈E,F〉}.

We compute the elements of TN as follows.

• Since {A} ∈ Z and [δM ′(A, 0)] = [B] = {B,D}, we have that
(〈A〉, 0, 〈B,D〉) ∈ TN .

Since {A} ∈ Z and [δM ′(A, 1)] = [C] = {C}, we have that (〈A〉, 1, 〈C〉) ∈
TN .

• Since {C} ∈ Z and [δM ′(C, 0)] = [D] = {B,D}, we have that
(〈C〉, 0, 〈B,D〉) ∈ TN .

Since {C} ∈ Z and [δM ′(C, 1)] = [D] = {B,D}, we have that
(〈C〉, 1, 〈B,D〉) ∈ TN .

220 Regular Languages

• Since {B,D} ∈ Z and [δM ′(B, 0)] = [D] = {B,D}, we have that
(〈B,D〉, 0, 〈B,D〉) ∈ TN .

Since {B,D} ∈ Z and [δM ′(B, 1)] = [E] = {E,F}, we have that
(〈B,D〉, 1, 〈E,F〉) ∈ TN .

• Since {E,F} ∈ Z and [δM ′(E, 0)] = [F] = {E,F}, we have that
(〈E,F〉, 0, 〈E,F〉) ∈ TN .

Since {E,F} ∈ Z and [δM ′(E, 1)] = [F] = {E,F}, we have that
(〈E,F〉, 1, 〈E,F〉) ∈ TN .

Thus our DFA N is:

〈B,D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉

Back in the general case, we have the following lemmas.

Lemma 3.13.7
(1) For all q ∈ QM ′ , [q] ∈ AN iff q ∈ AM ′ .

(2) For all q ∈ QM ′ and a ∈ alphabetM ′, δN ([q], a) = [δM ′(q, a)].

(3) For all q ∈ QM ′ and w ∈ (alphabetM ′)∗, δN ([q], w) = [δM ′(q, w)].

(4) For all w ∈ (alphabetM ′)∗, δN (sN , w) = [δM ′(sM ′ , w)].

Proof. (1) and (2) follow easily by Lemma 3.13.5(2)–(3). Part (3) follows from
Part (2) by left string induction. For Part (4), suppose w ∈ (alphabetM ′)∗.
By Part (3), we have

δN (sN , w) = δN ([sM ′], w) = [δM ′(sM ′ , w)].

✷

Lemma 3.13.8
L(N) = L(M ′).

Proof. Suppose w ∈ L(N). Then w ∈ (alphabetN)∗ = (alphabetM ′)∗ and
δN (sN , w) ∈ AN . By Lemma 3.13.7(4), we have that

[δM ′(sM ′ , w)] = δN (sN , w) ∈ AN ,

3.13 Equivalence-testing and Minimization of DFAs 221

so that δM ′(sM ′ , w) ∈ AM ′ , by Lemma 3.13.7(1). Thus w ∈ L(M ′).
Suppose w ∈ L(M ′). Then w ∈ (alphabetM ′)∗ = (alphabetN)∗ and

δM ′(sM ′ , w) ∈ AM ′ . By Lemma 3.13.7(1) and (4), we have that

δN (sN , w) = [δM ′(sM ′ , w)] ∈ AN .

Hence w ∈ L(N). ✷

Lemma 3.13.9
N is deterministically simplified.

Proof. To see that all elements of N are reachable, suppose q ∈ QM ′ . Because
M ′ is deterministically simplified, there is a w ∈ (alphabetM ′)∗ such that
q = δM ′(sM ′ , w). Thus δN (sN , w) = [δM ′(sM ′ , w)] = [q].

Next, we show that, for all q ∈ QM ′ , if q is live, then [q] is live. Suppose
q ∈ QM ′ is live, so there is a w ∈ (alphabetM ′)∗ such that δM ′(q, w) ∈ AM ′ .
Thus δN ([q], w) = [δM ′(q, w)] ∈ AN , showing that [q] is live.

Thus, we have that, for all q ∈ QM ′ , if [q] is dead, then q is dead. But, M ′

has at most one dead state, and thus we have that N has at most one dead
state. ✷

Lemma 3.13.10
Suppose N ′ is a DFA such that N ′ ≈ M ′, alphabetN ′ = alphabetM ′ and
|QN ′ | ≤ |QN |. Then N ′ is isomorphic to N .

Proof. We have that L(N ′) = L(M ′). And the states of M ′ and N are all
reachable. Let the relation h between QN ′ and QN be

{ (δN ′(sN ′ , w), δN (sN , w)) | w ∈ (alphabetM ′)∗ }.

Since every state of N is reachable, it follows that rangeh = QN .
To see that h is a function, suppose x, y ∈ (alphabetM ′)∗ and δN ′(sN ′ , x) =

δN ′(sN ′ , y). We must show that δN (sN , x) = δN (sN , y). Since δN (sN , x) =
[δM ′(sM ′ , x)] and δN (sN , y) = [δM ′(sM ′ , y)], it will suffice to show that
(δM ′(sM ′ , x), δM ′(sM ′ , y)) ∈ Y . By Lemma 3.13.5(1), it will suffice to
show that, δM ′(δM ′(sM ′ , x), z) ∈ AM ′ iff δM ′(δM ′(sM ′ , y), z) ∈ AM ′ , for all
z ∈ (alphabetM ′)∗. Suppose z ∈ (alphabetM ′)∗. We must show that
δM ′(δM ′(sM ′ , x), z) ∈ AM ′ iff δM ′(δM ′(sM ′ , y), z) ∈ AM ′

We will show the “only if” direction, the other direction being similar. Sup-
pose δM ′(δM ′(sM ′ , x), z) ∈ AM ′ . We must show that δM ′(δM ′(sM ′ , y), z) ∈ AM ′ .
Because δM ′(sM ′ , xz) = δM ′(δM ′(sM ′ , x), z) ∈ AM ′ , we have that xz ∈ L(M ′) =
L(N ′). Since xz ∈ L(N ′) and δN ′(sN ′ , x) = δN ′(sN ′ , y), we have that

δN ′(sN ′ , yz) = δN ′(δN ′(sN ′ , y), z) = δN ′(δN ′(sN ′ , x), z)

= δN ′(sN ′ , xz) ∈ AN ′ ,

222 Regular Languages

so that yz ∈ L(N ′) = L(M ′). Hence δM ′(δM ′(sM ′ , y), z) = δM ′(sM ′ , yz) ∈ AM ′ .
Because h is a function, rangeh = QN is finite, domainh ⊆ QN ′ and

|QN ′ | ≤ |QN |, we have that |QN ′ | = |QN | and h is a bijection from QN ′ to
QN . Thus, every state of N ′ is reachable, and, for all w ∈ (alphabetM ′)∗ =
(alphabetN)∗ = (alphabetN ′)∗, h(δN ′(sN ′ , w)) = δN (sN , w). The remainder
of the proof that h is an isomorphism from N ′ to N is easy. ✷

We define a function minimize ∈ DFA → DFA by: minimizeM is the
result of running the above algorithm on input M .

Putting the above results together, we have the following theorem:

Theorem 3.13.11
For all M ∈ DFA:

• minimizeM ≈ M ;

• alphabet(minimizeM) = alphabet(L(M));

• minimizeM is deterministically simplified; and

• for all N ∈ DFA, if N ≈ M , alphabetN = alphabet(L(M)) and |QN | ≤
|QminimizeM |, then N is isomorphic to minimizeM .

Thus

〈B,D〉
0 1

1

〈C〉

〈E, F〉 0, 1

0, 1

0

Start 〈A〉

is, up to isomorphism, the only four-or-fewer state DFA with alphabet {0, 1}
that is equivalent to M .

The Forlan module DFA includes the function

val minimize : dfa -> dfa

for minimizing DFAs.
For example, if dfa of type dfa is bound to our example DFA

B
0

0FE

D

0 0

1

1

0, 1

1

0, 1

1

C

Start A

3.14 The Pumping Lemma for Regular Languages 223

then we can minimize the alphabet size and number of states of dfa as fol-
lows.

- val dfa’ = DFA.minimize dfa;

val dfa’ = - : dfa

- DFA.output("", dfa’);

{states} <A>, <C>, <B,D>, <E,F> {start state} <A>

{accepting states} <E,F>

{transitions}

<A>, 0 -> <B,D>; <A>, 1 -> <C>; <C>, 0 -> <B,D>; <C>, 1 -> <B,D>;

<B,D>, 0 -> <B,D>; <B,D>, 1 -> <E,F>; <E,F>, 0 -> <E,F>;

<E,F>, 1 -> <E,F>

val it = () : unit

3.13.3 Notes

Our algorithm for testing whether two DFAs are equivalent can be found in the
literature, but I don’t know of other textbooks that present it. As described
above, a simple extension of the algorithm provides counterexamples to justify
non-equivalence. The material on DFA minimization is completely standard.

3.14 The Pumping Lemma for Regular Languages

In this section we consider techniques for showing that particular languages are
not regular. Consider the language

L = { 0n1n | n ∈ N } = {%, 01, 0011, 000111, . . .}.

Intuitively, an automaton would have to have infinitely many states to accept L.
A finite automaton won’t be able to keep track of how many 0’s it has seen so far,
and thus won’t be able to insist that the correct number of 1’s follow. We could
turn the preceding ideas into a direct proof that L is not regular. Instead, we will
first state a general result, called the Pumping Lemma for regular languages, for
proving that languages are non-regular. Next, we will show how the Pumping
Lemma can be used to prove that L is non-regular. Finally, we will prove the
Pumping Lemma.

Lemma 3.14.1 (Pumping Lemma for Regular Languages)
For all regular languages L, there is a n ∈ N such that, for all z ∈ Str, if z ∈ L
and |z| ≥ n, then there are u, v, w ∈ Str such that z = uvw and

(1) |uv| ≤ n;

(2) v 6= %; and

(3) uviw ∈ L, for all i ∈ N.

224 Regular Languages

When we use the Pumping Lemma, we can imagine that we are interacting
with it. We can give the Pumping Lemma a regular language L, and the lemma
will give us back a natural number n such that the property of the lemma holds.
We have no control over the value of n. We can then give the lemma a string z
that is in L and has at least n symbols. (If L is finite, though, there will be no
elements of L with at least n symbols, and so we won’t be able to proceed.) The
lemma will then break z up into parts u, v and w in such way that (1)–(3) hold.
We have no control over how z is broken up into these parts. (1) says that uv
has no more than n symbols. (2) says that v is nonempty. And (3) says that, if
we “pump” (duplicate) v as many times as we like, the resulting string will still
be in L.

Before proving the Pumping Lemma, let’s see how it can be used to prove
that L = { 0n1n | n ∈ N } is non-regular.

Proposition 3.14.2
L is not regular.

Proof. Suppose, toward a contradiction, that L is regular. Thus there is
an n ∈ N with the property of the Pumping Lemma. Suppose z = 0n1n. Since
z ∈ L and |z| = 2n ≥ n, it follows that there are u, v, w ∈ Str such that z = uvw
and properties (1)–(3) of the lemma hold. Since 0n1n = z = uvw, (1) tells us
that there are i, j, k ∈ N such that

u = 0i, v = 0j , w = 0k1n, i+ j + k = n.

By (2), we have that j ≥ 1, and thus that i + k = n − j < n. By (3), we have
that

0i+k1n = 0i0k1n = uw = u%w = uv0w ∈ L.

Thus i+ k = n—contradiction. Thus L is not regular. ✷

In the preceding proof, we obtained a contradiction by pumping zero times
(uv0w), but pumping two or more times (uv2w, . . .) would also have worked. For
a case when pumping zeros times is insufficient, consider A = { 0n1m | n < m }.
Given n ∈ N by the Pumping Lemma, we can let z = 0n1n+1, obliging the lemma
to split z into uvw, in such a way that (1)–(3) hold. Hence v will consist entirely
of 0’s. Pumping v zero times won’t take us outside of A. On the other hand
uv2w will have at least as many 0’s as 1’s, giving us the needed contradiction.

Now, let’s prove the Pumping Lemma.

Proof. Suppose L is a regular language. Thus there is a NFA M such that
L(M) = L. Let n = |QM |. Suppose z ∈ Str, z ∈ L and |z| ≥ n. Let m = |z|.
Thus 1 ≤ n ≤ |z| = m. Since z ∈ L = L(M), there is a valid labeled path for M

q1
a1
⇒ q2

a2
⇒ · · · qm

am
⇒ qm+1,

3.14 The Pumping Lemma for Regular Languages 225

that is labeled by z and where q1 = sM , qm+1 ∈ AM and ai ∈ Sym for all
1 ≤ i ≤ m. Since |QM | = n, not all of the states q1, . . . , qn+1 are distinct. Thus,
there are 1 ≤ i < j ≤ n+ 1 such that qi = qj.

Hence, our path looks like:

q1
a1
⇒ · · · qi−1

ai−1

⇒ qi
ai
⇒ · · · qj−1

aj−1

⇒ qj
aj
⇒ · · · qm

am
⇒ qm+1.

Let

u = a1 · · · ai−1, v = ai · · · aj−1, w = aj · · · am.

Then z = uvw. Since |uv| = j − 1 and j ≤ n + 1, we have that |uv| ≤ n. Since
i < j, we have that i ≤ j − 1, and thus that v 6= %.

Finally, since

qi ∈ ∆({q1}, u), qj ∈ ∆({qi}, v), qm+1 ∈ ∆({qj}, w)

and qi = qj, we have that

qj ∈ ∆({q1}, u), qj ∈ ∆({qj}, v), qm+1 ∈ ∆({qj}, w).

Thus, we have that qm+1 ∈ ∆({q1}, uv
iw) for all i ∈ N. But q1 = sM and

qm+1 ∈ AM , and thus uviw ∈ L(M) = L for all i ∈ N. ✷

Suppose L′ = {w ∈ {0, 1}∗ | w has an equal number of 0’s and 1’s }. We
could show that L′ is non-regular using the Pumping Lemma. But we can also
prove this result by using some of the closure properties of Section 3.12 plus the
fact that L = { 0n1n | n ∈ N } is non-regular.

Suppose, toward a contradiction, that L′ is regular. It is easy to see that {0}
and {1} are regular (e.g., they are generated by the regular expressions 0 and 1).
Thus, by Theorem 3.12.28, we have that {0}∗{1}∗ is regular. Hence, by Theo-
rem 3.12.28 again, it follows that L = L′ ∩ {0}∗{1}∗ is regular—contradiction.
Thus L′ is non-regular.

As a final example, let X be the least subset of {0, 1}∗ such that

(1) % ∈ X; and

(2) For all x, y ∈ X, 0x1y ∈ X.

Let’s try to prove that X is non-regular, using the Pumping Lemma. We sup-
pose, toward a contradiction, that X is regular, and give it to the Pumping
Lemma, getting back the n ∈ N with the property of the lemma, where X has
been substituted for L. But then, how do we go about choosing the z ∈ Str
such that z ∈ X and |z| ≥ n? We need to find a string expression exp involving
the variable n, such that, for all n ∈ N, exp ∈ X and |exp| ≥ n.

226 Regular Languages

Because % ∈ X, we have that 01 = 0%1% ∈ X. Thus 0101 = 0%1(01) ∈ X.
Generalizing, we can easily prove that, for all n ∈ N, (01)n ∈ X. Thus we could
let z = (01)n. Unfortunately, this won’t lead to the needed contradiction, since
the Pumping Lemma could break z up into u = %, v = 01 and w = (01)n−1.

Trying again, we have that % ∈ X, 01 ∈ X and 0(01)1% = 0011 ∈ X.
Generalizing, it’s easy to prove that, for all n ∈ N, 0n1n ∈ X. Thus, we can
let z = 0n1n, so that z ∈ X and |z| ≥ n. We can then proceed as in the proof
that { 0n1n | n ∈ N } is non-regular, getting to the point where we learn that
0i+k1n ∈ X and i + k < n. But an easy induction on X suffices to show that,
for all w ∈ X, w has an equal number of 0’s and 1’s. Hence i+ k = n, giving us
the needed contradiction.

3.14.1 Experimenting with the Pumping Lemma Using Forlan

The Forlan module LP (see Section 3.4) defines a type and several functions that
implement the idea behind the pumping lemma:

type pumping_division = lp * lp * lp

val checkPumpingDivision : pumping_division -> unit

val validPumpingDivision : pumping_division -> bool

val strsOfValidPumpingDivision :

pumping_division -> str * str * str

val pumpValidPumpingDivision : pumping_division * int -> lp

val findValidPumpingDivision : lp -> pumping_division

A pumping division is a triple (lp1, lp2, lp3), where lp1, lp2, lp3 ∈ LP. We say
that a pumping division (lp1, lp2, lp3) is valid iff

• the end state of lp1 is equal to the start state of lp2;

• the start state of lp2 is equal to the end state of lp2;

• the end state of lp2 is equal to the start state of lp3; and

• the label of lp2 is nonempty.

The function checkPumpingDivision checks whether a pumping division is
valid, silently returning (), if it is, and issuing an error message explaining
why it isn’t, if it isn’t. The function validPumpingDivision tests whether a
pumping division is valid. The function strsOfValidPumpingDivision returns
the triple consisting of the labels of the three components of a pumping divi-
sion, in order. It issues an error message if the pumping division isn’t valid. The
function pumpValidPumpingDivision expects a pair (pd , n), where pd is a valid
pumping division and n ≥ 0. It issues an error message if pd isn’t valid, or n is
negative. Otherwise, it returns

join(♯1 pd , join(lp ′, join(♯3 pd))),

3.14 The Pumping Lemma for Regular Languages 227

where lp′ is the result of joining ♯2 pd with itself n times (the empty labeled
path whose single state is ♯2 pd ’s start/end state, if n = 0). Finally, the func-
tion findValidPumpingDivision takes in a labeled path lp, and tries to find a
pumping division (lp1, lp2, lp3) such that:

• (lp1, lp2, lp3) is valid;

• pumpValidPumpingDivision((lp1, lp2, lp3), 1) = lp; and

• there is no repetition of states in the result of joining lp1 and the result of
removing the last step of lp2.

findValidPumpingDivision issues an error message if no such pumping division
exists.

For example, suppose the DFA dfa is bound to the DFA

B
0

C

1

1

1

00

Start A

Then we can proceed as follows:

- val lp = DFA.findAcceptingLP dfa (Str.input "");

@ 001010

@ .

val lp = - : lp

- LP.output("", lp);

A, 0 => B, 0 => C, 1 => A, 0 => B, 1 => B, 0 => C

val it = () : unit

- val pd = LP.findValidPumpingDivision lp;

val pd = (-,-,-) : LP.pumping_division

- val (lp1, lp2, lp3) = pd;

val lp1 = - : lp

val lp2 = - : lp

val lp3 = - : lp

- LP.output("", lp1);

A

val it = () : unit

- LP.output("", lp2);

A, 0 => B, 0 => C, 1 => A

val it = () : unit

- LP.output("", lp3);

A, 0 => B, 1 => B, 0 => C

val it = () : unit

- val (u, v, w) = LP.strsOfValidPumpingDivision pd;

val u = [] : str

228 Regular Languages

val v = [-,-,-] : str

val w = [-,-,-] : str

- (Str.toString u, Str.toString v, Str.toString v);

val it = ("%","001","001") : string * string * string

- val lp’ = LP.pumpValidPumpingDivision(pd, 2);

val lp’ = - : lp

- LP.output("", lp’);

A, 0 => B, 0 => C, 1 => A, 0 => B, 0 => C, 1 => A, 0 => B, 1 =>

B, 0 => C

val it = () : unit

- Str.output("", LP.label lp’);

001001010

val it = () : unit

3.14.2 Notes

The Pumping Lemma is usually proved using a DFA accepting the given reg-
ular language. But because we have described the meaning of automata via
labeled paths, we can do the proof with an NFA, as it has nothing to do with
determinacy. Forlan’s support for experimenting with the Pumping Lemma is
novel.

3.15 Applications of Finite Automata and Regular

Expressions

In this section we consider three applications of the material from Chapter 3:
searching for regular expressions in files; lexical analysis; and the design of finite
state systems.

3.15.1 Representing Character Sets and Files

Our first two applications involve processing files whose characters come from
some character set, e.g., the ASCII character set. Although not every character
in a typical character set will be an element of our set Sym of symbols, we
can represent all the characters of a character set by elements of Sym. E.g.,
we might represent the ASCII characters newline and space by the symbols
〈newline〉 and 〈space〉, respectively.

In the following two subsections, we will work with a mostly unspecified al-
phabet Σ representing some character set. We assume that the symbols 0–9,
a–z, A–Z, 〈space〉 and 〈newline〉 are elements of Σ. A line is a string consist-
ing of an element of (Σ − {〈newline〉})∗; and, a file consists of the concate-
nation of some number of lines, separated by occurrences of 〈newline〉. E.g.,
0a〈newline〉〈newline〉6 is a file with three lines (0a, % and 6), and 〈newline〉 is a
file with two lines, both consisting of %.

3.15 Applications of Finite Automata and Regular Expressions 229

In what follows, we write:

• [any] for the regular expression a1+a2+ · · ·+an, where a1, a2, . . . , an are
all of the elements of Σ except 〈newline〉, listed in strictly ascending order;

• [letter] for the regular expression

a+ b+ · · · + z+ A+ B+ · · ·+ Z;

• [digit] for the regular expression

0+ 1+ · · · + 9.

3.15.2 Searching for Regular Expression in Files

Given a file and a regular expression α whose alphabet is a subset of Σ −
{〈newline〉}, how can we find all lines of the file with substrings in L(α)? (E.g., α
might be a(b+ c)∗a; then we want to find all lines containing two a’s, separated
by some number of b’s and c’s.)

It will be sufficient to find all lines in the file that are elements of L(β),
where β = [any]∗ α [any]∗. To do this, we can first translate β to a DFA
M with alphabet Σ − {〈newline〉}. For each line w, we simply check whether
δM (sM , w) ∈ AM , selecting the line if it is. If the file is short, however, it may be
more efficient to convert β to an FA (or EFA or NFA) N , and use the algorithm
from Section 3.6 to find all lines that are accepted by N .

3.15.3 Lexical Analysis

A lexical analyzer is the part of a compiler that groups the characters of a
program into lexical items or tokens. The modern approach to specifying a
lexical analyzer for a programming language uses regular expressions. E.g., this
is the approach taken by the lexical analyzer generator Lex.

A lexical analyzer specification consists of a list of regular expressions
α1, α2, . . . , αn, together with a corresponding list of code fragments (in some
programming language) code1, code2, . . . , coden that process elements of Σ∗.

For example, we might have

α1 = 〈space〉+ 〈newline〉,

α2 = [letter] ([letter] + [digit])∗,

α3 = [digit] [digit]∗ (% + E [digit] [digit]∗),

α4 = [any].

The elements of L(α1), L(α2) and L(α3) are whitespace characters, identifiers
and numerals, respectively. The code associated with α4 will probably indicate
that an error has occurred.

230 Regular Languages

A lexical analyzer meets such a specification iff it behaves as follows. At
each stage of processing its file, the lexical analyzer should consume the longest
prefix of the remaining input that is in the language generated by one of the
regular expressions. It should then supply the prefix to the code associated with
the earliest regular expression whose language contains the prefix. However, if
there is no such prefix, or if the prefix is %, then the lexical analyzer should
indicate that an error has occurred.

What happens when we process the file 123Easy〈space〉1E2〈newline〉 using a
lexical analyzer meeting our example specification?

• The longest prefix of 123Easy〈space〉1E2〈newline〉 that is in one of our reg-
ular expressions is 123. Since this prefix is only in α3, it is consumed from
the input and supplied to code3.

• The remaining input is now Easy〈space〉1E2〈newline〉. The longest prefix
of the remaining input that is in one of our regular expressions is Easy.
Since this prefix is only in α2, it is consumed and supplied to code2.

• The remaining input is then 〈space〉1E2〈newline〉. The longest prefix of the
remaining input that is in one of our regular expressions is 〈space〉. Since
this prefix is only in α1 and α4, we consume it from the input and supply it
to the code associated with the earlier of these regular expressions: code1.

• The remaining input is then 1E2〈newline〉. The longest prefix of the re-
maining input that is in one of our regular expressions is 1E2. Since this
prefix is only in α3, we consume it from the input and supply it to code3.

• The remaining input is then 〈newline〉. The longest prefix of the remaining
input that is in one of our regular expressions is 〈newline〉. Since this
prefix is only in α1, we consume it from the input and supply it to the
code associated with this expression: code1.

• The remaining input is now empty, and so the lexical analyzer terminates.

Now, we consider a simple method for generating a lexical analyzer that
meets a given specification. More sophisticated methods are described in com-
pilers courses.

First, we convert the regular expressions α1, . . . , αn into DFAs M1, . . . ,Mn.
Next we determine which of the states of the DFAs are dead/live.

Given its remaining input x, the lexical analyzer consumes the next token
from x and supplies the token to the appropriate code, as follows. First, it
initializes the following variables to error values:

• a string variable acc, which records the longest prefix of the prefix of x
that has been processed so far that is accepted by one of the DFAs;

3.15 Applications of Finite Automata and Regular Expressions 231

• an integer variable mach, which records the smallest i such that acc ∈
L(Mi);

• a string variable aft , consisting of the suffix of x that one gets by removing
acc.

Then, the lexical analyzer enters its main loop, in which it processes x,
symbol by symbol, in each of the DFAs, keeping track of what symbols have
been processed so far, and what symbols remain to be processed.

• If, after processing a symbol, at least one of the DFAs is in an accepting
state, then the lexical analyzer stores the string that has been processed so
far in the variable acc, stores the index of the first machine to accept this
string in the integer variable mach, and stores the remaining input in the
string variable aft . If there is no remaining input, then the lexical analyzer
supplies acc to code codemach , and returns; otherwise it continues.

• If, after processing a symbol, none of the DFAs are in accepting states, but
at least one automaton is in a live state (so that, without knowing anything
about the remaining input, it’s possible that an automaton will again enter
an accepting state), then the lexical analyzer leaves acc, mach and aft
unchanged. If there is no remaining input, the lexical analyzer supplies
acc to codemach (it signals an error if acc is still set to the error value),
resets the remaining input to aft , and returns; otherwise, it continues.

• If, after processing a symbol, all of the automata are in dead states (and
so could never enter accepting states again, no matter what the remaining
input was), the lexical analyzer supplies string acc to code codemach (it
signals an error if acc is still set to the error value), resets the remaining
input to aft , and returns.

Let’s see what happens when the file 123Easy〈newline〉 is processed by the
lexical analyzer generated from our example specification.

• After processing 1, M3 and M4 are in accepting states, and so the lexical
analyzer sets acc to 1, mach to 3, and aft to 23Easy〈newline〉. It then
continues.

• After processing 2, so that 12 has been processed so far, only M3 is in an
accepting state, and so the lexical analyzer sets acc to 12, mach to 3, and
aft to 3Easy〈newline〉. It then continues.

• After processing 3, so that 123 has been processed so far, only M3 is in
an accepting state, and so the lexical analyzer sets acc to 123, mach to 3,
and aft to Easy〈newline〉. It then continues.

232 Regular Languages

• After processing E, so that 123E has been processed so far, none of the
DFAs are in accepting states, butM3 is in a live state, since 123E is a prefix
of a string that is accepted by M3. Thus the lexical analyzer continues,
but doesn’t change acc, mach or aft .

• After processing a, so that 123Ea has been processed so far, all of the
machines are in dead states, since 123Ea isn’t a prefix of a string that is
accepted by one of the DFAs. Thus the lexical analyzer supplies acc = 123

to codemach = code3, and sets the remaining input to aft = Easy〈newline〉.

• In subsequent steps, the lexical analyzer extracts Easy from the remaining
input, and supplies this string to code code2, and extracts 〈newline〉 from
the remaining input, and supplies this string to code code1.

Design of Finite State Systems

Deterministic finite automata give us a means to efficiently—both in terms of
time and space—check membership in a regular language. In terms of time, a
single left-to-right scan of the string is needed. And we only need enough space
to encode the DFA, and to keep track of what state we are in at each point, as
well as what part of the string remains to be processed. But if the string to be
checked is supplied, symbol-by-symbol, from our environment, we don’t need to
store the string at all.

Consequently, DFAs may be easily and efficiently implemented in both hard-
ware and software. One can design DFAs by hand, and test them using Forlan.
But DFA minimization plus the operations on automata and regular expressions
of Section 3.12, give us an alternative—and very powerful—way of designing fi-
nite state systems, which we will illustrate with two examples.

As the first example, suppose we wish to find a DFA M such that L(M) = X,
where

X = {w ∈ {0, 1}∗ | w has an even number of 0’s or an odd number of 1’s }.

First, we can note that X = Y1 ∪ Y2, where

Y1 = {w ∈ {0, 1}∗ | w has an even number of 0’s }, and

Y2 = {w ∈ {0, 1}∗ | w has an odd number of 1’s }.

Since we have a union operation on EFAs (Forlan doesn’t provide a union oper-
ation on DFAs), if we can find EFAs accepting Y1 and Y2, we can combine them
into a EFA that accepts X. Then we can convert this EFA to a DFA, and then
minimize the DFA.

Let N1 and N2 be the DFAs

3.15 Applications of Finite Automata and Regular Expressions 233

B

1 1

0

0

(N1)

B

0 0

1

1

(N2)

Start A Start A

It is easy to prove that L(N1) = Y1 and L(N2) = Y2. Let M be the DFA

renameStatesCanonically(minimize(N)),

where N is the DFA

nfaToDFA(efaToNFA(union(N1, N2))).

Then

L(M) = L(renameStatesCanonically(minimizeN))

= L(minimizeN)

= L(N)

= L(nfaToDFA(efaToNFA(union(N1, N2))))

= L(efaToNFA(union(N1, N2)))

= L(union(N1, N2))

= L(N1) ∪ L(N2)

= Y1 ∪ Y2

= X,

showing that M is correct.
Suppose M ′ is a DFA that accepts X. Since M ′ ≈ N , we have that

minimize(N), and thus M , has no more states than M ′. Thus M has as
few states as is possible.

But how do we figure out what the components of M are, so that, e.g.,
we can draw M? In a simple case like this, we could apply the definitions
union, efaToNFA, nfaToDFA, minimize and renameStatesCanonically,
and work out the answer. But, for more complex examples, there would be far
too much detail involved for this to be a practical approach.

Instead, we can use Forlan to compute the answer. Suppose dfa1 and dfa2

of type dfa are N1 and N2, respectively. The we can proceed as follows:

- val efa = EFA.union(injDFAToEFA dfa1, injDFAToEFA dfa2);

val efa = - : efa

- val dfa’ = nfaToDFA(efaToNFA efa);

val dfa’ = - : dfa

- DFA.numStates dfa’;

val it = 5 : int

234 Regular Languages

- val dfa = DFA.renameStatesCanonically(DFA.minimize dfa’);

val dfa = - : dfa

- DFA.numStates dfa;

val it = 4 : int

- DFA.output("", dfa);

{states} A, B, C, D {start state} D {accepting states} A, C, D

{transitions}

A, 0 -> C; A, 1 -> D; B, 0 -> D; B, 1 -> C; C, 0 -> A; C, 1 -> B;

D, 0 -> B; D, 1 -> A

val it = () : unit

Thus M is:

Start
0

0

0

0

1 1 1 1

A

D B

C

Of course, this claim assumes that Forlan is correctly implemented.
We conclude this subsection by considering a second, more involved example

of DFA design. Given a string w ∈ {0, 1}∗, we say that:

• w stutters iff aa is a substring of w, for some a ∈ {0, 1};

• w is long iff |w| ≥ 5.

So, e.g., 1001 and 10110 both stutter, but 01010 and 101 don’t. Saying that
strings of length 5 or more are “long” is arbitrary; what follows can be repeated
with different choices of when strings are long.

Let the language AllLongStutter be

{w ∈ {0, 1}∗ | for all substrings v of w, if v is long, then v stutters }.

In other words, a string of 0’s and 1’s is in AllLongStutter iff every long
substring of this string stutters. Since every substring of 0010110 of length
five stutters, every long substring of this string stutters, and thus the string is
in AllLongStutter. On the other hand, 0010100 is not in AllLongStutter,
because 01010 is a long, non-stuttering substring of this string.

Let’s consider the problem of finding a DFA that accepts this language. One
possibility is to reduce this problem to that of finding a DFA that accepts the
complement of AllLongStutter. Then we’ll be able to use our set difference
operation on DFAs to build a DFA that accepts AllLongStutter, which we
can then mimimize. (We’ll also need a DFA accepting {0, 1}∗.) To form the
complement of AllLongStutter, we negate the formula in AllLongStutter’s
expression. Let SomeLongNotStutter be the language

{w ∈ {0, 1}∗ | there is a substring v of w such that
v is long and doesn’t stutter }.

3.15 Applications of Finite Automata and Regular Expressions 235

Lemma 3.15.1
AllLongStutter = {0, 1}∗ − SomeLongNotStutter.

Proof. Suppose w ∈ AllLongStutter, so that w ∈ {0, 1}∗ and, for all
substrings v of w, if v is long, then v stutters. Suppose, toward a contradiction,
that w ∈ SomeLongNotStutter. Then there is a substring v of w such that v
is long and doesn’t stutter—contradiction. Thus w 6∈ SomeLongNotStutter,
completing the proof that w ∈ {0, 1}∗ − SomeLongNotStutter.

Suppose w ∈ {0, 1}∗ − SomeLongNotStutter, so that w ∈ {0, 1}∗ and
w 6∈ SomeLongNotStutter. To see that w ∈ AllLongStutter, suppose v is
a substring of w and v is long. Suppose, toward a contradiction, that v doesn’t
stutter. Then w ∈ SomeLongNotStutter—contradiction. Hence v stutters.
✷

Next, it’s convenient to work bottom-up for a bit. Let

Long = {w ∈ {0, 1}∗ | w is long },

Stutter = {w ∈ {0, 1}∗ | w stutters },

NotStutter = {w ∈ {0, 1}∗ | w doesn’t stutter }, and

LongAndNotStutter = {w ∈ {0, 1}∗ | w is long and doesn’t stutter }.

The following lemma is easy to prove:

Lemma 3.15.2
(1) NotStutter = {0, 1}∗ − Stutter.

(2) LongAndNotStutter = Long ∩NotStutter.

Clearly, we’ll be able to find DFAs accepting Long and Stutter, respectively.
Thus, we’ll be able to use our set difference operation on DFAs to come up with
a DFA that accepts NotStutter. Then, we’ll be able to use our intersection
operation on DFAs to come up with a DFA that accepts LongAndNotStutter.

What remains is to find a way of converting LongAndNotStutter to
SomeLongNotStutter. Clearly, the former language is a subset of the latter
one. But the two languages are not equal, since an element of the latter language
may have the form xvy, where x, y ∈ {0, 1}∗ and v ∈ LongAndNotStutter.
This suggests the following lemma:

Lemma 3.15.3
SomeLongNotStutter = {0, 1}∗ LongAndNotStutter {0, 1}∗.

Proof. Suppose w ∈ SomeLongNotStutter, so that w ∈ {0, 1}∗ and
there is a substring v of w such that v is long and doesn’t stutter. Thus
v ∈ LongAndNotStutter, and w = xvy for some x, y ∈ {0, 1}∗. Hence
w = xvy ∈ {0, 1}∗ LongAndNotStutter {0, 1}∗.

236 Regular Languages

Suppose w ∈ {0, 1}∗ LongAndNotStutter {0, 1}∗, so that w = xvy for
some x, y ∈ {0, 1}∗ and v ∈ LongAndNotStutter. Hence v is long and doesn’t
stutter. Thus v is a long substring of w that doesn’t stutter, showing that
w ∈ SomeLongNotStutter. ✷

Because of the preceding lemma, we can construct an EFA accepting
SomeLongNotStutter from a DFA accepting {0, 1}∗ and our DFA accept-
ing LongAndNotStutter, using our concatenation operation on EFAs. (We
haven’t given a concatenation operation on DFAs.) We can then convert this
EFA to a DFA.

Now, let’s take the preceding ideas and turn them into reality. First, we
define functions regToEFA ∈ Reg → EFA, efaToDFA ∈ EFA → DFA,
regToDFA ∈ Reg→DFA and minAndRen ∈ DFA→DFA by:

regToEFA = faToEFA ◦ regToFA,

efaToDFA = nfaToDFA ◦ efaToNFA,

regToDFA = efaToDFA ◦ regToEFA, and

minAndRen = renameStatesCanonically ◦minimize.

Lemma 3.15.4
(1) For all α ∈ Reg, L(regToEFA(α)) = L(α).

(2) For all M ∈ EFA, L(efaToDFA(M)) = L(M).

(3) For all α ∈ Reg, L(regToDFA(α)) = L(α).

(4) For all M ∈ DFA, L(minAndRen(M)) = L(M) and, for all N ∈ DFA,
if L(N) = L(M), then minAndRen(M) has no more states than N .

Proof. We show the proof of Part (4), the proofs of the other parts being even
easier. Suppose M ∈ DFA. By Theorem 3.13.11(1), we have that

L(minAndRen(M)) = L(renameStatesCanonically(minimizeM))

= L(minimizeM)

= L(M).

Suppose N ∈ DFA and L(N) = L(M). By Theorem 3.13.11(4), minimize(M)
has no more states thanN . Hence renameStatesCanonically(minimize(M))
has no more states than N , showing that minAndRen(M) has no more states
than N . ✷

Let the regular expression allStrReg be (0+ 1)∗. Clearly L(allStrReg) =
{0, 1}∗. Let the DFA allStrDFA be

minAndRen(regToDFAallStrReg).

3.15 Applications of Finite Automata and Regular Expressions 237

Lemma 3.15.5
L(allStrDFA) = {0, 1}∗.

Proof. By Lemma 3.15.4, we have that

L(allStrDFA) = L(minAndRen(regToDFAallStrReg))

= L(regToDFAallStrReg)

= L(allStrReg)

= {0, 1}∗.

✷

(Not surprisingly, allStrDFA will have a single state.) Let the EFA
allStrEFA be the DFA allStrDFA. Thus L(allStrEFA) = {0, 1}∗.

Let the regular expression longReg be

(0+ 1)5(0+ 1)∗.

Lemma 3.15.6
L(longReg) = Long.

Proof. Since L(longReg) = {0, 1}5{0, 1}∗, it will suffice to show that
{0, 1}5{0, 1}∗ = Long.

Suppose w ∈ {0, 1}5{0, 1}∗, so that w = xy, for some x ∈ {0, 1}5 and
y ∈ {0, 1}∗. Thus w = xy ∈ {0, 1}∗ and |w| ≥ |x| = 5, showing that w ∈ Long.

Suppose w ∈ Long, so that w ∈ {0, 1}∗ and |w| ≥ 5. Then w = abcdex, for
some a, b, c, d, e ∈ {0, 1} and x ∈ {0, 1}∗. Hence w = (abcde)x ∈ {0, 1}5{0, 1}∗.
✷

Let the DFA longDFA be

minAndRen(regToDFA(longReg)).

An easy calculation shows that L(longDFA) = Long.
Let stutterReg be the regular expression

(0+ 1)∗(00+ 11)(0 + 1)∗.

Lemma 3.15.7
L(stutterReg) = Stutter.

Proof. Since L(stutterReg) = {0, 1}∗{00, 11}{0, 1}∗, it will suffice to show
that {0, 1}∗{00, 11}{0, 1}∗ = Stutter, and this is easy. ✷

238 Regular Languages

Let stutterDFA be the DFA

minAndRen(regToDFA(stutterReg)).

An easy calculation shows that L(stutterDFA) = Stutter. Let
notStutterDFA be the DFA

minAndRen(minus(allStrDFA, stutterDFA)).

Lemma 3.15.8
L(notStutterDFA) = NotStutter.

Proof. Let M be

minAndRen(minus(allStrDFA, stutterDFA)).

By Lemma 3.15.2(1), we have that

L(notStutterDFA) = L(M)

= L(minus(allStrDFA, stutterDFA))

= L(allStrDFA)− L(stutterDFA)

= {0, 1}∗ − Stutter

= NotStutter.

✷

Let longAndNotStutterDFA be the DFA

minAndRen(inter(longDFA,notStutterDFA)).

Lemma 3.15.9
L(longAndNotStutterDFA) = LongAndNotStutter.

Proof. Let M be

minAndRen(inter(longDFA,notStutterDFA)).

By Lemma 3.15.2(2), we have that

L(longAndNotStutterDFA) = L(M)

= L(inter(longDFA,notStutterDFA))

= L(longDFA) ∩ L(notStutterDFA)

= Long ∩NotStutter

= LongAndNotStutter.

✷

3.15 Applications of Finite Automata and Regular Expressions 239

Because longAndNotStutterDFA is an EFA, we can simply let the EFA
longAndNotStutterEFA be longAndNotStutterDFA. Thus we have that
L(longAndNotStutterEFA) = LongAndNotStutter.

Let someLongNotStutterEFA be the EFA

renameStatesCanonically(concat(allStrEFA,
concat(longAndNotStutterEFA,

allStrEFA))).

Lemma 3.15.10
L(someLongNotStutterEFA) = SomeLongNotStutter.

Proof. We have that

L(someLongNotStutterEFA) = L(renameStatesCanonicallyM)

= L(M),

where M is

concat(allStrEFA, concat(longAndNotStutterEFA,allStrEFA)).

And, by Lemma 3.15.3, we have that

L(M) = L(allStrEFA)L(longAndNotStutterEFA)L(allStrEFA)

= {0, 1}∗ LongAndNotStutter {0, 1}∗

= SomeLongNotStutter.

✷

Let someLongNotStutterDFA be the DFA

minAndRen(efaToDFAsomeLongNotStutterEFA).

Lemma 3.15.11
L(someLongNotStutterDFA) = SomeLongNotStutter.

Proof. Follows by an easy calculation. ✷

Finally, let allLongStutterDFA be the DFA

minAndRen(minus(allStrDFA, someLongNotStutterDFA)).

Lemma 3.15.12
L(allLongStutterDFA) = AllLongStutter and, for all N ∈ DFA, if L(N) =
AllLongStutter, then allLongStutterDFA has no more states than N .

240 Regular Languages

Proof. We have that

L(allLongStutterDFA) = L(minAndRen(M)) = L(M),

where M is

minus(allStrDFA, someLongNotStutterDFA).

Then, by Lemma 3.15.1, we have that

L(M) = L(allStrDFA)− L(someLongNotStutterDFA)

= {0, 1}∗ − SomeLongNotStutter

= AllLongStutter.

Suppose N ∈ DFA and L(N) = AllLongStutter. Thus L(N) = L(M), so
that allLongStutterDFA has no more states than N , by Lemma 3.15.4(4). ✷

The preceding lemma tells us that the DFA allLongStutterDFA is correct
and has as few states as is possible. To find out what it looks like, though, we’ll
have to use Forlan. First we put the text

val regToEFA = faToEFA o regToFA;

val efaToDFA = nfaToDFA o efaToNFA;

val regToDFA = efaToDFA o regToEFA;

val minAndRen = DFA.renameStatesCanonically o DFA.minimize;

val allStrReg = Reg.fromString "(0 + 1)*";

val allStrDFA = minAndRen(regToDFA allStrReg);

val allStrEFA = injDFAToEFA allStrDFA;

val longReg =

Reg.concat

(Reg.power(Reg.fromString "0 + 1", 5),

Reg.fromString "(0 + 1)*");

val longDFA = minAndRen(regToDFA longReg);

val stutterReg = Reg.fromString "(0 + 1)*(00 + 11)(0 + 1)*";

val stutterDFA = minAndRen(regToDFA stutterReg);

val notStutterDFA =

minAndRen(DFA.minus(allStrDFA, stutterDFA));

val longAndNotStutterDFA =

minAndRen(DFA.inter(longDFA, notStutterDFA));

val longAndNotStutterEFA =

injDFAToEFA longAndNotStutterDFA;

val someLongNotStutterEFA’ =

3.15 Applications of Finite Automata and Regular Expressions 241

EFA.concat

(allStrEFA,

EFA.concat

(longAndNotStutterEFA,

allStrEFA));

val someLongNotStutterEFA =

EFA.renameStatesCanonically someLongNotStutterEFA’;

val someLongNotStutterDFA =

minAndRen(efaToDFA someLongNotStutterEFA);

val allLongStutterDFA =

minAndRen(DFA.minus(allStrDFA, someLongNotStutterDFA));

in the file stutter.sml. Then, we proceed as follows

- use "stutter.sml";

[opening stutter.sml]

val regToEFA = fn : reg -> efa

val efaToDFA = fn : efa -> dfa

val regToDFA = fn : reg -> dfa

val minAndRen = fn : dfa -> dfa

val allStrReg = - : reg

val allStrDFA = - : dfa

val allStrEFA = - : efa

val longReg = - : reg

val longDFA = - : dfa

val stutterReg = - : reg

val stutterDFA = - : dfa

val notStutterDFA = - : dfa

val longAndNotStutterDFA = - : dfa

val longAndNotStutterEFA = - : efa

val someLongNotStutterEFA’ = - : efa

val someLongNotStutterEFA = - : efa

val someLongNotStutterDFA = - : dfa

val allLongStutterDFA = - : dfa

val it = () : unit

- DFA.output("", allLongStutterDFA);

{states} A, B, C, D, E, F, G, H, I, J {start state} A

{accepting states} A, B, C, D, E, F, G, H, I

{transitions}

A, 0 -> B; A, 1 -> C; B, 0 -> B; B, 1 -> E; C, 0 -> D; C, 1 -> C;

D, 0 -> B; D, 1 -> G; E, 0 -> F; E, 1 -> C; F, 0 -> B; F, 1 -> I;

G, 0 -> H; G, 1 -> C; H, 0 -> B; H, 1 -> J; I, 0 -> J; I, 1 -> C;

J, 0 -> J; J, 1 -> J

val it = () : unit

Thus, allLongStutterDFA is the DFA of Figure 3.1.

242 Regular Languages

B E F I

C D G H

0

1

101

0

1

J

0 1 0

0

1

1

0

0

1

0, 1

0

1

Start A

Figure 3.1: DFA Accepting AllLongStutter

3.15.4 Notes

Our treatment of searching for regular expressions in text file is standard, as
is that of lexical analysis. But our approach to designing finite state systems
depends upon having access to a toolset, like Forlan, that is embedded in a
programming language and implements our algorithms for manipulating finite
automata and regular expressions.

Chapter 4

Context-free Languages

In this chapter, we study context-free grammars and languages. Context-free
grammars are used to describe the syntax of programming languages, i.e., to
specify parsers of programming languages.

A language is called context-free iff it is generated by a context-free grammar.
It will turn out that the set of all context-free languages is a proper superset of
the set of all regular languages. On the other hand, the context-free languages
have weaker closure properties than the regular languages, and we won’t be able
to give algorithms for checking grammar equivalence or minimizing the size of
grammars.

4.1 Grammars, Parse Trees and Context-free Lan-

guages

In this section, we: say what (context-free) grammars are; use the notion of a
parse tree to say what grammars mean; say what it means for a language to be
context-free; and begin to show how grammars can be processed using Forlan.

4.1.1 Grammars

A context-free grammar (or just grammar) G consists of:

• a finite set QG of symbols (we call the elements of QG the variables of G);

• an element sG of QG (we call sG the start variable of G); and

• a finite subset PG of { (q, x) | q ∈ QG and x ∈ Str } (we call the elements
of PG the productions of G, and we often write (q, x) as q → x).

In a context where we are only referring to a single grammar, G, we some-
times abbreviate QG, sG and PG to Q, s and P , respectively. Whenever possible,
we will use the mathematical variables p, q and r to name variables. We write

243

244 Context-free Languages

Gram for the set of all grammars. Since every grammar can be described by a
finite sequence of ASCII characters, we have that Gram is countably infinite.

As an example, we can define a grammar G (of arithmetic expressions) as
follows:

• QG = {E};

• sG = E; and

• PG = {E→ E〈plus〉E, E→ E〈times〉E, E→ 〈openPar〉E〈closPar〉, E→ 〈id〉}.

E.g., we can read the production E→ E〈plus〉E as “an expression can consist of
an expression, followed by a 〈plus〉 symbol, followed by an expression”.

We typically describe a grammar by listing its productions, and grouping
productions with identical left-sides into production families. Unless we say
otherwise, the grammar’s variables are the left-sides of all of its productions,
and its start variable is the left-side of its first production. Thus, our grammar
G is

E→ E〈plus〉E,

E→ E〈times〉E,

E→ 〈openPar〉E〈closPar〉,

E→ 〈id〉,

or

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

The Forlan syntax for grammars is very similar to the notation used above.
E.g., here is how our example grammar can be described in Forlan’s syntax:

{variables}

E

{start variable}

E

{productions}

E -> E<plus>E | E<times>E | <openPar>E<closPar> | <id>

Production families are separated by semicolons.
The Forlan module Gram defines an abstract type gram (in the top-level

environment) of grammars as well as a number of functions and constants for
processing grammars, including:

val input : string -> gram

val output : string * gram -> unit

val numVariables : gram -> int

val numProductions : gram -> int

val equal : gram * gram -> bool

4.1 Grammars, Parse Trees and Context-free Languages 245

The functions numVariables and numProductions return the numbers of vari-
ables and productions, respectively, of a grammar. And the function equal tests
whether two grammars are equal, i.e., whether they have the same sets of vari-
ables, start variables, and sets of productions. During printing, Forlan merges
productions into production families whenever possible.

The alphabet of a grammar G (alphabetG) is

{ a ∈ Sym | there are q, x such that q → x ∈ PG and

a ∈ alphabetx }

−QG.

I.e., alphabetG is all of the symbols appearing in the strings of G’s productions
that aren’t variables. For example, the alphabet of our example grammar G is
{〈plus〉, 〈times〉, 〈openPar〉, 〈closPar〉, 〈id〉}.

The Forlan module Gram defines a function

val alphabet : gram -> sym set

for calculating the alphabet of a grammar. E.g., if gram of type gram is bound
to our example grammar G, then Forlan will behave as follows:

- val bs = Gram.alphabet gram;

val bs = - : sym set

- SymSet.output("", bs);

<id>, <plus>, <times>, <closPar>, <openPar>

val it = () : unit

4.1.2 Parse Trees and Grammar Meaning

We will explain when strings are generated by grammars using the notion of a
parse tree. The set PT of parse trees is the least subset of Tree(Sym ∪ {%})
(the set of all (Sym ∪ {%})-trees; see Section 1.3) such that:

(1) for all a ∈ Sym and pts ∈ ListPT, (a, pts) ∈ PT; and

(2) for all a ∈ Sym, (a, [(%, [])]) = a(%) ∈ PT.

Note that the (Sym ∪ {%})-tree % = (%, []) is not a parse tree. It is easy to
see that PT is countably infinite.

For example, A(B,A(%),B(0)), i.e.,

A

B A B

% 0

is a parse tree. On the other hand, although A(B,%,B), i.e.,

246 Context-free Languages

A

B % B

is a (Sym ∪ {%})-tree, it’s not a parse tree, since it can’t be formed using rules
(1) and (2).

Since the set PT of parse trees is defined inductively, it gives rise to an
induction principle.

Theorem 4.1.1 (Principle of Induction on Parse Trees)
Suppose P (pt) is a property of an element pt ∈ PT.

If

(1) for all a ∈ Sym and trs ∈ ListPT, if (†) for all i ∈ [1 : |trs |], P (trs i),
then P ((a, trs)), and

(2) for all a ∈ Sym, P (a(%)),

then

for all pt ∈ PT, P (pt).

We refer to (†) as the inductive hypothesis.
We define the yield of a parse tree, as follows. The function yield ∈ PT→Str

is defined by structural recursion:

• for all a ∈ Sym, yield a = a;

• for all q ∈ Sym, n ∈ N − {0} and pt1, . . . , ptn ∈ PT,
yield(q(pt1, . . . , ptn)) = yield pt1 · · · yield ptn; and

• for all q ∈ Sym, yield(q(%)) = %.

We say that w is the yield of pt iff w = yield pt .
For example, the yield of

A

B A B

% 0

is

yieldByield(A(%))yield(B(0)) = B%yield 0 = B%0 = B0.

We say when a parse tree is valid for a grammar G as follows. Define a
function validG ∈ PT→Bool by structural recursion:

• for all a ∈ Sym, validG a = a ∈ alphabetG or a ∈ QG;

4.1 Grammars, Parse Trees and Context-free Languages 247

• for all q ∈ Sym, n ∈ N− {0} and pt1, . . . , ptn ∈ PT,

validG(q(pt1, . . . , ptn))

= q → rootLabel pt1 · · · rootLabel ptn ∈ PG and

validG pt1 and · · · and validG ptn; and

• for all q ∈ Sym, validG(q(%)) = q →% ∈ PG.

We say that pt is valid for G iff validG pt = true. We often abbreviate validG

to valid.
Suppose G is the grammar

A→ BAB | %,

B→ 0

(by convention, its variables are A and B and its start variable is A). Let’s see
why the parse tree A(B,A(%),B(0)) is valid for G:

• Since A→ BAB ∈ PG and the concatenation of the root labels of the sub-
trees B, A(%) and B(0) is BAB, the overall tree will be valid for G if these
sub-trees are valid for G.

• The parse tree B is valid for G since B ∈ QG.

• Since A→% ∈ PG, the parse tree A(%) is valid for G.

• Since B→ 0 ∈ PG and the root label of the sub-tree 0 is 0, the parse tree
B(0) will be valid for G if the sub-tree 0 is valid for G.

• The sub-tree 0 is valid for G since 0 ∈ alphabetG.

Thus, we have that

A

B A B

% 0

is valid for G.
And, if G is our grammar of arithmetic expressions,

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉,

then the parse tree

248 Context-free Languages

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G.
Suppose G is a grammar, w ∈ Str and a ∈ Sym. We say that w is parsable

from a using G iff there is a parse tree pt such that:

• pt is valid for G;

• a is the root label of pt ; and

• the yield of pt is w.

(Thus we will have that w ∈ (QG ∪ alphabetG)∗, and either a ∈ QG or a =
w.) We say that a string w is generated from a variable q ∈ QG using G iff
w ∈ (alphabetG)∗ and w is parsable from q. And, we say that a string w is
generated by a grammar G iff w is generated from sG using G. The language
generated by a grammar G (L(G)) is

{w ∈ Str | w is generated by G }.

Proposition 4.1.2
For all grammars G, alphabet(L(G)) ⊆ alphabetG.

For example, if G is the grammar

A→ BAB | %,

B→ 0,

then 00 is generated by G, since 00 ∈ {0}∗ = (alphabetG)∗ and the parse tree

A

B A B

% 00

is valid for G, has sG = A as its root label, and has 00 as its yield. And, if G is
our grammar of arithmetic expressions,

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉,

then 〈id〉〈times〉〈id〉〈plus〉〈id〉 is generated by G, since 〈id〉〈times〉〈id〉〈plus〉〈id〉 ∈
(alphabetG)∗ and the parse tree

4.1 Grammars, Parse Trees and Context-free Languages 249

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

is valid for G, has sG = E as its root label, and has 〈id〉〈times〉〈id〉〈plus〉〈id〉 as
its yield.

A language L is context-free iff L = L(G) for some G ∈ Gram. We define

CFLan = {L(G) | G ∈ Gram }

= {L ∈ Lan | L is context-free }.

Since {00}, {01}, {02}, . . . , are all context-free languages, we have that CFLan
is infinite. But, since Gram is countably infinite, it follows that CFLan is also
countably infinite. Since Lan is uncountable, it follows that CFLan (Lan,
i.e., there are non-context-free languages. Later, we will see that RegLan (

CFLan.
We say that grammars G and H are equivalent iff L(G) = L(H). In other

words, G and H are equivalent iff G and H generate the same language. We
define a relation ≈ on Gram by: G ≈ H iff G and H are equivalent. It is easy
to see that ≈ is reflexive on Gram, symmetric and transitive.

The Forlan module PT defines an abstract type pt of parse trees (in the
top-level environment) along with some functions for processing parse trees:

val input : string -> pt

val output : string * pt -> unit

val height : pt -> int

val size : pt -> int

val equal : pt * pt -> bool

val rootLabel : pt -> sym

val yield : pt -> str

The Forlan syntax for parse trees is simply the linear syntax that we’ve been
using in this section.

The Java program JForlan, can be used to view and edit parse trees. It
can be invoked directly, or run via Forlan. See the Forlan website for more
information.

The Forlan module Gram also defines the functions

val checkPT : gram -> pt -> unit

val validPT : gram -> pt -> bool

The function checkPT is used to check whether a parse tree is valid for a gram-
mar; if the answer is “no”, it explains why not and raises an exception; otherwise

250 Context-free Languages

it simply returns (). The function validPT checks whether a parse tree is valid
for a grammar, silently returning true if it is, and silently returning false if it
isn’t.

Suppose the identifier gram of type gram is bound to the grammar

A→ BAB | %,

B→ 0.

And, suppose that the identifier gram’ of type gram is bound to our grammar
of arithmetic expressions,

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

Here are some examples of how we can process parse trees using Forlan:

- val pt = PT.input "";

@ A(B, A(%), B(0))

@ .

val pt = - : pt

- Sym.output("", PT.rootLabel pt);

A

val it = () : unit

- Str.output("", PT.yield pt);

B0

val it = () : unit

- Gram.validPT gram pt;

val it = true : bool

- val pt’ = PT.input "";

@ E(E(E(<id>), <times>, E(<id>)), <plus>, E(<id>))

@ .

val pt’ = - : pt

- Sym.output("", PT.rootLabel pt’);

E

val it = () : unit

- Str.output("", PT.yield pt’);

<id><times><id><plus><id>

val it = () : unit

- Gram.validPT gram’ pt’;

val it = true : bool

- Gram.checkPT gram pt’;

invalid production: "E -> E<plus>E"

uncaught exception Error

- Gram.checkPT gram’ pt;

invalid production: "A -> BAB"

uncaught exception Error

- PT.input "";

4.1 Grammars, Parse Trees and Context-free Languages 251

@ A(B,%,B)

@ .

line 1: "%" unexpected

uncaught exception Error

4.1.3 Grammar Synthesis

We conclude this section with a grammar synthesis example. Suppose X =
{ 0n1m2m3n | n,m ∈ N }. The key to finding a grammar G that generates X is
to think of generating the strings of X from the outside in, in two phases. In
the first phase, one generates pairs of 0’s and 3’s, and, in the second phase, one
generates pairs of 1’s and 2’s. E.g., a string could be formed in the following
stages:

0 3,

00 33,

001233.

This analysis leads us to the grammar

A→ 0A3,

A→ B,

B→ 1B2,

B→%,

where A corresponds to the first phase, and B to the second phase. For example,
here is how the string 001233 may be parsed using G:

A

A 3

A 3

B

B 2

%

0

0

1

4.1.4 Notes

Traditionally, the meaning of grammars is defined using derivations, with parse
trees being introduced subsequently. In contrast, we have no need for deriva-
tions, and find parse trees a much more intuitive way to define the meaning of
grammars.

252 Context-free Languages

Pleasingly, parse trees are an instance of the trees introduced in Section 1.3.
Thus the terminology, techniques and results of that section are applicable to
them.

4.2 Isomorphism of Grammars

In this section, we study grammar isomorphism, i.e., the way in which grammars
can have the same structure, even though they may have different variables.

4.2.1 Definition and Algorithm

Suppose G is the grammar with variables A and B, start variable A and produc-
tions:

A→ 0A1 | B,

B→% | 2A.

And, suppose H is the grammar with variables B and A, start variable B and
productions:

B→ 0B1 | A,

A→% | 2B.

H can be formed from G by renaming the variables A and B of G to B and A,
respectively. As a result, we say that G and H are isomorphic.

Suppose G is as before, but that H is the grammar with variables 2 and A,
start variable 2 and productions:

2→ 021 | A,

A→% | 22.

Then H can be formed from G by renaming the variables A and B to 2 and A,
respectively. But we shouldn’t consider G and H to be isomorphic, since the
symbol 2 is in both alphabetG and QH . In fact, G and H generate different
languages. A grammar’s variables (e.g., A) can’t be renamed to elements of the
grammar’s alphabet (e.g., 2).

An isomorphism h from a grammar G to a grammar H is a bijection from
QG to QH such that:

• h turns G into H; and

• alphabetG ∩ QH = ∅, i.e., none of the symbols in G’s alphabet are
variables of H.

4.2 Isomorphism of Grammars 253

We say that G and H are isomorphic iff there is an isomorphism between G and
H.

As expected, we have that the relation of being isomorphic is reflexive on
Gram, symmetric and transitive, and that isomorphism implies having the same
alphabet and equivalence.

There is an algorithm for finding an isomorphism from one grammar to
another, if one exists, or reporting that there is no such isomorphism. It’s
similar to the algorithm for finding an isomorphism between finite automata.

The function renameVariables takes in a pair (G, f), whereG is a grammar
and f is a bijection from QG to a set of symbols with the property that range f∩
alphabetG = ∅, and returns the grammar produced from G by renaming G’s
variables using the bijection f . The resulting grammar will be isomorphic to G.

The following function is a special case of renameVariables. The function
renameVariablesCanonically ∈ Gram→Gram renames the variables of a
grammar G to:

• A, B, etc., when the grammar has no more than 26 variables (the smallest
variable of G will be renamed to A, the next smallest one to B, etc.); or

• 〈1〉, 〈2〉, etc., otherwise.

These variables will actually be surrounded by a uniform number of extra brack-
ets, if this is needed to make the new grammar’s variables and the original
grammar’s alphabet be disjoint.

4.2.2 Isomorphism Finding/Checking in Forlan

The Forlan module Gram contains the following functions for finding and pro-
cessing isomorphisms in Forlan:

val isomorphism : gram * gram * sym_rel -> bool

val findIsomorphism : gram * gram -> sym_rel

val isomorphic : gram * gram -> bool

val renameVariables : gram * sym_rel -> gram

val renameVariablesCanonically : gram -> gram

The function isomorphism checks whether a relation on symbols is an isomor-
phism from one grammar to another. The function findIsomorphism tries to
find an isomorphism from one grammar to another; it issues an error message if
there isn’t one. The function isomorphic checks whether two grammars are iso-
morphic. The function renameVariables issues an error message if the supplied
relation isn’t a bijection from the set of variables of the supplied grammar to
some set; otherwise, it returns the result of renameVariables. And the func-
tion renameVariablesCanonically acts like renameVariablesCanonically.

254 Context-free Languages

Suppose the identifier gram of type gram is bound to the grammar with
variables A and B, start variable A and productions:

A→ 0A1 | B,

B→% | 2A.

Suppose the identifier gram’ of type gram is bound to the grammar with variables
B and A, start variable B and productions:

B→ 0B1 | A,

A→% | 2B.

And, suppose the identifier gram’’ of type gram is bound to the grammar with
variables 2 and A, start variable 2 and productions:

2→ 021 | A,

A→% | 22.

Here are some examples of how the above functions can be used:

- val rel = Gram.findIsomorphism(gram, gram’);

val rel = - : sym_rel

- SymRel.output("", rel);

(A, B), (B, A)

val it = () : unit

- Gram.isomorphism(gram, gram’, rel);

val it = true : bool

- Gram.isomorphic(gram, gram’’);

val it = false : bool

- Gram.isomorphic(gram’, gram’’);

val it = false : bool

- val gram = Gram.input "";

@ {variables} B, C

@ {start variable} B

@ {productions} B -> AC; C -> <A>

@ .

val gram = - : gram

- SymSet.output("", Gram.alphabet gram);

A, <A>

val it = () : unit

- Gram.output("", Gram.renameVariablesCanonically gram);

{variables} <<A>>, <> {start variable} <<A>>

{productions} <<A>> -> A<>; <> -> <A>

val it = () : unit

4.2.3 Notes

Considering grammar isomorphism is non-traditional, but relatively straightfor-
ward. We were led to doing so mostly because of the need to support variable
renaming.

4.3 A Parsing Algorithm 255

4.3 A Parsing Algorithm

In this section, we consider a simple, fairly inefficient parsing algorithm that
works for all context-free grammars. In Section 4.6, we consider an efficient
parsing method that works for grammars for languages of operators of varying
precedences and associativities. Compilers courses cover efficient algorithms that
work for various subsets of the context free grammars.

4.3.1 Algorithm

Suppose G is a grammar, w ∈ Str and a ∈ Sym. We consider an algorithm for
testing whether w is parsable from a using G. If w 6∈ (QG ∪ alphabetG)∗ or
a 6∈ QG ∪ alphabetw, then the algorithm returns false. Otherwise, it proceeds
as follows.

Let A = QG ∪ alphabetw and B = {x ∈ Str | x is a substring of w }. The
algorithm generates the least subset X of A×B such that:

(1) For all a ∈ alphabetw, (a, a) ∈ X;

(2) For all q ∈ QG, if q →% ∈ PG, then (q,%) ∈ X; and

(3) For all q ∈ QG, n ∈ N− {0}, a1, . . . , an ∈ A and x1, . . . , xn ∈ B, if

• q → a1 · · · an ∈ PG,

• for all i ∈ [1 : n], (ai, xi) ∈ X, and

• x1 · · · xn ∈ B,

then (q, x1 · · · xn) ∈ X.

Since A×B is finite, this process terminates.
For example, let G be the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC,

and let w = 0010 and a = A = sG. We have that:

• (0, 0) ∈ X;

• (1, 1) ∈ X;

• (B, 0) ∈ X, since B→ 0 ∈ PG, (0, 0) ∈ X and 0 ∈ B;

• (C, 1) ∈ X, since C→ 1 ∈ PG, (1, 1) ∈ X and 1 ∈ B;

256 Context-free Languages

• (D, 0) ∈ X, since D→ 0 ∈ PG, (0, 0) ∈ X and 0 ∈ B;

• (A, 01) ∈ X, since A→ BC ∈ PG, (B, 0) ∈ X, (C, 1) ∈ X and 01 ∈ B;

• (A, 10) ∈ X, since A→ CD ∈ PG, (C, 1) ∈ X, (D, 0) ∈ X and 10 ∈ B;

• (B, 10) ∈ X, since B→ CB ∈ PG, (C, 1) ∈ X, (B, 0) ∈ X and 10 ∈ B;

• (C, 00) ∈ X, since C→ DD ∈ PG, (D, 0) ∈ X, (D, 0) ∈ X and 00 ∈ B;

• (D, 01) ∈ X, since D→ BC ∈ PG, (B, 0) ∈ X, (C, 1) ∈ X and 01 ∈ B;

• (C, 001) ∈ X, since C→DD ∈ PG, (D, 0) ∈ X, (D, 01) ∈ X and 0(01) ∈ B;

• (C, 010) ∈ X, since C→DD ∈ PG, (D, 01) ∈ X, (D, 0) ∈ X and (01)0 ∈ B;

• (A, 0010) ∈ X, since A→BC ∈ PG, (B, 0) ∈ X, (C, 010) ∈ X and 0(010) ∈
B;

• (B, 0010) ∈ X, since B→CB ∈ PG, (C, 00) ∈ X, (B, 10) ∈ X and (00)(10) ∈
B;

• (D, 0010) ∈ X, since D→BC ∈ PG, (B, 0) ∈ X, (C, 010) ∈ X and 0(010) ∈
B;

• Nothing more can be added to X. To verify this, one must check that
nothing new can be added to X using rule (3).

Back in the general case, we have these lemmas:

Lemma 4.3.1
For all (b, x) ∈ X, there is a pt ∈ PT such that

• pt is valid for G,

• rootLabel pt = b, and

• yield pt = x.

Lemma 4.3.2
For all pt ∈ PT, if

• pt is valid for G,

• rootLabel pt ∈ A, and

• yield pt ∈ B,

then (rootLabel pt ,yield pt) ∈ X.

4.3 A Parsing Algorithm 257

Because of our lemmas, to determine if w is parsable from a, we just have to
check whether (a,w) ∈ X. In the case of our example grammar, we have that
w = 0010 is parsable from a = A, since (A, 0010) ∈ X. Hence 0010 ∈ L(G).

Note that any production whose right-hand side contains an element of
alphabetG − alphabetw won’t affect the generation of X. Thus our algo-
rithm ignores such productions.

Furthermore, our parsability algorithm actually generates X as the union of
a sequence of pairwise-disjoint, nonempty stages X0, X1, . . . , Xm:

• First, it lets X0 be the union of { (a, a) | a ∈ alphabetw } and { (q,%) |
(q,%) ∈ PG }. It then enters its loop.

• If stages X0, . . . , Xl have been computed, then the algorithm lets Y =
⋃

{Xj | j ∈ [0 : l] }, and then lets Z be the set of all (q, x1 · · · xn) such
that n ≥ 1 and there are a1, . . . , an ∈ A and i ∈ [1 : n] such that

– q → a1 · · · an ∈ PG,

– (ai, xi) ∈ Xl,

– for all k ∈ [1 : n]− {i}, (ak, xk) ∈ Y ,

– x1 · · · xn ∈ B, and

– (q, x1 · · · xn) 6∈ Y .

If Z 6= ∅, then it sets Xl+1 to Z, and repeats. Otherwise, Xl is the final
stage, and X = Y .

We say that a parse tree pt is a minimal parse of a string w from a symbol a
using a grammar G iff pt is valid for G, rootLabel pt = a and yield pt = w, and
there is no strictly smaller pt ′ ∈ PT such that pt ′ is valid for G, rootLabel pt ′ =
a and yield pt ′ = w.

We can convert our parsability algorithm into a parsing algorithm as follows.
Given w ∈ (QG ∪ alphabetG)∗ and a ∈ (QG ∪ alphabetw), we generate our
set X as before, but we annotate each element (b, x) of X with a parse tree pt
such that

• pt is valid for G,

• rootLabel pt = b, and

• yield pt = x,

Thus we can return the parse tree labeling (a,w), if this pair is inX, and indicate
failure otherwise.

With a little more work, we can arrange that the parse trees returned by
our parsing algorithm are minimally-sized, and this is what the official version
of our parsing algorithm guarantees. This goal is a little tricky to achieve, since
some pairs will first be labeled by parse trees that aren’t minimally sized.

258 Context-free Languages

4.3.2 Parsing in Forlan

The Forlan module Gram defines the functions

val parsable : gram -> sym * str -> bool

val generatedFromVariable : gram -> sym * str -> bool

val generated : gram -> str -> bool

The function parsable tests whether a string w is parsable from a symbol a
using a grammar G. The function generatedFromVariable tests whether a
string w is generated from a variable q using a grammar G; it issues an error
message if q isn’t a variable of G. And the function generated tests whether a
string w is generated by a grammar G.

Gram also includes:

val parse : gram -> sym * str -> pt

val parseAlphabetFromVariable : gram -> sym * str -> pt

val parseAlphabet : gram -> str -> pt

The function parse tries to find a minimal parse of a string w from a symbol a
using a grammar G; it issues an error message if w 6∈ (QG ∪ alphabetG)∗,
or a 6∈ QG ∪ alphabetw, or such a parse doesn’t exist. The function
parseAlphabetFromVariable tries to find a minimal parse of a string w ∈
(alphabetG)∗ from a variable q using a grammar G; it issues an error message
if q 6∈ QG, or w 6∈ (alphabetG)∗, or such a parse doesn’t exist. And the func-
tion parseAlphabet tries to find a minimal parse of a string w ∈ (alphabetG)∗

from sG using a grammar G; it issues an error message if w 6∈ (alphabetG)∗,
or such a parse doesn’t exist.

Suppose that gram of type gram is bound to the grammar

A→ BC | CD,

B→ 0 | CB,

C→ 1 | DD,

D→ 0 | BC.

We can attempt to check whether some strings are generated by this grammar
as follows:

- Gram.generated gram (Str.fromString "0010");

val it = true : bool

- Gram.generated gram (Str.fromString "0100");

val it = true : bool

- Gram.generated gram (Str.fromString "0101");

val it = false : bool

And we can try to find parses of some strings as follows:

- fun test s =

4.4 Simplification of Grammars 259

= PT.output

= ("",

= Gram.parseAlphabet gram (Str.fromString s));

val test = fn : string -> unit

- test "0010";

A(C(D(0), D(B(0), C(1))), D(0))

val it = () : unit

- test "0100";

A(C(D(B(0), C(1)), D(0)), D(0))

val it = () : unit

- test "0101";

no such parse exists

uncaught exception Error

But we can also check parsability of strings containing variables, as well as try
to find parses of such strings:

- Gram.parsable gram

= (Sym.fromString "A", Str.fromString "0D0C");

val it = true : bool

- PT.output

= ("",

= Gram.parse gram

= (Sym.fromString "A", Str.fromString "0D0C"));

A(C(D(0), D), D(B(0), C))

val it = () : unit

4.3.3 Notes

Our parsability and parsing algorithms are straightforward generalizations of the
familiar algorithm for checking whether a grammar in Chomsky Normal Form
generates a string.

4.4 Simplification of Grammars

In this section, we say what it means for a grammar to be simplified, give a
simplification algorithm for grammars, and see how to use this algorithm in
Forlan.

260 Context-free Languages

4.4.1 Definition and Algorithm

Suppose G is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

This grammar is odd for two, related, reasons. First D doesn’t generate anything,
i.e., there is no parse tree pt such that pt is valid for G, the root label of pt is
D, and the yield of pt is in (alphabetG)∗ = {0, 1, 2}∗. Second, there is no valid
parse tree that starts at G’s start variable, A, has a yield that is in {0, 1, 2}∗

and makes use of C. But if we first removed D, and all productions involving it,
then our objection to C could be simpler: there would be no parse tree pt such
that pt is valid for G, the root label of pt is A, and C appears in the yield of pt .

This example leads us to the following definitions. Suppose G is a grammar.
We say that a variable q of G is:

• reachable in G iff there is a w ∈ Str such that w is parsable from sG using
G, and a ∈ alphabetw;

• generating in G iff there is a w ∈ Str such that q generates w using G,
i.e., w is parsable from q using G, and w ∈ (alphabetG)∗;

• useful in G iff q is both reachable and generating in G.

The reader should compare these definitions with the definitions given in Sec-
tion 3.7 of reachable, live and useful states.

Also note that the standard definition of being useful is stronger than our
definition: there is a parse tree pt such that pt is valid for G, rootLabel pt = sG,
yield pt ∈ (alphabetG)∗, and q appears in pt . For example, the variable C of
our example grammar G is useful in our sense, but not useful in the standard
sense. But as we observed above, C will no longer be reachable (and thus useful)
if all productions involving D are removed. In general, we have that, if all
variables of a grammar are useful in our sense, that all variable of the grammar
are useful in the standard sense.

Now, suppose H is the grammar

A→% | 0 | AA | AAA.

Here, we have that the productions A→AA and A→AAA are redundant, although
only one of them can be removed:

A

A A A A

A A%

A

A

4.4 Simplification of Grammars 261

Thus any use of A→ AA in a parse tree can be replaced by uses of A→% and
A→ AAA, and any use of A→ AAA in a parse tree can be replaced by two uses
of A→ AA.

This example leads us to the following definitions. Given a grammar G and a
finite subset U of { (q, x) | q ∈ QG and x ∈ Str }, we write G/U for the grammar
that is identical to G except that its set of productions is U . If G is a grammar
and (q, x) ∈ PG, we say that:

• (q, x) is redundant in G iff x is parsable from q using H, where H =
G/(PG − {(q, x)}); and

• (q, x) is irredundant in G iff (q, x) is not redundant in G.

Now we are able to say when a grammar is simplified. The reader should
compare this definition with the definition in Section 3.7 of when a finite au-
tomaton is simplified. A grammar G is simplified iff either

• every variable of G is useful, and every production of G is irredundant; or

• |QG| = 1 and PG = ∅.

The second case is necessary, because otherwise there would be no simplified
grammar generating ∅.

Proposition 4.4.1
If G is a simplified grammar, then alphabetG = alphabet(L(G)).

Proof. Suppose a ∈ alphabetG. We must show that a ∈ alphabetw for
some w ∈ L(G). We have that every variable of G is useful, and there are
q ∈ QG and x ∈ Str such that (q, x) ∈ PG and a ∈ alphabetx. Thus x is
parsable from q. Since every variable occurring in x is generating, we have that
q generates a string x′ containing a. Since q is reachable, there is a string y such
that y is parsable from sG, and q ∈ alphabet y. Since every variable occurring
in y is generating, there is a string y′ such that y′ is parsable from sG, and q is
the only variable of alphabet y′. Putting these facts together, we have that sG
generates a string w such that a ∈ alphabetw, i.e., a ∈ alphabetw for some
w ∈ L(G). ✷

Next, we give an algorithm for removing redundant productions. Given a
grammar G, q ∈ QG and x ∈ Str, we say that (q, x) is implicit in G iff x is
parsable from q using G.

Given a grammar G, we define a function remRedunG ∈ P PG × P PG →
P PG by well-founded recursion on the size of its second argument. For U, V ⊆
PG, remRedun(U, V) proceeds as follows:

• If V = ∅, then it returns U .

262 Context-free Languages

• Otherwise, let v be the greatest element of { (q, x) ∈ V | there are no
p ∈ Sym and y ∈ Str such that (p, y) ∈ V and |y| > |x| }, and V ′ =
V − {v}. If v is implicit in G/(U ∪ V ′), then remRedun returns the
result of evaluating remRedun(U, V ′). Otherwise, it returns the result of
evaluating remRedun(U ∪ {v}, V ′).

In general, there are multiple—incompatible—ways of removing redundant
productions from a grammar. remRedun is defined so as to favor removing
productions whose right-hand sides are longer; and among productions whose
right-hand sides have equal length, to favor removing productions that are larger
in our total ordering on productions.

Our algorithm for removing redundant productions of a grammar G returns
G/(remRedunG(∅, PG)). For example, if we run our algorithm for removing
redundant productions on

A→% | 0 | AA | AAA,

we obtain

A→% | 0 | AA.

Our simplification algorithm for grammars proceeds as follows, given a gram-
mar G.

• First, it determines which variables of G are generating. If sG isn’t one
of these variables, then it returns the grammar with variable sG and no
productions.

• Next, it turns G into a grammar G′ by deleting all non-generating vari-
ables, and deleting all productions involving such variables.

• Then, it determines which variables of G′ are reachable.

• Next, it turnsG′ into a grammar G′′ by deleting all non-reachable variables,
and deleting all productions involving such variables.

• Finally, it removes redundant productions from G′′.

Suppose G, once again, is the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

Here is what happens if we apply our simplification algorithm to G.

4.4 Simplification of Grammars 263

• First, we determine which variables are generating. Clearly B and C are.
And, since B is, it follows that A is, because of the production A→ BB1.
(If this production had been A→ BD1, we wouldn’t have added A to our
set.)

• Thus, we form G′ from G by deleting the variable D, yielding the grammar

A→ BB1,

B→ 0 | A,

C→ 12.

• Next, we determine which variables of G′ are reachable. Clearly A is, and
thus B is, because of the production A→ BB1.

Note that, if we carried out the two stages of our simplification algorithm
in the other order, then C and its production would never be deleted.

• Next, we form G′′ from G′ by deleting the variable C, yielding the grammar

A→ BB1,

B→ 0 | A.

• Finally, we would remove redundant productions from G′′. But G′′ has no
redundant productions, and so we are done.

We define a function simplify ∈ Gram → Gram by: for all G ∈ Gram,
simplifyG is the result of running the above algorithm on G.

Theorem 4.4.2
For all G ∈ Gram:

(1) simplifyG is simplified;

(2) simplifyG ≈ G; and

(3) alphabet(simplifyG) = alphabet(L(G)) ⊆ alphabetG.

Our simplification function/algorithm simplify gives us an algorithm for
testing whether a grammar is simplified: we apply simplify to it, and check
that the resulting grammar is equal to the original one.

4.4.2 Simplification in Forlan

The Forlan module Gram defines the functions

val simplify : gram -> gram

val simplified : gram -> bool

264 Context-free Languages

The function simplify corresponds to simplify, and simplified tests whether
a grammar is simplified.

Suppose gram of type gram is bound to the grammar

A→ BB1,

B→ 0 | A | CD,

C→ 12,

D→ 1D2.

We can simplify our grammar as follows:

- val gram’ = Gram.simplify gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B {start variable} A

{productions} A -> BB1; B -> 0 | A

val it = () : unit

And, Suppose gram’’ of type gram is bound to the grammar

A→% | 0 | AA | AAA | AAAA.

We can simplify our grammar as follows:

- val gram’’’ = Gram.simplify gram’’;

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} A {start variable} A {productions} A -> % | 0 | AA

val it = () : unit

4.4.3 Notes

As described above, our definition of useless variable is weaker than the standard
one. However, whenever every variable of a grammar is useful in our sense,
it follows that every variable of the grammar is useful in the standard sense.
Furthermore, our algorithm for removing useless variables is the standard one.
Requiring that simplified grammars have no redundant productions is natural,
although non-standard, and our algorithm for removing redundant productions
is straightforward.

4.5 Proving the Correctness of Grammars

In this section, we consider techniques for proving the correctness of grammars,
i.e., for proving that grammars generate the languages we want them to.

4.5 Proving the Correctness of Grammars 265

4.5.1 Preliminaries

Suppose G is a grammar and a ∈ QG ∪ alphabetG. Then

ΠG,a = {w ∈ (alphabetG)∗ | w is parsable from a using G }.

I.e., ΠG,a is all strings over alphabetG that are the yields of valid parse trees
for G whose root labels are a If it’s clear which grammar we are talking about,
we often abbreviate ΠG,a to Πa. Clearly, ΠG,sG = L(G).

For example, if G is the grammar

A→% | 0A1

then Π0 = {0}, Π1 = {1} and ΠA = { 0n1n | n ∈ N } = L(G).

Proposition 4.5.1
Suppose G is a grammar.

(1) For all a ∈ alphabetG, a ∈ ΠG,a.

(2) For all q ∈ QG, if q →% ∈ PG, then % ∈ ΠG,q.

(3) For all q ∈ QG, n ∈ N − {0}, a1, . . . , an ∈ Sym and w1, . . . , wn ∈ Str, if
q→a1 · · · an ∈ PG and w1 ∈ ΠG,a1 , . . . , wn ∈ ΠG,an , then w1 · · ·wn ∈ ΠG,q.

Our main example will be the grammar G:

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC.

Define diff ∈ {0, 1}∗ → Z by: for all w ∈ {0, 1}∗,

diff w = the number of 1’s in w − the number of 0’s in w.

Then: diff % = 0, diff 1 = 1, diff 0 = −1, and, for all x, y ∈ {0, 1}∗, diff(xy) =
diff x+ diff y. Let

X = {w ∈ {0, 1}∗ | diff w = 0 },

Y = {w ∈ {0, 1}∗ | diff w = 1 and,

for all proper prefixes v of w,diff v ≤ 0 }, and

Z = {w ∈ {0, 1}∗ | diff w = −1 and,

for all proper prefixes v of w,diff v ≥ 0 }.

We will prove that L(G) = ΠG,A = X, ΠG,B = Y and ΠG,C = Z.

Lemma 4.5.2
Suppose x ∈ {0, 1}∗.

266 Context-free Languages

(1) If diff x ≥ 1, then x = yz for some y, z ∈ {0, 1}∗ such that y ∈ Y and
diff z = diff x− 1.

(2) If diff x ≤ −1, then x = yz for some y, z ∈ {0, 1}∗ such that y ∈ Z and
diff z = diff x+ 1.

Proof. We show the proof of (1), the proof of (2) being similar.
Let y ∈ {0, 1}∗ be the shortest prefix of x such that diff y ≥ 1, and let

z ∈ {0, 1}∗ be such that x = yz.
Because diff y ≥ 1, we have that y 6= %. Thus y = y′a for some y′ ∈ {0, 1}∗

and a ∈ {0, 1}. By the definition of y, we have that diff y′ ≤ 0. Suppose,
toward a contradiction, that a = 0. Since diff y′ + −1 = diff y ≥ 1, we have
that diff y′ ≥ 2, contradicting the definition of y. Thus a = 1, so that y = y′1.

Because diff y′ + 1 = diff y ≥ 1, we have that diff y′ ≥ 0. Thus diff y′ = 0,
so that diffy = diff y′ + 1 = 1. By the definition of y, every prefix of y′ has a
diff that is ≤ 0. Thus y ∈ Y .

Finally, because diff x = diff y + diff z = 1 + diff z we have that diff z =
diff x− 1. ✷

4.5.2 Proving that Enough is Generated

First we study techniques for showing that everything we want a grammar to
generate is really generated.

Since X,Y,Z ⊆ {0, 1}∗, to prove that X ⊆ ΠG,A, Y ⊆ ΠG,B and Z ⊆ ΠG,C,
it will suffice to use strong string induction to show that, for all w ∈ {0, 1}∗:

(A) if w ∈ X, then w ∈ ΠG,A;

(B) if w ∈ Y , then w ∈ ΠG,B; and

(C) if w ∈ Z, then w ∈ ΠG,C.

We proceed by strong string induction. Suppose w ∈ {0, 1}∗, and assume the
inductive hypothesis: for all x ∈ {0, 1}∗, if x is a proper substring of w, then:

(A) if x ∈ X, then x ∈ ΠA;

(B) if x ∈ Y , then x ∈ ΠB; and

(C) if x ∈ Z, then x ∈ ΠC.

We must prove that:

(A) if w ∈ X, then w ∈ ΠA;

(B) if w ∈ Y , then w ∈ ΠB; and

(C) if w ∈ Z, then w ∈ ΠC.

4.5 Proving the Correctness of Grammars 267

(A) Suppose w ∈ X. We must show that w ∈ ΠA. There are three cases to
consider.

• Suppose w = %. Because A→% ∈ P , Proposition 4.5.1(2) tells us
that w = % ∈ ΠA.

• Suppose w = 0x, for some x ∈ {0, 1}∗. Because −1 + diff x =
diff w = 0, we have that diff x = 1. Thus, by Lemma 4.5.2(1),
we have that x = yz, for some y, z ∈ {0, 1}∗ such that y ∈ Y
and diff z = diff x − 1 = 1 − 1 = 0. Thus w = 0yz, y ∈ Y and
z ∈ X. By Proposition 4.5.1(1), we have 0 ∈ Π0. Because y ∈ Y
and z ∈ X are proper substrings of w, parts (B) and (A) of the
inductive hypothesis tell us that y ∈ ΠB and z ∈ ΠA. Thus, because
A→ 0BA ∈ P , Proposition 4.5.1(3) tells us that w = 0yz ∈ ΠA.

• Suppose w = 1x, for some x ∈ {0, 1}∗. The proof is analogous to
the preceding case.

(B) Suppose w ∈ Y . We must show that w ∈ ΠB. Because diff w = 1, there
are two cases to consider.

• Suppose w = 1x, for some x ∈ {0, 1}∗. Because all proper prefixes
of w have diffs ≤ 0, we have that x = %, so that w = 1. Since
B→ 1 ∈ P , we have that w = 1 ∈ ΠB.

• Suppose w = 0x, for some x ∈ {0, 1}∗. Thus diff x = 2. Because
diff x ≥ 1, by Lemma 4.5.2(1), we have that x = yz, for some
y, z ∈ {0, 1}∗ such that y ∈ Y and diff z = diff x − 1 = 2 − 1 = 1.
Hence w = 0yz. To finish the proof that z ∈ Y , suppose v is a
proper prefix of z. Thus 0yv is a proper prefix of w. Since w ∈ Y ,
it follows that diff v = diff(0yv) ≤ 0, as required. Since y, z ∈ Y ,
part (B) of the inductive hypothesis tell us that y, z ∈ ΠB. Thus,
because B→ 0BB ∈ P we have that w = 0yz ∈ ΠB.

(C) Suppose w ∈ Z. We must show that w ∈ ΠC. The proof is analogous to
the proof of part (B).

Suppose H is the grammar

A→ B | 0A3, B→% | 1B2,

and let

X = { 0n1m2m3n | n,m ∈ N }, Y = { 1m2m | m ∈ N }.

We can prove that X ⊆ ΠH,A = L(H) and Y ⊆ ΠH,B using the above technique,
but the production A → B, which is called a unit production because its right
side is a single variable, makes part (A) tricky. In Section 3.8, when considering

268 Context-free Languages

techniques for showing the correctness of finite automata, we ran into a similar
problem having to do with %-transitions.

If w = 001m2m30 = 1m2m ∈ Y , we would like to use part (B) of the inductive
hypothesis to conclude w ∈ ΠB, and then use the fact that A→B ∈ P to conclude
that w ∈ ΠA. But w is not a proper substring of itself, and so the inductive
hypothesis in not applicable. Instead, we must split into cases m = 0 and m ≥ 1,
using A→ B and B→%, in the first case, and A→ B and B→ 1B2, as well as
the inductive hypothesis on 1m−12m−1 ∈ Y , in the second case.

Because there are no productions from B back to A, we could also first use
strong string induction to prove that, for all w ∈ {0, 1}∗,

(B) if w ∈ Y , then w ∈ ΠB,

and then use the result of this induction along with strong string induction to
prove that for all w ∈ {0, 1}∗,

(A) if w ∈ X, then w ∈ ΠA.

This works whenever two parts of a grammar are not mutually recursive.
With this grammar, we could also first use mathematical induction to prove

that, for all m ∈ N, 1m2m ∈ ΠB, and then use the result of this induction to
prove, by mathematical induction on n, that for all n,m ∈ N, 0n1m2m3n ∈ ΠA.

Note that %-productions, i.e., productions of the form q → %, can cause
similar problems to those caused by unit productions. E.g., if we have the
productions

A→ BC and B→%,

then A→ BC behaves like a unit production.

4.5.3 Proving that Everything Generated is Wanted

When proving that everything generated by a grammar is wanted, we could
sometimes use strong induction, simply reversing the implications used when
proving that enough is generated. But this approach fails for grammars with
unit productions, where we would have to resort to an induction on parse trees.

In Section 3.8, when considering techniques for showing the correctness of
finite automata, we ran into a similar problem having to do with %-transitions,
and this led to our introducing the Principle of Induction on Λ. Here, we intro-
duce an induction principle called Induction on Π.

Theorem 4.5.3 (Principle of Induction on Π)
Suppose G is a grammar, Pq(w) is a property of a string w ∈ ΠG,q, for all
q ∈ QG, and Pa(w), for a ∈ alphabetG, says “w = a”. If

(1) for all q ∈ QG, if q →% ∈ PG, then Pq(%), and

4.5 Proving the Correctness of Grammars 269

(2) for all q ∈ QG, n ∈ N − {0}, a1, . . . , an ∈ QG ∪ alphabetG, and w1 ∈
ΠG,a1 , . . . , wn ∈ ΠG,an , if q→a1 · · · an ∈ PG and (†) Pa1(w1), . . . , Pan(wn),
then Pq(w1 · · ·wn),

then

for all q ∈ QG, for all w ∈ ΠG,q, Pq(w).

We refer to (†) as the inductive hypothesis.

Proof. It suffices to show that, for all pt ∈ PT, for all q ∈ QG and w ∈
(alphabetG)∗, if pt is valid for G, rootLabel pt = q and yield pt = w, then
Pq(w). We prove this using the principle of induction on parse trees. ✷

When proving part (2), we can make use of the fact that, for ai ∈
alphabetG, Πai = {ai}, so that wi ∈ Πai will be ai. Hence it will be un-
necessary to assume that Pai(ai), since this says “ai = ai”, and so is always
true.

Consider, again, our main example grammar G:

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC.

Let

X = {w ∈ {0, 1}∗ | diff w = 0 },

Y = {w ∈ {0, 1}∗ | diff w = 1 and,

for all proper prefixes v of w,diff v ≤ 0 },

Z = {w ∈ {0, 1}∗ | diff w = −1 and,

for all proper prefixes v of w,diff v ≥ 0 }.

We have already proven that X ⊆ ΠA = L(G), Y ⊆ ΠB and Z ⊆ ΠC. To
complete the proof that L(G) = ΠA = X, ΠB = Y and ΠC = Z, we will use
induction on Π to prove that ΠA ⊆ X, ΠB ⊆ Y and ΠC ⊆ Z.

We use induction on Π to show that:

(A) for all w ∈ ΠA, w ∈ X;

(B) for all w ∈ ΠB, w ∈ Y ; and

(C) for all w ∈ ΠC, w ∈ Z.

Formally, this means that we let the properties PA(w), PB(w) and PC(w) be
“w ∈ X”, “w ∈ Y ” and “w ∈ Z”, respectively, and then use the induction
principle to prove that, for all q ∈ QG, for all w ∈ Πq, Pq(w). But we will
actually work more informally.

There are seven productions to consider.

270 Context-free Languages

(A→%) We must show that % ∈ X (as “w ∈ X” is the property of part (A)).
And this holds since diff % = 0.

(A→ 0BA) Suppose w1 ∈ ΠB and w2 ∈ ΠA (as 0BA is the right-side of the
production, and 0 is in G’s alphabet), and assume the inductive hypothesis,
w1 ∈ Y (as this is the property of part (B)) and w2 ∈ X (as this is the
property of part (A)). We must show that 0w1w2 ∈ X, as the production
shows that 0w1w2 ∈ ΠA. Because w1 ∈ Y and w2 ∈ X, we have that
diff w1 = 1 and diff w2 = 0. Thus diff(0w1w2) = −1+1+0 = 0, showing
that 0w1w2 ∈ X.

(B→ 0BB) Suppose w1, w2 ∈ ΠB, and assume the inductive hypothesis,
w1, w2 ∈ Y . We must show that 0w1w2 ∈ Y . Clearly, diff(0w1w2) =
−1 + 1+ 1 = 1. So, suppose v is a proper prefix of 0w1w2. We must show
that diff v ≤ 0. There are three cases to consider.

• Suppose v = %. Then diff v = 0 ≤ 0.

• Suppose v = 0u, for a proper prefix u of w1. Because w1 ∈ Y , we
have that diff u ≤ 0. Thus diff v = −1 + diff u ≤ −1 + 0 ≤ 0.

• Suppose v = 0w1u, for a proper prefix u of w2. Because w2 ∈ Y , we
have that diff u ≤ 0. Thus diff v = −1 + 1 + diff u = diff u ≤ 0.

The remaining productions are handled similarly.

4.5.4 Notes

Books on formal language theory typically give short shrift to the proof of cor-
rectness of grammars, carrying out one or two correctness proofs using induction
on the length of strings. In contrast, we have introduced and applied elegant
techniques for proving the correctness of grammars. Of particular note is our
principle of induction on Π.

4.6 Ambiguity of Grammars

In this section, we say what it means for a grammar to be ambiguous. We also
give a straightforward method for disambiguating grammars for languages with
operators of various precedences and associativities, and consider an efficient
parsing algorithm for such disambiguated grammars.

4.6.1 Definition

Suppose G is our grammar of arithmetic expressions:

E→ E〈plus〉E | E〈times〉E | 〈openPar〉E〈closPar〉 | 〈id〉.

4.6 Ambiguity of Grammars 271

Unfortunately, there are multiple ways of parsing 〈id〉〈times〉〈id〉〈plus〉〈id〉 ac-
cording to this grammar:

E

E 〈plus〉 E

E 〈times〉 E

〈id〉 〈id〉

〈id〉

E

E 〈times〉 E

E 〈plus〉 E

〈id〉 〈id〉

〈id〉

(pt
1
) (pt

2
)

In pt1, multiplication has higher precedence than addition; in pt2, the situation
is reversed. Because there are multiple ways of parsing this string, we say that
our grammar is “ambiguous”.

A grammar G is ambiguous iff there is a w ∈ (alphabetG)∗ such that w is
the yield of multiple valid parse trees for G whose root labels are sG; otherwise,
G is unambiguous.

The grammar

A→% | 0A1A | 1A0A

is a grammar generating all elements of {0, 1}∗ with a diff of 0, for the diff
function such that diff 0 = −1 and diff 1 = 1. It is ambiguous as, e.g., 0101 can
be parsed as 0%1(01) or 0(10)1%. But in Section 4.5, we saw another grammar
for this language:

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC,

which turns out to be unambiguous. The reason is that ΠB is all elements of
{0, 1}∗ with a diff of 1, but with no proper prefixes with positive diff ’s, and ΠC

has the corresponding property for 0/negative.

4.6.2 Disambiguating Grammars of Operators

Not every ambiguous grammar can be turned into an equivalent unambiguous
one. However, we can use a simple technique to disambiguate our grammar of
arithmetic expressions, and this technique works for many commonly occurring
grammars involving operators of various precedences and associativities.

Since there are two binary operators in our language of arithmetic expres-
sions, we have to decide:

• whether multiplication has higher or lower precedence than addition; and

272 Context-free Languages

• whether multiplication and addition are left or right associative.

As usual, we’ll make multiplication have higher precedence than addition, and
let addition and multiplication be left associative.

As a first step towards disambiguating our grammar, we can form a new
grammar with the three variables: E (expressions), T (terms) and F (factors),
start variable E and productions:

E→ T | E〈plus〉E,

T→ F | T〈times〉T,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

The idea is that the lowest precedence operator “lives” at the highest level of
the grammar, that the highest precedence operator lives at the middle level
of the grammar, and that the basic expressions, including the parenthesized
expressions, live at the lowest level of the grammar.

Now, there is only one way to parse the string 〈id〉〈times〉〈id〉〈plus〉〈id〉, since,
if we begin by using the production E→ T, our yield will only include a 〈plus〉
if this symbol occurs within parentheses. If we had more levels of precedence in
our language, we would simply add more levels to our grammar.

On the other hand, there are still two ways of parsing the string
〈id〉〈plus〉〈id〉〈plus〉〈id〉: with left associativity or right associativity. To finish
disambiguating our grammar, we must break the symmetry of the right-sides of
the productions

E→ E〈plus〉E,

T→ T〈times〉T,

turning one of the E’s into T, and one of the T’s into F. To make our operators
be left associative, we must use left recursion, changing the second E to T, and
the second T to F; right associativity would result from making the opposite
choices, i.e., using right recursion.

Thus, our unambiguous grammar of arithmetic expressions is

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

It can be proved that this grammar is indeed unambiguous, and that it is equiv-
alent to the original grammar.

Now, the only parse of 〈id〉〈times〉〈id〉〈plus〉〈id〉 is

4.6 Ambiguity of Grammars 273

T

F

〈id〉

E

〈plus〉E

T

〈id〉

〈times〉T F

F 〈id〉

And, the only parse of 〈id〉〈plus〉〈id〉〈plus〉〈id〉 is

E

〈plus〉E

〈plus〉 T

T

F

〈id〉F

〈id〉

E

T

F

〈id〉

4.6.3 Top-down Parsing

Top-down parsing is a simple and efficient parsing method for unambiguous
grammars of operators like

E→ T | E〈plus〉T,

T→ F | T〈times〉F,

F→ 〈id〉 | 〈openPar〉E〈closPar〉.

Let E , T and F be all of the parse trees that are valid for our grammar, have
yields containing no variables, and whose root labels are E, T and F, respectively.
Because this grammar has three mutually recursive variables, we will need three
mutually recursive parsing functions,

parE ∈ Str→Option(E × Str),

parT ∈ Str→Option(T × Str),

parF ∈ Str→Option(F × Str),

which attempt to parse an element pt of E , T or F out of a string w, return-
ing none to indicate failure, and some(pt , y), where y is the remainder of w,
otherwise.

274 Context-free Languages

Although most programming languages support mutual recursion, in this
book, we haven’t formally justified well-founded mutual recursion. Instead, we
can work with a single recursive function with domain {0, 1, 2}×Str, where the
0, 1 or 2 indicates whether it’s parE, parT or parF, respectively, that is being
called.

The well-founded ordering we are using allows:

• parE to call parT with strings that are no longer than its argument;

• parT to call parF with strings that are no longer than its argument; and

• parF to call parE with strings that are strictly shorter than its argument.

When called with a string w, parE is supposed to determine whether there
is a prefix x of w that is the yield of an element of E . If there is such an x, then it
finds the longest prefix x of w with this property, and returns some(pt , y), where
pt is the element of E whose yield is x, and y is such that w = xy. Otherwise,
it returns none. parT and parF have similar specifications.

Given a string w, parE operates as follows. Because all elements of E
have yields beginning with the yield of an element of T , it starts by evalu-
ating parTw. If this results in none, it returns none. Otherwise, it results
in some(pt , x), for some pt ∈ T and x ∈ Str, in which case parE returns
parELoop(E(pt), x), where parELoop ∈ E × Str → Option(E × Str) is de-
fined recursively, as follows.

Given (pt , x) ∈ E × Str, parELoop proceeds as follows.

• If x = 〈plus〉y for some y, then parELoop evaluates parT y.

– If this results in none, then parELoop returns none.

– Otherwise, it results in some(pt ′, z) for some pt ′ ∈ T and z ∈ Str,
and parELoop returns parELoop(E(pt , 〈plus〉, pt ′), z).

• Otherwise, parELoop returns some(pt , x).

The function parT operates analogously.
Given a string w, parF proceeds as follows.

• If w = 〈id〉x for some x, then it returns some(F (〈id〉), x).

• Otherwise, if w = 〈openPar〉x, then parF evaluates parEx.

– If this results in none, it returns none.

– Otherwise, this results in some(pt , y) for some pt ∈ E and y ∈ Str.

∗ If y = 〈closPar〉z for some z, then parF returns

some(F (〈openPar〉, pt , 〈closPar〉), z).

4.7 Closure Properties of Context-free Languages 275

∗ Otherwise, parF returns none.

• Otherwise parF returns none.

Given a string w to parse, the algorithm evaluates parEw. If the result of
this evaluation is:

• none, then the algorithm reports failure;

• some(pt ,%), then the algorithm returns pt ;

• some(pt , y), where y 6= %, then the algorithm reports failure, because not
all of the input could be parsed.

4.6.4 Notes

The standard approach to doing top-down parsing in the presence of left recur-
sive productions is to first translate the left recursion to right recursion, and then
restructure the parse trees produced by the parser. In contrast, we showed a
direct approach to handling left recursion that works for grammars of operators.

4.7 Closure Properties of Context-free Languages

In this section, we define union, concatenation, closure, reversal, alphabet-
renaming and prefix-closure operations/algorithms on grammars. As a result, we
will have that the context-free languages are closed under union, concatenation,
closure, reversal, alphabet-renaming and prefix-, suffix- and substring-closure.

In Section 4.10, we will see that the context-free languages aren’t closed
under intersection, complementation and set difference. But we are able to
define operations/algorithms for:

• intersecting a grammar and an empty-string finite automaton; and

• subtracting a deterministic finite automaton from a grammar.

Thus, if L1 is a context-free language, and L2 is a regular language, we will have
that L1 ∩ L2 and L1 − L2 are context-free.

4.7.1 Operations on Grammars

First, we consider some basic grammars and operations on grammars. The
grammar with variable A and production A → % generates the language {%}.
The grammar with variable A and no productions generates the language ∅. If
w is a string, then the grammar with variable A and production A→w generates
the language {w}. Actually, we must be careful to chose a variable that doesn’t
occur in w.

276 Context-free Languages

Suppose G1 and G2 are grammars. We can define a grammar H such that
L(H) = L(G1) ∪ L(G2) by unioning together the variables and productions of
G1 and G2, and adding a new start variable q, along with productions

q → sG1
| sG2

.

For the above to be valid, we need to know that:

• QG1
∩QG2

= ∅ and q 6∈ QG1
∪QG2

; and

• alphabetG1 ∩QG2
= ∅, alphabetG2 ∩QG1

= ∅ and q 6∈ alphabetG1 ∪
alphabetG2.

Our official union operation for grammars renames the variables of G1 and G2,
and chooses the start variable q, in a uniform way that makes the preceding
properties hold. We do something similar when defining the other closure op-
erations. In what follows, though, we’ll ignore this issue, so as to keep things
simple.

Suppose G1 and G2 are grammars. We can define a grammar H such that
L(H) = L(G1)L(G2) by unioning together the variables and productions of G1

and G2, and adding a new start variable q, along with production

q → sG1
sG2

.

Suppose G is a grammar. We can define a grammar H such that L(H) =
L(G)∗ by adding to the variables and productions of G a new start variable q,
along with productions

q →% | sGq.

Next, we consider reversal and alphabet renaming operations on grammars.
Given a grammar G, we can define a grammar H such that L(H) = L(G)R by
simply reversing the right-sides of G’s productions.

Given a grammar G and a bijection f from a set of symbols that is a superset
of alphabetG to some set of symbols, we can define a grammar H such that
L(H) = L(G)f by renaming the elements of alphabetG in the right-sides of
G’s productions using f . Actually, we may have to rename the variables of G
to avoid clashes with the elements of the renamed alphabet.

From Section 3.12, we know that if we can define a prefix-closure operation on
grammmars, then we can obtain suffix-closure and substring-closure operations
on grammars from the prefix-closure and grammar reversal operations.

So how can we turn a grammar G into a grammar H such that L(H) =
L(G)P ? We begin by simplifying G, producing grammar G′. Thus all of the
variables of G′ will be useful, unless G′ has a single variable and no productions.
Now, we form the grammmar H from G′, as follows. We make a copy of G′,
renaming each variable q to 〈1, q〉. (Actually, we may have to rename variables

4.7 Closure Properties of Context-free Languages 277

to avoid clashes with alphabet symbols.) Next, for each alphabet symbol a, we
introduce a new variable 〈2, a〉, along with productions 〈2, a〉→% | a. Next, for
each variable q of G′, we add a new variable 〈2, q〉 that generates all prefixes of
what q generated in G′. Suppose we are given a production q → a1a2 · · · an of
G′. If n = 0, then we replace it with the production 〈2, q〉 →%. Otherwise, we
replace it with the productions

〈2, q〉 → 〈2, a1〉 | f(a1)〈2, a2〉 | · · · | f(a1) f(a2) · · · 〈2, an〉,

where f(a) = a, if a ∈ alphabetG′, and f(a) = 〈1, a〉, if a ∈ QG′ . It’s
crucial that G′ is simplified; otherwise productions with useless symbols would
be turned into productions that generated strings. Finally, the start variable of
H is 〈2, sG′〉.

For example, the grammar

A→% | 0A1

is turned into the grammar

〈2,A〉 →% | 〈2, 0〉 | 0〈2,A〉 | 0〈1, A〉〈2, 1〉,

〈1, A〉 →% | 0〈1,A〉1,

〈2, 0〉 →% | 0,

〈2, 1〉 →% | 1.

We now consider an algorithm for intersecting a grammar G with an EFA
M , resulting in simplifyH, where the grammar H is defined as follows. For all
p ∈ QG and q, r ∈ QM , H has a variable 〈p, q, r〉 that generates

{w ∈ (alphabetG)∗ | w ∈ ΠG,p and r ∈ ∆({q}, w) }.

The remaining variable of H is A, which is its start variable.
For each r ∈ AM , H has a production

A→ 〈sG, sM , r〉.

And for each %-production p→% of G and q, r ∈ QM , if r ∈ ∆({q},%), then
H will have the production

〈p, q, r〉 →%.

To say what the remaining productions of H are, define a function

f ∈ (alphabetG ∪QG)×QM ×QM → alphabetG ∪QH

by: for all a ∈ alphabetG ∪QG and q, r ∈ QM ,

f(a, q, r) =

{

a if a ∈ alphabetG, and
〈a, q, r〉 if a ∈ QG.

Then, for all p ∈ QG, n ∈ N− {0}, a1, . . . , an ∈ Sym and q1, . . . , qn+1 ∈ QM , if

278 Context-free Languages

• p→ a1 · · · an ∈ PG, and

• for all i ∈ [1 : n], if ai ∈ alphabetG, then qi+1 ∈ ∆({qi}, ai),

then

〈p, q1, qn+1〉 → f(a1, q1, q2) · · · f(an, qn, qn+1)

is a production of H.
For example, let G be the grammar

A→% | 0A1A | 1A0A,

and M be the EFA

Start A B
%

0 1

so that G generates all elements of {0, 1}∗ with an equal number of 0’s and 1’s,
and M accepts {0}∗{1}∗. Then simplifyH is

A→ 〈A,A,B〉,

〈A,A,A〉 →%,

〈A,A,B〉 →%,

〈A,A,B〉 → 0〈A,A,A〉1〈A,B,B〉,

〈A,A,B〉 → 0〈A,A,B〉1〈A,B,B〉,

〈A,A,B〉 → 0〈A,B,B〉1〈A,B,B〉,

〈A,B,B〉 →%.

Note that simplification eliminated the variable 〈A,B,A〉.
Finally, we consider a difference operation/algorithm. Given a grammar G

and a DFA M , we can define the difference of G and M to be

inter(G, complement(M,alphabetG)).

This is analogous to what we did when defining the difference of DFAs.
The following theorem summarizes the closure properties for context-free

languages.

Theorem 4.7.1
Suppose L,L1, L2 ∈ CFLan and L′ ∈ RegLan. Then:

(1) L1 ∪ L2 ∈ CFLan;

(2) L1L2 ∈ CFLan;

4.7 Closure Properties of Context-free Languages 279

(3) L∗ ∈ CFLan;

(4) LR ∈ CFLan;

(5) Lf ∈ CFLan, where f is a bijection from a set of symbols that is a
superset of alphabetL to some set of symbols;

(6) LP ∈ CFLan;

(7) LS ∈ CFLan;

(8) LSS ∈ CFLan;

(9) L ∩ L′ ∈ CFLan; and

(10) L− L′ ∈ CFLan.

4.7.2 Operations on Grammars in Forlan

The Forlan module Gram defines the following constants and operations on gram-
mars:

val emptyStr : gram

val emptySet : gram

val fromStr : str -> gram

val fromSym : sym -> gram

val union : gram * gram -> gram

val concat : gram * gram -> gram

val closure : gram -> gram

val rev : gram -> gram

val renameAlphabet : gram * sym_rel -> gram

val prefix : gram -> gram

val inter : gram * efa -> gram

val minus : gram * dfa -> gram

The functions fromStr and fromSym and are also available in the top-level en-
vironment with the names

val strToGram : str -> gram

val symToGram : sym -> gram

For example, we can construct a grammar G such that L(G) =
{01} ∪ {10}{11}∗ , as follows.

- val gram1 = strToGram(Str.fromString "01");

val gram1 = - : gram

- val gram2 = strToGram(Str.fromString "10");

val gram2 = - : gram

- val gram3 = strToGram(Str.fromString "11");

val gram3 = - : gram

280 Context-free Languages

- val gram =

= Gram.union(gram1,

= Gram.concat(gram2,

= Gram.closure gram3));

val gram = - : gram

- Gram.output("", gram);

{variables} A, <1,A>, <2,A>, <2,<1,A>>, <2,<2,A>>, <2,<2,<A>>>

{start variable} A

{productions}

A -> <1,A> | <2,A>; <1,A> -> 01; <2,A> -> <2,<1,A>><2,<2,A>>;

<2,<1,A>> -> 10; <2,<2,A>> -> % | <2,<2,<A>>><2,<2,A>>;

<2,<2,<A>>> -> 11

val it = () : unit

- val gram’ = Gram.renameVariablesCanonically gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE; F -> 11

val it = () : unit

Continuing our Forlan session, the grammar reversal and alphabet renaming
operations can be used as follows:

- val gram’’ = Gram.rev gram’;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> B | C; B -> 10; C -> ED; D -> 01; E -> % | EF; F -> 11

val it = () : unit

- val rel = SymRel.fromString "(0, A), (1, B)";

val rel = - : sym_rel

- val gram’’’ = Gram.renameAlphabet(gram’’, rel);

val gram’’’ = - : gram

- Gram.output("", gram’’’);

{variables} <A>, , <C>, <D>, <E>, <F> {start variable} <A>

{productions}

<A> -> | <C>; -> BA; <C> -> <E><D>; <D> -> AB;

<E> -> % | <E><F>; <F> -> BB

val it = () : unit

And here is an example use of the prefix-closure operation:

- val gram = Gram.input "";

@ {variables}

@ A

@ {start variable}

@ A

@ {productions}

4.7 Closure Properties of Context-free Languages 281

@ A -> % | 0A1

@ .

val gram = - : gram

- val gram’ = Gram.prefix gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} <1,A>, <2,0>, <2,1>, <2,A> {start variable} <2,A>

{productions}

<1,A> -> % | 0<1,A>1; <2,0> -> % | 0; <2,1> -> % | 1;

<2,A> -> % | <2,0> | 0<2,A> | 0<1,A><2,1>

val it = () : unit

- fun test s = Gram.generated gram’ (Str.fromString s);

val test = fn : string -> bool

- test "000111";

val it = true : bool

- test "0001";

val it = true : bool

- test "0001111";

val it = false : bool

Finally, to see how we can use Gram.inter and Gram.minus, let gram be the
grammar

A→% | 0A1A | 1A0A,

and efa be the EFA

Start A B
%

0 1

- val gram’ = Gram.inter(gram, efa);

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, <A,A,A>, <A,A,B>, <A,B,B> {start variable} A

{productions}

A -> <A,A,B>; <A,A,A> -> %;

<A,A,B> ->

% | 0<A,A,A>1<A,B,B> | 0<A,A,B>1<A,B,B> | 0<A,B,B>1<A,B,B>;

<A,B,B> -> %

val it = () : unit

- Gram.generated gram’ (Str.fromString "0011");

val it = true : bool

- Gram.generated gram’ (Str.fromString "0101");

val it = false : bool

- Gram.generated gram’ (Str.fromString "0001");

val it = false : bool

- val dfa =

282 Context-free Languages

= DFA.renameStatesCanonically

= (DFA.minimize(nfaToDFA(efaToNFA efa)));

val dfa = - : dfa

- val gram’’ = Gram.minus(gram, dfa);

val gram’’ = - : gram

- Gram.generated gram’’ (Str.fromString "0101");

val it = true : bool

- Gram.generated gram’’ (Str.fromString "0011");

val it = false : bool

4.7.3 Notes

The algorithm for intersecting a grammar with an EFA would normally be given
only indirectly, using push down automata (PDAs): one could convert a gram-
mar to a PDF, do the intersection there, and convert back to a grammar. Our
direct algorithm is motivated by this process, but produces grammars that are
more intelligible.

4.8 Converting Regular Expressions and FA to
Grammars

In this section, we give simple algorithms for converting regular expressions and
finite automata to grammars. Since we have algorithms for converting between
regular expressions and finite automata, it is tempting to only define one of these
algorithms. But better results can be obtained by defining direct conversions.

4.8.1 Converting Regular Expressions to Grammars

Regular expressions are converted to grammars using a recursive algorithm that
makes use of the operations on grammars that were defined in Section 4.7. The
structure of the algorithm is very similar to the structure of our algorithm for
converting regular expressions to finite automata.

The algorithm is implemented in Forlan by the function

val fromReg : reg -> gram

of the Gram module. It’s available in the top-level environment with the name
regToGram.

Here is how we can convert the regular expression 01+ 10(11)∗ to a grammar
using Forlan:

- val gram = regToGram(Reg.input "");

@ 01 + 10(11)*

@ .

val gram = - : gram

4.8 Converting Regular Expressions and FA to Grammars 283

- Gram.output("", Gram.renameVariablesCanonically gram);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> B | C; B -> 01; C -> DE; D -> 10; E -> % | FE; F -> 11

val it = () : unit

4.8.2 Converting Finite Automata to Grammars

We’ll explain the process of converting finite automata to grammars using an
example. Suppose M is the DFA

B

1 1

0

0

Start A

The variables of our grammar G consist of the states of M , and its start variable
is the start state A of M . (If the symbols of the labels of M ’s transitions conflict
with M ’s states, we’ll have to rename the states of M first.) We can translate
each transition q, x → r to a production q → xr. And, since A is an accepting
state of M , we add the production A→%. This gives us the grammar

A→% | 0B | 1A,

B→ 0A | 1B.

Consider, e.g., the valid labeled path for M

A
1

⇒ A
0

⇒ B
0

⇒ A,

which explains why 100 ∈ L(M). It corresponds to the valid parse tree for G

A

1 A

0 B

0 A

% ,

which explains why 100 ∈ L(G).
The Forlan module Gram contains the function

val fromFA : fa -> gram

284 Context-free Languages

which implements our algorithm for converting finite automata to grammars.
It’s available in the top-level environment with the name textttfaToGram.

Suppose fa of type fa is bound to M . Here is how we can convert M to a
grammar using Forlan:

- val gram = faToGram fa;

val gram = - : gram

- Gram.output("", gram);

{variables} A, B {start variable} A

{productions} A -> % | 0B | 1A; B -> 0A | 1B

val it = () : unit

Because of the existence of our conversion functions, we have that every
regular language is a context-free language. On the other hand, the language
{ 0n1n | n ∈ N } is context-free, because of the grammar

A→% | 0A1,

but is not regular, as we proved in Section 3.13.
Summarizing, we have:

Theorem 4.8.1
The regular languages are a proper subset of the context-free languages:
RegLan (CFLan.

4.8.3 Notes

The material in this section is standard.

4.9 Chomsky Normal Form

In this section, we study a special form of grammars called Chomsky Normal
Form (CNF), which was named after the linguist Noam Chomsky. Grammars
in CNF have very nice formal properties. In particular, valid parse trees for
grammars in CNF are very close to being binary trees.

Any grammar that doesn’t generate % can be put in CNF. And, if G is a
grammar that does generate %, it can be turned into a grammar in CNF that
generates L(G) − {%}. In the next section, we will use this fact when proving
the pumping lemma for context-free languages, a method for showing the certain
languages are not context-free.

We will begin by giving an algorithm for turning a grammar G into a sim-
plified grammar with no productions of the form q → % and q → r. This will
allow us to give an algorithm that, given a grammar G, returns L(G), when it
is finite, and reports that L(G) is infinite, otherwise.

4.9 Chomsky Normal Form 285

4.9.1 Removing %-Productions

A %-production is a production of the form q →%. We will show by example
how to turn a grammar G into a simplified grammar with no %-productions that
generates L(G)− {%}.

Suppose G is the grammar

A→ 0A1 | BB,

B→% | 2B.

First, we determine which variables q are nullable in the sense that % ∈ Πq,
i.e., that % is the yield of a valid parse tree for G whose root label is q.

• Clearly, B is nullable.

• Since A→ BB ∈ PG, it follows that A is nullable.

Now we use this information to compute the productions of our new gram-
mar.

• Since A is nullable, we replace the production A→0A1 with the productions
A→ 0A1 and A→ 01. The idea is that this second production will make
up for the fact that A won’t be nullable in the new grammar.

• Since B is nullable, we replace the production A→BB with the productions
A→ BB and A→ B (the result of deleting either one of the B’s).

• The production B→% is deleted.

• Since B is nullable, we replace the production B→2B with the productions
B→ 2B and B→ 2.

This give us the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

In general, we finish by simplifying our new grammar. The new grammar of our
example is already simplified, however.

4.9.2 Removing Unit Productions

A unit production for a grammar G is a production of the form q→r, where r is a
variable (possibly equal to q). We now show by example how to turn a grammar
G into a simplified grammar with no %-productions or unit productions that
generates L(G)− {%}.

286 Context-free Languages

Suppose G is the grammar

A→ 0A1 | 01 | BB | B,

B→ 2B | 2.

We begin by applying our algorithm for removing %-productions to our gram-
mar; the algorithm has no effect in this case.

Our new grammar will have the same variables and start variable as G. Its
set of productions is the set of all q→w such that q is a variable of G, w ∈ Str
doesn’t consist of a single variable of G, and there is a variable r such that

• r is parsable from q, and

• r → w is a production of G.

(Determining whether r is parsable from q is easy, since we are working with a
grammar with no %-productions.)

This process results in the grammar

A→ 0A1 | 01 | BB | 2B | 2,

B→ 2B | 2.

Finally, we simplify our grammar, which gets rid of the production A → 2B,
giving us the grammar

A→ 0A1 | 01 | BB | 2,

B→ 2B | 2.

Removing % and Unit Productions in Forlan

The Forlan module Gram defines the following functions:

val eliminateEmptyProductions : gram -> gram

val eliminateEmptyAndUnitProductions : gram -> gram

For example, if gram is the grammar

A→ 0A1 | BB,

B→% | 2B.

then we can proceed as follows.

- val gram’ = Gram.eliminateEmptyProductions gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} A, B {start variable} A

{productions} A -> B | 01 | BB | 0A1; B -> 2 | 2B

val it = () : unit

4.9 Chomsky Normal Form 287

- val gram’’ = Gram.eliminateEmptyAndUnitProductions gram;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} A, B {start variable} A

{productions} A -> 2 | 01 | BB | 0A1; B -> 2 | 2B

val it = () : unit

Generating a Grammar’s Language When Finite

We can now give an algorithm that takes in a grammar G and generates L(G),
when it is finite, and reports that L(G) is infinite, otherwise. The algorithm
begins by letting G′ be the simplified grammar that results from eliminating
%-productions and unit productions from G. If G′ contains recursion—either
direct, or mutual—then L(G′) is infinite. Otherwise, we can calculate L(G′)
from the bottom-up, and add % iff G generates %.

The Forlan module Gram defines the following function:

val toStrSet : gram -> str set

Suppose gram is the grammar

A→ BB,

B→ CC,

C→% | 0 | 1,

and gram’ is the grammar

A→ BB,

B→ CC,

C→% | 0 | 1 | A.

Then we can proceed as follows:

- StrSet.output("", Gram.toStrSet gram);

%, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111,

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,

1011, 1100, 1101, 1110, 1111

val it = () : unit

- StrSet.output("", Gram.toStrSet gram’);

language is infinite

uncaught exception Error

Suppose we have a grammar G and a natural number n, and we wish to
generate all elements of L(G) of length n. We can start by creating an EFA
M accepting all strings over the alphabet of G with length n. Then, we can
intersect G with M , and apply Gram.toStrSet to the resulting grammar.

288 Context-free Languages

4.9.3 Chomsky Normal Form

A grammar G is in Chomsky Normal Form (CNF) iff each of its productions
has one of the following forms:

• q → a, where a is not a variable; and

• q → pr, where p and r are variables.

We explain by example how a grammar G can be turned into a simplified
grammar in CNF that generates L(G)− {%}. Suppose G is the grammar

A→ 0A1 | 01 | BB | 2,

B→ 2B | 2.

• We begin by applying our algorithm for removing %-productions and unit
productions to this grammar. In this case, it has no effect.

• Since the productions A→BB, A→2 and B→2 are legal CNF productions,
we simply transfer them to our new grammar.

• Next we add the variables 〈0〉, 〈1〉 and 〈2〉 to our grammar, along with the
productions

〈0〉 → 0, 〈1〉 → 1, 〈2〉 → 2.

• Now, we can replace the production A→ 01 with A→〈0〉〈1〉. And, we can
replace the production B→ 2B with the production B→ 〈2〉B.

• Finally, we replace the production A→ 0A1 with the productions

A→ 〈0〉C, C→ A〈1〉,

and add C to the set of variables of our new grammar.

Summarizing, our new grammar is

A→ BB | 2 | 〈0〉〈1〉 | 〈0〉C,

B→ 2 | 〈2〉B,

〈0〉 → 0,

〈1〉 → 1,

〈2〉 → 2,

C→ A〈1〉.

The official version of our algorithm names variables in a different way.

4.10 The Pumping Lemma for Context-free Languages 289

Converting to Chomsky Normal Form in Forlan

The Forlan module Gram defines the following function:

val chomskyNormalForm : gram -> gram

Suppose gram of type gram is bound to the grammar with variables A and B,
start variable A, and productions

A→ 0A1 | BB,

B→% | 2B.

Here is how Forlan can be used to turn this grammar into a CNF grammar that
generates the nonempty strings that are generated by textttgram:

- val gram’ = Gram.chomskyNormalForm gram;

val gram’ = - : gram

- Gram.output("", gram’);

{variables} <1,A>, <1,B>, <2,0>, <2,1>, <2,2>, <3,A1>

{start variable} <1,A>

{productions}

<1,A> -> 2 | <1,B><1,B> | <2,0><2,1> | <2,0><3,A1>;

<1,B> -> 2 | <2,2><1,B>; <2,0> -> 0; <2,1> -> 1; <2,2> -> 2;

<3,A1> -> <1,A><2,1>

val it = () : unit

- val gram’’ = Gram.renameVariablesCanonically gram’;

val gram’’ = - : gram

- Gram.output("", gram’’);

{variables} A, B, C, D, E, F {start variable} A

{productions}

A -> 2 | BB | CD | CF; B -> 2 | EB; C -> 0; D -> 1; E -> 2;

F -> AD

val it = () : unit

4.9.4 Notes

Our algorithm for producing L(G), when it’s finite, and reporting that L(G) is
infinite, otherwise, uses familiar techniques, but isn’t usually included in a book
on formal language theory.

4.10 The Pumping Lemma for Context-free Lan-
guages

Consider the language L = { 0n1n2n | n ∈ N }. Is L context-free, i.e., is there
a grammar that generates L? Although it’s easy to find a grammar that keeps
the 0’s and 1’s matched, or one that keeps the 1’s and 2’s matched, or one that

290 Context-free Languages

keeps the 0’s and 2’s matched, it seems that there is no way to keep all three
symbols matched simultaneously.

In this section, we will study the pumping lemma for context-free languages,
which can be used to show that many languages are not context-free. We will use
the pumping lemma to prove that L is not context-free, and then we will prove
the lemma. Building on this result, we’ll be able to show that the context-free
languages are not closed under intersection, complementation or set-difference.

4.10.1 Statement, Application and Proof of Pumping Lemma

Lemma 4.10.1 (Pumping Lemma for Context Free Languages)
For all context-free languages L, there is a n ∈ N such that, for all z ∈ Str, if
z ∈ L and |z| ≥ n, then there are u, v, w, x, y ∈ Str such that z = uvwxy and

(1) |vwx| ≤ n;

(2) vx 6= %; and

(3) uviwxiy ∈ L, for all i ∈ N.

Before proving the pumping lemma, let’s see how it can be used to show
that L = { 0n1n2n | n ∈ N } is not context-free. Suppose, toward a contradiction
that L is context-free. Thus there is an n ∈ N with the property of the lemma.
Let z = 0n1n2n. Since z ∈ L and |z| = 3n ≥ n, we have that there are
u, v, w, x, y ∈ Str such that z = uvwxy and

(1) |vwx| ≤ n;

(2) vx 6= %; and

(3) uviwxiy ∈ L, for all i ∈ N.

Since 0n1n2n = z = uvwxy, (1) tells us that vwx doesn’t contain both a 0 and
a 2. Thus, either vwx has no 0’s, or vwx has no 2’s, so that there are two cases
to consider.

Suppose vwx has no 0’s. Thus vx has no 0’s. By (2), we have that vx
contains a 1 or a 2. Thus uwy:

• has n 0’s;

• either has less than n 1’s or has less than n 2’s.

But (3) tells us that uwy = uv0wx0y ∈ L, so that uwy has an equal number of
0’s, 1’s and 2’s—contradiction. The case where vwx has no 2’s is similar. Since
we obtained a contradiction in both cases, we have an overall contradiction.
Thus L is not context-free.

4.10 The Pumping Lemma for Context-free Languages 291

When we prove the pumping lemma for context-free languages, we will make
use of a fact about grammars in Chomsky Normal Form. Suppose G is a gram-
mar in CNF and that w ∈ (alphabetG)∗ is the yield of a valid parse tree pt for
G whose root label is a variable. For instance, if G is the grammar with variable
A and productions A → AA and A → 0, then w could be 0000 and pt could be
the following tree of height 3:

A

A A AA

A

A

0 0 0 0

Generalizing from this example, we can see that if pt has height 3, |w| will
never be greater than 4 = 22 = 23−1. Generalizing still more, we can prove that,
for all parse trees pt , for all strings w, if w is the yield of pt , then |w| ≤ 2k−1.
This can be proved by induction on pt .

Proof. Suppose L is a context-free language. By the results of the preceding
section, there is a grammar G in Chomsky Normal Form such that L(G) =
L− {%}. Let k = |QG| and n = 2k. Suppose z ∈ Str, z ∈ L and |z| ≥ n. Since
n ≥ 2, we have that z 6= %. Thus z ∈ L− {%} = L(G), so that there is a parse
tree pt such that pt is valid for G, rootLabel pt = sG and yield pt = z. By our
fact about CNF grammars, we have that the height of pt is at least k + 1. (If
pt ’s height were only k, then |z| ≤ 2k−1 < n, which is impossible.)

The rest of the proof can be visualized using the diagram

sG

q

q

u v w x y

pt

pt ′

pt ′′

pat

Let pat be a valid path for pt whose length is equal to the height of pt .
Thus the length of pat is at least k + 1, so that the path visits at least k + 1
variables, with the consequence that at least one variable must be visited twice.

292 Context-free Languages

Working from the last variable visited upwards, we look for the first repetition of
variables. Suppose q is this repeated variable, and let pat ′ and pat ′′ be the initial
parts of pat that take us to the upper and lower occurrences of q, respectively.

Let pt ′ and pt ′′ be the subtrees of pt at positions pat ′ and pat ′′, i.e., the
positions of the upper and lower occurrences of q, respectively. Consider the
tree formed from pt by replacing the subtree at position pat ′ by q. This tree has
yield uqy, for unique strings u and y.

Consider the tree formed from pt ′ by replacing the subtree pt ′′ by q. More
precisely, form the path pat ′′′ by removing pat ′ from the beginning of pat ′′.
Then replace the subtree of pt ′ at position pat ′′′ by q. This tree has yield vqx,
for unique strings v and x.

Furthermore, since |pat | is the height of pt , the length of the path formed by
removing pat ′ from pat will be the height of pt ′. But we know that this length is
at most k + 1, because, when working upwards through the variables visited by
pat , we stopped as soon as we found a repetition of variables. Thus the height
of pt ′ is at most k + 1.

Let w be the yield of pt ′′. Thus vwx is the yield of pt ′, so that z = uvwxy
is the yield of pt . Because the height of pt ′ is at most k + 1, our fact about
valid parse trees of grammars in CNF, tells us that |vwx| ≤ 2(k+1)−1 = 2k = n,
showing that Part (1) holds.

Because G is in CNF, pt ′, which has q as its root label, has two children.
The child whose root node isn’t visited by pat ′′′ will have a non-empty yield,
and this yield will be a prefix of v, if this child is the left child, and will be a
suffix of x, if this child is the right child. Thus vx 6= %, showing that Part (2)
holds.

It remains to show Part (3), i.e., that uviwxiy ∈ L(G) ⊆ L, for all i ∈ N.
We define a valid parse tree pt i for G, with root label q and yield viwxi, by
recursion on i ∈ N. We let pt0 be pt ′′. Then, if i ∈ N, we form pt i+1 from pt ′

by replacing the subtree at position pat ′′′′ by pt i.
Suppose i ∈ N. Then the parse tree formed from pt by replacing the subtree

at position pat ′ by pt i is valid for G, has root label sG, and has yield uviwxiy,
showing that uviwxiy ∈ L(G). ✷

4.10.2 Experimenting with the Pumping Lemma Using Forlan

The Forlan module PT defines a type and several functions that implement the
idea behind the pumping lemma:

type pumping_division = (pt * int list) * (pt * int list) * pt

val checkPumpingDivision : pumping_division -> unit

val validPumpingDivision : pumping_division -> bool

val strsOfValidPumpingDivision :

pumping_division -> str * str * str * str * str

val pumpValidPumpingDivision : pumping_division * int -> pt

4.10 The Pumping Lemma for Context-free Languages 293

val findValidPumpingDivision : pt -> pumping_division

A pumping division is a triple ((pt1, pat 1), (pt 2, pat 2), pt3), where
pt1, pt2, pt3 ∈ PT and pat1, pat2 ∈ ListZ. We say that a pumping division
((pt1, pat 1), (pt 2, pat 2), pt3) is valid iff

• pat1 is a valid path for pt1, pointing to a leaf whose label isn’t %;

• pat2 is a valid path for pt2, pointing to a leaf whose label isn’t %;

• the label of the leaf of pt1 pointed to by pat1 is equal to the root label of
pt2;

• the label of the leaf of pt2 pointed to by pat2 is equal to the root label of
pt2;

• the root label of pt3 is equal to the root label of pt2;

• the yield of pt2 has at least two symbols;

• the yield of pt1 has only one occurrence of the root label of pt2;

• the yield of pt2 has only one occurrence of the root label of pt2; and

• the yield of pt3 does not contain the root label of pt2.

The function checkPumpingDivision checks whether a pumping division is
valid, silently returning () if it is, and explaining why it isn’t, otherwise. The
function validPumpingDivision tests whether a pumping division is valid.

When the function strsOfValidPumpingDivision is applied to a valid
pumping division ((pt1, pat1), (pt2, pat 2), pt3), it returns (u, v, w, x, y), where:

• u is the prefix of yield pt1 that precedes the unique occurrence of the root
label of pt2;

• v is the prefix of yield pt2 that precedes the unique occurrence of the root
label of pt2;

• w = yield pt3;

• x is the suffix of yield pt2 that follows the unique occurrence of the root
label of pt2; and

• y is the suffix of yield pt1 that follows the unique occurrence of the root
label of pt2.

The function issues an error message if the supplied pumping division isn’t valid.
When the function pumpValidPumpingDivision is applied to the pair of a

valid pumping division ((pt1, pat 1), (pt 2, pat 2), pt3) and a natural number n, it

294 Context-free Languages

returns update(pt1, pat1,pow n), where the function pow ∈ N→PT is defined
by:

pow 0 = pt3,

pow(n+ 1) = update(pt2, pat 2,pow n), for all n ∈ N.

The function issues an error message if its first argument isn’t valid, or its second
argument is negative.

When the function findValidPumpingDivision is called with a parse tree
pt , it tries to find a valid pumping division pd such that

pumpValidPumpingDivision(pd , 1) = pt .

It works as follows. First, the leftmost, maximum length path pat through pt
is found. If this path points to %, then an error message is issued. Otherwise,
findValidPumpingDivision generates the following list of variables paired with
prefixes of pat :

• the root label of the subtree pointed to by the path consisting of all but
the last element of pat , paired with that path;

• the root label of the subtree pointed to by the path consisting of all but
the last two elements of pat , paired with that path;

• . . . ;

• the root label of the subtree pointed to by the path consisting of the first
element of pat , paired with that path; and

• the root label of the subtree pointed to by [], paired with [].

(Of course, the left-hand side of the last of these pairs is the root label of pt .)
As it works through these pairs, it looks for the first repetition of variables. If
there is no such repetition, it issues an error message. Otherwise, suppose that:

• q was the first repeated variable;

• pat1 was the path paired with q at the point of the first repetition; and

• pat ′ was the path paired with q when it was first seen.

Now, it lets:

• pat2 be the result of dropping pat1 from the beginning of pat ′;

• pt1 be update(pt , pat 1, q);

• pt′ be the subtree of pt pointed to by pat 1;

4.10 The Pumping Lemma for Context-free Languages 295

• pt2 be update(pt ′, pat2, q);

• pt3 be the subtree of pt ′ pointed to by pat2; and

• pd = ((pt1, pat1), (pt2, pat 2), pt3).

If pd is a valid pumping division (only the last four conditions of the definition
of validity remain to be checked), it is returned by findValidPumpingDivision.
Otherwise, an error message is issued.

For example, suppose that gram is bound to the grammar

A→% | 0BA | 1CA,

B→ 1 | 0BB,

C→ 0 | 1CC.

Then we can proceed as follows:

- val pt = Gram.parseAlphabet gram (Str.input "");

@ 1110010010

@ .

val pt = - : pt

- PT.output("", pt);

A

(1, C(1, C(1, C(0), C(0)), C(1, C(0), C(0))),

A(1, C(0), A(%)))

val it = () : unit

- val pd = PT.findValidPumpingDivision pt;

val pd = ((-,[2,2]),(-,[2]),-) : PT.pumping_division

- val ((pt1, pat1), (pt2, pat2), pt3) = pd;

val pt1 = - : pt

val pat1 = [2,2] : int list

val pt2 = - : pt

val pat2 = [2] : int list

val pt3 = - : pt

- PT.output("", pt1);

A(1, C(1, C, C(1, C(0), C(0))), A(1, C(0), A(%)))

val it = () : unit

- PT.output("", pt2);

C(1, C, C(0))

val it = () : unit

- PT.output("", pt3);

C(0)

val it = () : unit

- val (u, v, w, x, y) = PT.strsOfValidPumpingDivision pd;

val u = [-,-] : str

val v = [-] : str

val w = [-] : str

val x = [-] : str

296 Context-free Languages

val y = [-,-,-,-,-] : str

- (Str.toString u, Str.toString v, Str.toString w,

= Str.toString x, Str.toString y);

val it = ("11","1","0","0","10010")

: string * string * string * string * string

- val pt’ = PT.pumpValidPumpingDivision(pd, 2);

val pt’ = - : pt

- PT.output("", pt’);

A

(1, C(1, C(1, C(1, C(0), C(0)), C(0)), C(1, C(0), C(0))),

A(1, C(0), A(%)))

val it = () : unit

- Str.output("", PT.yield pt’);

111100010010

val it = () : unit

4.10.3 Consequences of Pumping Lemma

We are now in a position to show that the context-free languages are not closed
under either intersection or set difference. Suppose

L = { 0n1n2n | n ∈ N },

A = { 0n1n2m | n,m ∈ N }, and

B = { 0n1m2m | n,m ∈ N }.

As we proved above, L is not context-free. In contrast, it’s easy to find grammars
generating A and B, showing that A and B are context-free. But A ∩ B = L,
and thus we have a counterexample to the context-free languages being closed
under intersection.

Now, we have that {0, 1, 2}∗ − A context-free, since it is the union of the
context-free languages

{0, 1, 2}∗ − {0}∗{1}∗{2}∗

and

{ 0n11n22m | n1, n2,m ∈ N and n1 6= n2 },

(the first of these languages is regular), and the context-free languages are closed
under union. Similarly, we have that {0, 1, 2}∗ −B is context-free.

Let

C = ({0, 1, 2}∗ −A) ∪ ({0, 1, 2}∗ −B).

Thus C is a context-free subset of {0, 1, 2}∗. Since A,B ⊆ {0, 1, 2}∗ , it is easy
to show that

A ∩B = {0, 1, 2}∗ − (({0, 1, 2}∗ −A) ∪ ({0, 1, 2}∗ −B))

= {0, 1, 2}∗ − C.

4.10 The Pumping Lemma for Context-free Languages 297

Thus

{0, 1, 2}∗ − C = A ∩B = L

is not context-free, giving us a counterexample to the context-free languages
being closed under set difference.

4.10.4 Notes

Apart from the subsection on Forlan’s support for experimenting with the pump-
ing lemma, the material in this section is completely standard.

Chapter 5

Recursive and Recursively
Enumerable Languages

In this chapter, we will study a universal programming language, which we will
use to define the recursive and recursively enumerable languages. We will see
that the context-free languages are a proper subset of the recursive languages,
that the recursive languages are a proper subset of the recursively enumerable
languages, and that there are languages that are not recursively enumerable.
Furthermore, we will learn that there are problems, like the halting problem (the
problem of determining whether a program halts when run on a given input), or
the problem of determining if two grammars generate the same language, that
can’t be solved by programs.

Traditionally, one uses Turing machines for the universal programming lan-
guage. Turing machines are finite automata that manipulate infinite tapes.
Although Turing machines are very appealing in some ways, they are rather
far-removed from conventional programming languages, and are hard to build
and reason about.

Instead, we will work with a simple functional programming language. This
language will have the same power as Turing machines, but will be much easier
to program in and reason about than Turing machines. An “implementation” of
our language (or of Turing machines) on a real computer will run out of resources
on some programs.

5.1 Programs and Recursive and RE Languages

In this section, we introduce our functional programming language, and then
use it to define the recursive and recursively enumerable languages.

299

300 Recursive and Recursively Enumerable Languages

5.1.1 Programs

Our programming language is statically scoped, i.e., nonlocal names used by
functions are interpreted relative to the environments in which they are declared.
It is dynamically typed, in that all type checking happens at runtime. It is
deterministic, in the sense that every evaluation of a program has the same
result. It is functional, not imperative (assignment-oriented), i.e., there is no
mutable state. And it is eager, not lazy, in the sense that a function’s argument
must be completely evaluated before the function is called.

To say what programs are, we need some preliminary definitions:

• A variable is a nonempty string of letters (a, b, . . . , z,A,B, . . . ,Z) and digits
(0, 1, . . . , 9) that begins with a letter. We write Var for the set of all
variables, and we order variables using the restriction of our total ordering
on strings to Var.

• A constant is one of the strings true, false and nil, and we write Const for
the set of all constants.

• A program operator is one of the strings isNil, isInt, isNeg, isZero, isPos,
isSym, isStr, isPair, isLam, plus, minus, compare, fst, snd, consSym,
deconsSym, symListToStr and strToSymList, and we write Oper for the
set of all operators.

Programs are trees (see Section 1.3) whose labels come from the setProgLab
of program labels, which consists of the union of:

(variable) {var(v) | v ∈ Var };

(constant) { const(con) | con ∈ Const };

(integer) { int(n) | n ∈ Z };

(symbol) { sym(a) | a ∈ Sym };

(string) { str(x) | x ∈ Str };

(pair) {pair};

(calculation) { calc(oper) | oper ∈ Oper };

(conditional) {cond};

(function application) {app};

(anonymous function) { lam(v) | v ∈ Var } (lam stands for “lambda”,
recalling the notation for anonymous functions in the λ-calculus);

(simple let) { letSimp(v) | v ∈ Var }; and

5.1 Programs and Recursive and RE Languages 301

(recursive let) { letRec(v1, v2) | v1, v2 ∈ Var }.

Let the set Prog of programs be the least subset of TreeProgLab such
that:

(variable) for all v ∈ Var,
var(v) ∈ Prog

(a leaf);

(constant) for all con ∈ Const,

const(con) ∈ Prog

(a leaf);

(integer) for all n ∈ Z,
int(n) ∈ Prog

(a leaf);

(symbol) for all a ∈ Sym,

sym(a) ∈ Prog

(a leaf);

(string) for all x ∈ Str,
str(x) ∈ Prog

(a leaf);

(pair) for all pr1, pr 2 ∈ Prog,

pair(pr 1, pr 2) ∈ Prog

(a node labeled pair with two children);

(calculation) for all oper ∈ Oper and pr ∈ Prog,

calc(oper)(pr) ∈ Prog

(a node labeled calc(oper), with one child; we abbreviate it as
calc(oper , pr));

(conditional) for all pr1, pr 2, pr 3 ∈ Prog,

cond(pr 1, pr 2, pr 3) ∈ Prog

(a node labeled cond, with three children);

302 Recursive and Recursively Enumerable Languages

(function application) for all pr1, pr 2 ∈ Prog,

app(pr 1, pr 2) ∈ Prog

(a node labeled app, with two children);

(anonymous function) for all v ∈ Var and pr ∈ Prog,

lam(v)(pr) ∈ Prog

(a node labeled lam(v), with one child; we abbreviate it as lam(v, pr));

(simple let) for all v ∈ Var and pr 1, pr 2 ∈ Prog,

letSimp(v)(pr 1, pr 2) ∈ Prog

(a node labeled letSimp(v), with two children; we abbreviate it as
letSimp(v, pr 1, pr 2)); and

(recursive let) for all v1, v2 ∈ Var and pr 1, pr 2 ∈ Prog,

letRec(v1, v2)(pr 1, pr 2) ∈ Prog

(a node labeled letRec(v1, v2), with two children; we abbreviate it as
letRec(v1, v2, pr 1, pr 2)).

Prog is countably infinite.
Informally:

• A pair pair(pr 1, pr 2) is evaluated by evaluating pr 1 and then pr2.

• A calculation calc(oper , pr) applies the operator oper to the result of
evaluating pr .

• A conditional cond(pr 1, pr 2, pr 3) first evaluates pr 1 to a boolean constant;
if this constant is const(true), it evaluates pr 2; and if this constant is
const(false), it evaluates pr3.

• A function application app(pr 1, pr 2) evaluates pr 1 to an anonymous func-
tion, and then applies this function to the result of evaluating pr 2.

• If an anonymous function lam(v, pr) is applied to a fully evaluated argu-
ment, then pr is evaluated in an environment in which v is bound to the
argument.

• A simple let letSimp(v, pr 1, pr 2) is evaluated by evaluating pr2 in an
environment in which v is bound to the result of evaluating pr 1.

5.1 Programs and Recursive and RE Languages 303

• A recursive let letRec(v1, v2, pr 1, pr 2) is evaluated by evaluating pr2 in
an envionment in which v1 has been recursively declared by:

v1 = lam(v2, pr 1).

Lists are represented by pairs:

pair(pr 1,pair(pr 2, . . .pair(prn, const(nil))))

represents the n-length list whose elements are pr1, pr 2, . . . , prn (so const(nil)
represents the empty list).

In the Forlan syntax for programs, the elements of Prog are written using
our standard syntax for trees, except that:

• The integer arguments to int are written as base-10 numerals, preceded by
~ in the case of negative integers. The integer 0 is written as 0; extra zeros
aren’t used/allowed. Positive integers are written without leading zeros.
And negative integers are written written as ~ followed by a nonempty
string of digits with no leading zeros.

• The symbol arguments to sym, and the string arguments to str are written
in abbreviated form, as usual.

• All nodes are abbreviated. E.g.,

letSimp(x)(int(−12),var(x))

is written as

letSimp(x, int(~12), var(x))

Programs can also be described as strings over the alphabet consisting of the
letters and digits, plus the elements of

{〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.

A program pr is described the string formed by writing pr in Forlan’s syntax,
using no whitespace, and then performing the following substitutions:

• , is replaced by 〈comma〉;

• % is replaced by 〈perc〉;

• ~ is replaced by 〈tilde〉;

• (is replaced by 〈openPar〉;

•) is replaced by 〈closPar〉;

304 Recursive and Recursively Enumerable Languages

• < is replaced by 〈less〉; and

• > is replaced by 〈great〉.

For example, the program

calc(plus,pair(int(4), int(−5)))

is described by the string

calc〈openPar〉plus〈comma〉pair〈openPar〉int〈openPar〉4〈closPar〉

〈comma〉int〈openPar〉〈tilde〉5〈closPar〉〈closPar〉〈closPar〉.

Every program is described by a unique string, and every string describes at most
one program. (E.g., the string 〈comma〉〈closPar〉 doesn’t describe a program.)

The Forlan module Var defines the abstract type (in the top-level environ-
ment) var of variables, along with functions, including:

val input : string -> var

val output : string * var -> unit

val compare : var * var -> order

val equal : var * var -> bool

The function compare implements our total ordering on variables, and equal

tests whether two variables are equal.
The module VarSet defines various functions for processing finite sets of

variables (elements of type var set),

val input : string -> var set

val output : string * var set -> unit

val fromList : var list -> var set

val memb : var * var set -> bool

val subset : var set * var set -> bool

val equal : var set * var set -> bool

val union : var set * var set -> var set

val inter : var set * var set -> var set

val minus : var set * var set -> var set

val genUnion : var set list -> var set

val genInter : var set list -> var set

The total ordering associated with sets of variables is our total ordering on
variables. Sets of variables are expressed in Forlan’s syntax as sequences of
variables, separated by commas.

The function fromList returns a set with the same elements of the list of
variables it is called with. The function memb tests whether a variable is a mem-
ber (element) of a set of variables, subset tests whether a first set of variables
is a subset of a second one, and equal tests whether two sets of variables are
equal. The functions union, inter and minus compute the union, intersection

5.1 Programs and Recursive and RE Languages 305

and difference of two sets of variables. The function genUnion computes the
generalized intersection of a list of sets of variables xss , returning the set of all
variables appearing in at least one element of xss . And, the function genInter

computes the generalized intersection of a nonempty list of sets of variables xss ,
returning the set of all variables appearing in all elements of xss .

The Forlan module Prog defines the abstract type (in the top-level environ-
ment) prog of programs, along with a number of types and functions, including:

datatype const = True | False | Nil

datatype oper = IsNil | IsInt | IsNeg | IsZero | IsPos | IsSym

| IsStr | IsPair | IsLam | Plus | Minus | Compare

| Fst | Snd | ConsSym | DeconsSym | SymListToStr

| StrToSymList

val var : Var.var -> prog

val const : const -> prog

val int : IntInf.int -> prog

val sym : sym -> prog

val str : str -> prog

val pair : prog * prog -> prog

val calc : oper * prog -> prog

val cond : prog * prog * prog -> prog

val app : prog * prog -> prog

val lam : var * prog -> prog

val letSimp : var * prog * prog -> prog

val letRec : var * var * prog * prog -> prog

val input : string -> prog

val output : string * prog -> unit

val equal : prog * prog -> bool

val height : prog -> int

val size : prog -> int

val fromStr : str -> prog

val toStr : prog -> str

const and oper are the datatypes of program constants and operators. The
function var takes in a program variable v, and returns the program var(v).
The function const takes in a program constant con, and returns the program
const(con). The function int takes in a (infinite precision) integer n, and
returns the program int(n). The function sym takes in a symbol a, and returns
the program sym(a). The function str takes in a string x, and returns the
program str(x). The function pair takes in a pair (pr 1, pr 2) of programs, and
returns the program pair(pr 1, pr 2). The function calc takes in a pair (oper , pr)
of a program operator and a program, and returns the program calc(oper , pr).
The function cond takes in a triple (pr 1, pr 2, pr 3) of programs, and returns
the program cond(pr 1, pr 2, pr 3). The function app takes in a pair (pr 1, pr 2)
of programs, and returns the program app(pr 1, pr 2). The function lam takes
in a pair (v, pr) of a variable v and a program pr , and returns the program
lam(v, pr). The function letSimp takes in a triple (v, pr 1, pr 2) of a variable

306 Recursive and Recursively Enumerable Languages

v and programs pr 1 and pr2, and returns the program letSimp(v, pr 1, pr 2).
The function letRec takes in a quadruple (v1, v2, pr1, pr 2) of variables v1 and
v2 and programs pr1 and pr2, and returns the program letRec(v1, v2, pr 1, pr 2).
The function equal tests two programs for equality. The functions height and
and size return the height and size, respectively, of a program. The function
fromStr issues an error message if its argument isn’t a string over the alphabet
(given above) for describing programs, or if it is a string over this alphabet, but
doesn’t describe a program; otherwise it returns the unique program described
by its argument. And the function toStr converts a program to the unique
string describing it.

For example, we can proceed as follows:

- val pr = Prog.input "";

@ calc(plus, pair(int(~6), int(5)))

@ .

val pr = - : prog

- Prog.height pr;

val it = 2 : int

- Prog.size pr;

val it = 4 : int

- val x = Prog.toStr pr;

val x =

[-,-]

: str

- Str.output("", x);

calc<openPar>plus<comma>pair<openPar>int<openPar><tilde>6<closPar>

<comma>int<openPar>5<closPar><closPar><closPar>

val it = () : unit

- val pr’ = Prog.fromStr x;

val pr’ = - : prog

- Prog.equal(pr’, pr);

val it = true : bool

The Java program JForlan, can be used to view and edit program trees. It
can be invoked directly, or run via Forlan. See the Forlan website for more
information.

5.1.2 Program Meaning

Variables are bound (declared) in programs, as follows:

• lam(v, pr) binds v in pr ;

• letSimp(v, pr 1, pr 2) binds v in pr 2; and

• letSimp(v1, v2, pr 1, pr 2) binds v1 in pr 1 and pr 2, and binds v2 in pr 1.

We say that an occurrence of a variable in a program is free iff it isn’t bound.

5.1 Programs and Recursive and RE Languages 307

Formally, we define a function free ∈ Prog → {X ⊆ Var | X is finite } by
structural recursion:

• free(var(v)) = ∅, for all v ∈ Var;

• free(const(con)) = ∅, for all con ∈ Const;

• free(int(n)) = ∅, for all n ∈ Z;

• free(sym(a)) = ∅, for all a ∈ Sym;

• free(str(x)) = ∅, for all x ∈ Str;

• free(pair(pr 1, pr 2)) = free pr 1 ∪ free pr 2, for all pr 1, pr 2 ∈ Prog;

• free(calc(oper , pr)) = free pr , for all oper ∈ Oper and pr ∈ Prog;

• free(cond(pr 1, pr 2, pr 3)) = free pr 1 ∪ free pr 2 ∪ free pr3, for all
pr 1, pr 2, pr 3 ∈ Prog;

• free(app(pr 1, pr 2)) = free pr1 ∪ free pr2, for all pr1, pr 2 ∈ Prog;

• free(lam(v, pr)) = free pr − {v}, for all v ∈ Var and pr ∈ Prog;

• free(letSimp(v, pr 1, pr 2)) = free pr 1 ∪ (free pr 2 − {v}), for all v ∈ Var
and pr 1, pr 2 ∈ Prog; and

• free(letRec(v1, v2, pr 1, pr 2)) = (free pr1 − {v1, v2}) ∪ (free pr2 − {v1}),
for all v1, v2 ∈ Var and pr 1, pr 2 ∈ Prog.

If v ∈ Var and pr ∈ Prog, we say that v is free in pr iff v ∈ free pr.
A program pr is closed iff it has no free variables, i.e., free pr = ∅. We write

CP for the set of all closed programs.
The module Prog also defines the following type and functions:

val free : prog -> var set

type cp

val toClosed : prog -> cp

val fromClosed : cp -> prog

The function free returns the free variables of its argument. The type cp (in the
top-level environment) is the type of closed programs. The function toClosed

issues an error message if its argument isn’t closed; otherwise, it returns its
argument. And the function fromClosed simply returns its argument.

For example, we can proceed as follows:

- val pr1 = Prog.input "";

@ lam(x, letSimp(y, var(x), app(var(z), var(w))))

@ .

val pr1 = - : prog

308 Recursive and Recursively Enumerable Languages

- VarSet.output("", Prog.free pr1);

w, z

val it = () : unit

- val pr2 = Prog.input "";

@ letRec

@ (x, y,

@ app(var(x), app(var(y), var(z))),

@ app(var(x), var(w)))

@ .

val pr2 = - : prog

- VarSet.output("", Prog.free pr2);

w, z

val it = () : unit

- Prog.toClosed pr2;

program has free variables: "w, z"

uncaught exception Error

- val pr’ = Prog.input "";

@ lam(x, letSimp(y, var(x), app(var(x), var(y))))

@ .

val pr’ = - : prog

- val cp = Prog.toClosed pr’;

val cp = - : cp

- val pr’’ = Prog.fromClosed cp;

val pr’’ = - : prog

- Prog.equal(pr’’, pr’);

val it = true : bool

Next, we define a function subst ∈ CP×Var×Prog→Prog for substituting
a closed program for all of the free occurrences of a variable in a program. subst
is defined by structural recursion on its third argument, as follows:

• for all pr ′ ∈ Prog, v′ ∈ Var and v ∈ Var,

subst(pr ′, v′,var(v)) =

{

pr ′, if v′ = v,
var(v), if v′ 6= v;

• for all pr ′ ∈ CP, v′ ∈ Var and con ∈ Const,

subst(pr ′, v′, const(con)) = const(con);

• for all pr ′ ∈ CP, v′ ∈ Var and n ∈ Z,

subst(pr ′, v′, int(n)) = int(n);

• for all pr ′ ∈ CP, v′ ∈ Var and a ∈ Sym,

subst(pr ′, v′, sym(a)) = sym(a);

5.1 Programs and Recursive and RE Languages 309

• for all pr ′ ∈ CP, v′ ∈ Var and x ∈ Str,

subst(pr ′, v′, str(x)) = str(x);

• for all pr ′ ∈ CP, v′ ∈ Var and pr 1, pr 2 ∈ Prog,

subst(pr ′, v′,pair(pr 1, pr 2))

= pair(subst(pr ′, v′, pr 1), subst(pr
′, v′, pr 2));

• for all pr ′ ∈ CP, v′ ∈ Var, oper ∈ Oper and pr ∈ Prog,

subst(pr ′, v′, calc(oper , pr)) = calc(oper , subst(pr ′, v′, pr));

• for all pr ′ ∈ CP, v′ ∈ Var and pr 1, pr 2, pr 3 ∈ Prog,

subst(pr ′, v′, cond(pr 1, pr2, pr 3))

= cond(subst(pr ′, v′, pr 1), subst(pr
′, v′, pr 2), subst(pr

′, v′, pr 3));

• for all pr ′ ∈ CP, v′ ∈ Var and pr 1, pr 2 ∈ Prog,

subst(pr ′, v′, app(pr 1, pr 2))

= app(subst(pr ′, v′, pr 1), subst(pr
′, v′, pr 2));

• for all pr ′ ∈ CP, v′ ∈ Var, v ∈ Var and pr ∈ Prog,

subst(pr ′, v′, lam(v, pr)) =

{

lam(v, pr), if v′ = v,
lam(v, subst(pr ′, v′, pr)), if v′ 6= v;

• for all pr ′ ∈ CP, v′ ∈ Var, v ∈ Var and pr 1, pr 2 ∈ Prog,

subst(pr ′, v′, letSimp(v, pr 1, pr 2))

=

{

letSimp(v, subst(pr ′, v′, pr 1), pr 2), if v′ = v,
letSimp(v, subst(pr ′, v′, pr 1), subst(pr

′, v′, pr 2)), if v′ 6= v;

• for all pr ′ ∈ CP, v′ ∈ Var, v1, v2 ∈ Var and pr 1, pr 2 ∈ Prog,

subst(pr ′, v′, letRec(v1, v2, pr 1, pr 2))

=

letRec(v1, v2, pr 1, pr 2),
if v′ = v1,

letRec(v1, v2, pr 1, subst(pr
′, v′, pr 2)),

if v′ 6= v1 and v′ = v2,
letRec(v1, v2, subst(pr

′, v′, pr 1), subst(pr
′, v′, pr 2)),

if v′ 6= v1 and v′ 6= v2.

310 Recursive and Recursively Enumerable Languages

The module Prog also defines the function

val subst : cp * var * prog -> prog

corresponding to subst. Here are some examples of its use:

- val cp = Prog.toClosed(Prog.fromString "const(true)");

val cp = - : cp

- val pr1 = Prog.input "";

@ cond(var(x), var(y), int(4))

@ .

val pr1 = - : prog

- val pr1’ = Prog.subst(cp, Var.fromString "y", pr1);

val pr1’ = - : prog

- Prog.output("", pr1’);

cond(var(x), const(true), int(4))

val it = () : unit

- val pr2 = Prog.input "";

@ letSimp(x, var(x), pair(var(x), var(y)))

@ .

val pr2 = - : prog

- val pr2’ = Prog.subst(cp, Var.fromString "x", pr2);

val pr2’ = - : prog

- Prog.output("", pr2’);

letSimp(x, const(true), pair(var(x), var(y)))

val it = () : unit

- val pr3 = Prog.input "";

@ letSimp(x, var(y), pair(var(x), var(y)))

@ .

val pr3 = - : prog

- val pr3’ = Prog.subst(cp, Var.fromString "y", pr3);

val pr3’ = - : prog

- Prog.output("", pr3’);

letSimp(x, const(true), pair(var(x), const(true)))

val it = () : unit

- val pr4 = Prog.input "";

@ letRec

@ (x, y,

@ app(var(x), app(var(y), var(z))),

@ app(var(x), app(var(y), var(z))))

@ .

val pr4 = - : prog

- val pr4’ = Prog.subst(cp, Var.fromString "x", pr4);

val pr4’ = - : prog

- Prog.output("", pr4’);

letRec(x, y, app(var(x), app(var(y), var(z))),

app(var(x), app(var(y), var(z))))

val it = () : unit

- val pr4’’ = Prog.subst(cp, Var.fromString "y", pr4);

val pr4’’ = - : prog

5.1 Programs and Recursive and RE Languages 311

- Prog.output("", pr4’’);

letRec(x, y, app(var(x), app(var(y), var(z))),

app(var(x), app(const(true), var(z))))

val it = () : unit

- val pr4’’’ = Prog.subst(cp, Var.fromString "z", pr4);

val pr4’’’ = - : prog

- Prog.output("", pr4’’’);

letRec(x, y, app(var(x), app(var(y), const(true))),

app(var(x), app(var(y), const(true))))

val it = () : unit

Next, we single out certain closed programs as completely evaluated, or val-
ues. Let the set Val of values be the least subset of CP such that:

(constant) for all con ∈ Const, const(con) ∈ Val;

(integer) for all n ∈ Z, int(n) ∈ Val;

(symbol) for all a ∈ Sym, sym(a) ∈ Val;

(string) for all x ∈ Str, str(x) ∈ Val;

(pair) for all pr1, pr 2 ∈ Val, pair(pr 1, pr 2) ∈ Val; and

(anonymous function) for all v ∈ Var and pr ∈ Prog, if free pr ⊆ {v},
then lam(v, pr) ∈ Val.

The module Prog also defines a function

val isValue : cp -> bool

that tests whether a closed program is a value. Here are some examples of its
use:

- val pr1 = Prog.input "";

@ pair(int(4), pair(lam(x, var(x)), const(true)))

@ .

val pr1 = - : prog

- Prog.isValue(Prog.toClosed pr1);

val it = true : bool

- val pr2 = Prog.input "";

@ app(lam(x, var(x)), lam(x, var(x)))

@ .

val pr2 = - : prog

- Prog.isValue(Prog.toClosed pr2);

val it = false : bool

To explain the meaning of program operators, we define a function
calculate ∈ Oper × Val → OptionVal, which returns none to indicate an
error, and returns some pr when the application of the operator produced the
value pr . We proceed as follows, using a case analysis on the form of the argu-
ment value:

312 Recursive and Recursively Enumerable Languages

• ((isNil, const(nil))) Return some(const(true)).

• ((isNil, pr), where pr 6∈ {const(nil)}) Return some(const(false)).

• ((isInt, int(n)), where n ∈ Z) Return some(const(true)).

• ((isInt, pr), where pr 6∈ { int(n) | n ∈ Z }) Return some(const(false)).

• ((isNeg, int(n)), where n ∈ Z) Return: some(const(true)), if n < 0; and
some(const(false)), if n ≥ 0.

• ((isZero, int(n)), where n ∈ Z) Return: some(const(true)), if n = 0; and
some(const(false)), if n 6= 0.

• ((isPos, int(n)), where n ∈ Z) Return: some(const(true)), if n > 0; and
some(const(false)), if n ≤ 0.

• ((isSym, sym(a)), where a ∈ Sym) Return some(const(true)).

• ((isSym, pr), where pr 6∈ { sym(a) | a ∈ Sym }) Return
some(const(false)).

• ((isStr, str(x)), where x ∈ Str) Return some(const(true)).

• ((isStr, pr), where pr 6∈ { str(x) | x ∈ Str }) Return some(const(false)).

• ((isPair,pair(pr 1, pr 2)), where pr 1, pr 2 ∈ Val) Return some(const(true)).

• ((isPair, pr), where pr 6∈ {pair(pr 1, pr 2) | pr 1, pr 2 ∈ Val }) Return
some(const(false)).

• ((isLam, lam(v, pr)), where v ∈ Var, pr ∈ Prog and free pr ⊆ {v})
Return some(const(true)).

• ((isLam, pr), where pr 6∈ { lam(v, pr) | v ∈ Var and pr ∈ Prog and
free pr ⊆ {v} }) Return some(const(false)).

• ((plus,pair(int(m), int(n))), where m,n ∈ Z) Return some(int(m+ n)).

• ((minus,pair(int(m), int(n))), wherem,n ∈ Z) Return some(int(m−n)).

• ((compare,pair(int(m), int(n))), where m,n ∈ Z) Return: some
(int(−1)), if m < n; some(int(0)), if m = n; and some(int(1)), if m > n.

• ((compare,pair(sym(a), sym(b))), where a, b ∈ Sym) Return: some
(int(−1)), if a < b; some(int(0)), if a = b; and some(int(1)), if a > b.

• ((compare,pair(str(x), str(y))), where x, y ∈ Str) Return: some
(int(−1)), if x < y; some(int(0)), if x = y; and some(int(1)), if x > y.

5.1 Programs and Recursive and RE Languages 313

• ((fst,pair(pr 1, pr 2)), where pr1, pr 2 ∈ Val) Return some pr 1.

• ((snd,pair(pr 1, pr 2)), where pr 1, pr 2 ∈ Val) Return some pr2.

• ((consSym, int(n)), where n ∈ [1 : 62]) Return some(sym(a)), where a is
the nth (counting from 1) element of the following sequence of symbols:
0, . . . , 9, a, . . . , z,A, . . . ,Z.

• ((consSym,pair(pr1, . . . pair(prn, const(nil)) . . .)), where n ∈ N and
pr 1, . . . , prn ∈ {const(nil)} ∪ { sym(a) | a ∈ Sym }) Return

some(sym([〈] @ f pr1 @ · · · @ f prn @ [〉])),

where f is the function from {const(nil)} ∪ { sym(a) | a ∈ Sym } to
{[,]} ∪ Sym defined by:

f(const(nil)) = [,],

f(sym(a)) = a, for all a ∈ Sym.

(Remember that symbols are lists; see Section 2.1. If n = 0, then
some(sym(〈〉)) is returned.)

• ((deconsSym, sym(a)), where a ∈ {0, . . . , 9, a, . . . , z,A, . . . ,Z}) Return
some(int(n)), where n is the position (counting from 1) of a in the fol-
lowing sequence of symbols: 0, . . . , 9, a, . . . , z,A, . . . ,Z.

• ((deconsSym, sym([〈]@x1@ · · ·@xn@[〉])), where n ∈ N and x1, . . . , xn ∈
{[,]} ∪ Sym) Return

some(pair(f x1, . . . pair(f xn, const(nil)) . . .)),

where f is the function from {[,]}∪Sym to {const(nil)}∪{ sym(a) | a ∈
Sym } defined by

f [,] = const(nil),

f a = sym(a), for all a ∈ Sym.

(If n = 0, then some(const(nil)) is returned.)

• ((symListToStr, const(nil))) Return some(str(%)).

• ((symListToStr,pair(sym(a1), . . . pair(sym(an), const(nil)) . . .)), where
n ∈ N− {0} and a1, . . . , an ∈ Sym) Return some(str(a1 · · · an)).

• ((strToSymList, str(%))) Return some(const(nil)).

• ((strToSymList, str(a1 · · · an)), where n ∈ N − {0} and a1, . . . , an ∈ Sym)
Return

some(pair(sym(a1), . . . pair(sym(an), const(nil)) . . .)).

314 Recursive and Recursively Enumerable Languages

• (otherwise) Return none.

Now we are able to say how closed programs evaluate. Let

Step = {value, error} ∪ {next pr | pr ∈ CP }.

We define a function step ∈ CP→ Step using a case analysis on the form of
its argument, pr . It returns: value, if pr is a value; error, if pr isn’t a value,
but can’t be run a single step; and next pr ′, for pr ′ ∈ CP, if pr ′ is the result of
running pr for one step. We proceed as follows:

• (const(con), where con ∈ Const) Return value.

• (int(n), where n ∈ Z) Return value.

• (sym(a), where a ∈ Sym) Return value.

• (str(x), where x ∈ Str) Return value.

• (pair(pr 1, pr 2), where pr 1, pr 2 ∈ CP) Use case analysis on the form of
step pr1:

– (error) Return error.

– (value) Use case analysis on the form of step pr2:

∗ (error) Return error.

∗ (value) Return value.

∗ (next pr ′2, where pr ′2 ∈ CP) Return pair(pr1, pr
′
2).

– (next pr ′1, where pr ′1 ∈ CP) Return next(pair(pr ′1, pr 2)).

• (calc(oper , pr), where oper ∈ Oper and pr ∈ CP) Use case analysis on
the form of step pr :

– (error) Return error.

– (value) Use case analysis on the form of calculate(oper , pr):

∗ (none) Return error.

∗ (some pr ′, where pr ′ ∈ Val) Return next pr ′.

– (next pr ′, where pr ′ ∈ CP) Return next(calc(oper , pr ′)).

• (cond(pr1, pr 2, pr 3), where pr1, pr 2, pr 3 ∈ CP) Use case analysis on the
form of step pr1:

– (error) Return error.

– (value) Use case analysis on the form of pr 1 (which is a value):

∗ (const(true)) Return next pr 2.

∗ (const(false)) Return next pr 3.

5.1 Programs and Recursive and RE Languages 315

∗ (anything else) Return error.

– (next pr ′1, where pr ′1 ∈ CP) Return next(cond(pr ′1, pr 2, pr 3)).

• (lam(v, pr), where v ∈ Var, pr ∈ Prog and free pr ⊆ {v}) Return
value.

• (letSimp(v, pr 1, pr2), where v ∈ Var, pr 1 ∈ CP and free pr 2 ⊆ {v})
Use case analysis on the form of step pr1:

– (error) Return error.

– (value) Return next(subst(pr 1, v, pr 2)).

– (next pr ′1) Return letSimp(v, pr ′1, pr 2).

• (letRec(v1, v2, pr 1, pr 2), where v1, v2 ∈ Var, pr1, pr 2 ∈ Prog, free pr1 ⊆
{v1, v2} and free pr2 ⊆ {v1}) Let pr ∈ CP be

subst(letRec(v1, v2, pr 1,var(v1)), v1, lam(v2, pr 1)).

Return next(subst(pr , v1, pr 2)).

The module Prog defines the following datatype and function, which corre-
spond to the set Step and function step:

datatype step = Value

| Error

| Next of cp

val step : cp -> step

For example, here is an example of how a nonterminating recursive function can
be evaluated:

- val pr = Prog.input "";

@ letRec(x, y,

@ app(var(x), calc(plus, pair(var(y), int(1)))),

@ app(var(x), int(0)))

@ .

val pr = - : prog

- val pr1 = Prog.toClosed pr;

val pr1 = - : cp

- Prog.step pr1;

val it = Next - : Prog.step

- val Prog.Next pr2 = it;

val pr2 = - : cp

- Prog.output("", Prog.fromClosed pr2);

app(lam(y,

app(letRec(x, y,

app(var(x), calc(plus, pair(var(y), int(1)))),

var(x)),

316 Recursive and Recursively Enumerable Languages

calc(plus, pair(var(y), int(1))))),

int(0))

val it = () : unit

- Prog.step pr2;

val it = Next - : Prog.step

- val Prog.Next pr3 = it;

val pr3 = - : cp

- Prog.output("", Prog.fromClosed pr3);

app(letRec(x, y, app(var(x), calc(plus, pair(var(y), int(1)))),

var(x)),

calc(plus, pair(int(0), int(1))))

val it = () : unit

- Prog.step pr3;

val it = Next - : Prog.step

- val Prog.Next pr4 = it;

val pr4 = - : cp

- Prog.output("", Prog.fromClosed pr4);

app(lam(y,

app(letRec(x, y,

app(var(x), calc(plus, pair(var(y), int(1)))),

var(x)),

calc(plus, pair(var(y), int(1))))),

calc(plus, pair(int(0), int(1))))

val it = () : unit

- Prog.step pr4;

val it = Next - : Prog.step

- val Prog.Next pr5 = it;

val pr5 = - : cp

- Prog.output("", Prog.fromClosed pr5);

app(lam(y,

app(letRec(x, y,

app(var(x), calc(plus, pair(var(y), int(1)))),

var(x)),

calc(plus, pair(var(y), int(1))))),

int(1))

val it = () : unit

Proposition 5.1.1
For all pr ∈ CP, step pr = value iff pr ∈ Val.

Let

Run = {ans pr | pr ∈ Val }

∪ { fail pr | pr ∈ CP }

∪ { intermed pr | pr ∈ CP },

and define a function run ∈ CP × N → Run by structural recursion on its
second argument. Given pr ∈ CP and n ∈ N, run(pr , n) is computed using a
case analysis of the form of n:

5.1 Programs and Recursive and RE Languages 317

• (0) Return intermed pr .

• (n+1, where n ∈ N) We proceed by a case analysis of the form of step pr :

– (error) Return fail pr .

– (value) Return ans pr .

– (next pr ′, where pr ′ ∈ CP) Return run(pr ′, n).

The module Prog defines the following datatype and functions:

datatype run = Ans of cp

| Fail of cp

| Intermed of cp

val run : cp * int -> run

val evaluate : prog * int -> unit

The function run corresponds to run, except that it issues an error message
when its second argument is negative. The function evaluate issues an error
message if its first argument, pr , isn’t closed, or its second argument, n, is
negative. Otherwise, evaluate explains what results from running

run(Prog.toClosed pr , n).

Here are some examples of how run can be used:

- val pr = Prog.toClosed(Prog.input "");

@ app(lam(x, calc(plus, pair(var(x), int(3)))),

@ int(4))

@ .

val pr = - : cp

- Prog.run(pr, 0);

val it = Intermed - : Prog.run

- val Prog.Intermed pr’ = it;

val pr’ = - : cp

- Prog.output("", Prog.fromClosed pr’);

app(lam(x, calc(plus, pair(var(x), int(3)))), int(4))

val it = () : unit

- Prog.run(pr, 1);

val it = Intermed - : Prog.run

- val Prog.Intermed pr’ = it;

val pr’ = - : cp

- Prog.output("", Prog.fromClosed pr’);

calc(plus, pair(int(4), int(3)))

val it = () : unit

- Prog.run(pr, 2);

val it = Intermed - : Prog.run

- val Prog.Intermed pr’ = it;

val pr’ = - : cp

- Prog.output("", Prog.fromClosed pr’);

318 Recursive and Recursively Enumerable Languages

int(7)

val it = () : unit

- Prog.run(pr, 3);

val it = Ans - : Prog.run

- val Prog.Ans pr’ = it;

val pr’ = - : cp

- Prog.output("", Prog.fromClosed pr’);

int(7)

val it = () : unit

- val pr = Prog.toClosed(Prog.fromString "calc(plus, int(4))");

val pr = - : cp

- Prog.run(pr, 1);

val it = Fail - : Prog.run

- val Prog.Fail pr’ = it;

val pr’ = - : cp

- Prog.output("", Prog.fromClosed pr’);

calc(plus, int(4))

val it = () : unit

Suppose that the file even-prog contains the following definition of a function
for testing whether a natural number is even:

letRec(even, n,

cond(calc(isZero, var(n)), const(true),

letSimp(m, calc(minus, pair(var(n), int(1))),

cond(calc(isZero, var(m)), const(false),

app(var(even),

calc(minus,

pair(var(m), int(1))))))),

var(even))

Here are some examples of how we can test this function using evaluate:

- val even = Prog.input "even-prog";

val even = - : prog

- fun test(n, m) =

= let val pr = Prog.app(even, Prog.int n)

= in Prog.evaluate(pr, m) end;

val test = fn : IntInf.int * int -> unit

- test(3, 100);

terminated with value "const(false)"

val it = () : unit

- test(4, 100);

terminated with value "const(true)"

val it = () : unit

- test(5, 100);

terminated with value "const(false)"

val it = () : unit

- test(6, 100);

terminated with value "const(true)"

5.1 Programs and Recursive and RE Languages 319

val it = () : unit

And here are some other uses of evaluate:

- val pr1 = Prog.input "";

@ calc(consSym, int(12))

@ .

val pr1 = - : prog

- Prog.evaluate(pr1, 2);

terminated with value "sym(b)"

val it = () : unit

- val pr2 = Prog.input "";

@ calc(consSym,

@ pair(sym(9),

@ pair(const(nil),

@ pair(sym(<hi>), const(nil)))))

@ .

val pr2 = - : prog

- Prog.evaluate(pr2, 2);

terminated with value "sym(<9,<hi>>)"

val it = () : unit

- val pr3 = Prog.input "";

@ calc(deconsSym, sym(c))

@ .

val pr3 = - : prog

- Prog.evaluate(pr3, 2);

terminated with value "int(13)"

val it = () : unit

- val pr4 = Prog.input "";

@ calc(deconsSym, sym(<on,,to>))

@ .

val pr4 = - : prog

- Prog.evaluate(pr4, 2);

terminated with value

"pair(sym(o),

pair(sym(n),

pair(const(nil),

pair(const(nil),

pair(sym(t), pair(sym(o), const(nil)))))))"

val it = () : unit

- val pr5 = Prog.input "";

@ calc(symListToStr,

@ pair(sym(9),

@ pair(sym(<hi>),

@ const(nil))))

@ .

val pr5 = - : prog

- Prog.evaluate(pr5, 2);

terminated with value "str(9<hi>)"

val it = () : unit

320 Recursive and Recursively Enumerable Languages

- val pr6 = Prog.input "";

@ calc(strToSymList, str(ab<hi><>))

@ .

val pr6 = - : prog

- Prog.evaluate(pr6, 2);

terminated with value

"pair(sym(a),

pair(sym(b), pair(sym(<hi>), pair(sym(<>), const(nil)))))"

val it = () : unit

Proposition 5.1.2
1. For all pr ∈ CP, n ∈ N and pr ′ ∈ Val, if run(pr , n) = ans pr ′, then, for

all m ∈ N, if m ≥ n, then run(pr ,m) = ans pr ′.

2. For all pr ∈ CP, n ∈ N and pr ′ ∈ CP, if run(pr , n) = fail pr ′, then, for
all m ∈ N, if m ≥ n, then run(pr ,m) = fail pr ′.

Now we can define the mathematical meaning of closed programs. Let

Eval = {nonterm, error} ∪ {norm pr | pr ∈ Val }.

We define a mathematical function—not an algorithm—eval ∈ CP→Eval, as
follows. Suppose pr ∈ CP. There are two main cases to consider:

• Suppose, for all n ∈ N, there is a pr ′ ∈ CP such that run(pr , n) =
intermed pr ′. Then eval pr = nonterm.

• Suppose there is an n ∈ N such that there is no pr ′ ∈ CP such that
run(pr , n) = intermed pr ′. Let n be the smallest natural number such
that there is no pr ′ ∈ CP such that run(pr , n) = intermed pr ′. There
are two subcases to consider:

– Suppose run(pr , n) = ans pr ′ for some pr ′ ∈ Val. Then eval pr =
norm pr ′.

– Suppose run(pr , n) = fail pr ′ for some pr ′ ∈ CP. Then eval pr =
error.

For example:

• Let pr be

letRec(x, y, app(var(x),var(y)), app(var(x), int(0))).

Then eval pr = nonterm.

• eval(app(int(0), int(1))) = error.

• eval(calc(plus,pair(int(1), int(2)))) = norm(int(3)).

5.1 Programs and Recursive and RE Languages 321

5.1.3 Programs as Data

In Section 5.3, we will be concerned with programs that process programs. Be-
cause programs are described by strings, these program processing programs
could work on strings. But that would be complicated and cumbersome. It’s far
better to represent programs using pairs.

The set Rep of program representations is the least subset of Val such that:

(variable) for all v ∈ Var, pair(str(var), str(v)) ∈ Rep;

(constant) for all con ∈ Const, pair(str(const), const(con)) ∈ Rep;

(integer) for all n ∈ Z, pair(str(int), int(n)) ∈ Rep;

(symbol) for all a ∈ Sym, pair(str(sym), sym(a)) ∈ Rep;

(string) for all x ∈ Str, pair(str(str), str(x)) ∈ Rep;

(pair) for all pr1, pr 2 ∈ Rep,

pair(str(pair),pair(pr 1, pr 2)) ∈ Rep;

(calculation) for all oper ∈ Oper and pr ∈ Rep,

pair(str(calc),pair(str(oper), pr)) ∈ Rep;

(conditional) for all pr1, pr 2, pr 3 ∈ Rep,

pair(str(cond),pair(pr1,pair(pr 2, pr 3))) ∈ Rep;

(function application) for all pr1, pr 2 ∈ Rep,

pair(str(app),pair(pr1, pr 2)) ∈ Rep;

(anonymous function) for all v ∈ Var and pr ∈ Rep,

pair(str(lam),pair(str(v), pr)) ∈ Rep;

(simple let) for all v ∈ Var and pr 1, pr 2 ∈ Rep,

pair(str(letSimp),pair(str(v),pair(pr 1, pr 2))) ∈ Rep;

(recursive let) for all v1, v2 ∈ Var and pr 1, pr 2 ∈ Rep,

pair(str(letRec),pair(str(v1),pair(str(v2),pair(pr 1, pr 2)))) ∈ Rep.

We define a function · ∈ Prog→Rep by structural recursion:

322 Recursive and Recursively Enumerable Languages

• for all v ∈ Var, var(v) = pair(str(var), str(v));

• for all con ∈ Const, const(con) = pair(str(const), const(con));

• for all n ∈ Z, int(n) = pair(str(int), int(n));

• for all a ∈ Sym, sym(a) = pair(str(sym), sym(a));

• for all x ∈ Str, str(x) = pair(str(str), str(x));

• for all pr1, pr 2 ∈ Prog,

pair(pr 1, pr 2) = pair(str(pair),pair(pr 1, pr 2));

• for all oper ∈ Oper and pr ∈ Prog,

calc(oper , pr) = pair(str(calc),pair(str(oper), pr));

• for all pr1, pr 2, pr 3 ∈ Prog,

cond(pr 1, pr 2, pr 3) = pair(str(cond),pair(pr 1,pair(pr 2, pr 3)));

• for all pr1, pr 2 ∈ Prog,

app(pr 1, pr 2) = pair(str(app),pair(pr 1, pr 2));

• for all v ∈ Var and pr ∈ Prog,

lam(v, pr) = pair(str(lam),pair(str(v), pr));

• for all v ∈ Var and pr 1, pr 2 ∈ Prog,

letSimp(v, pr 1, pr 2) = pair(str(letSimp),pair(str(v),pair(pr 1, pr 2)));

• for all v1, v2 ∈ Var and pr 1, pr 2 ∈ Prog,

letRec(v1, v2, pr 1, pr 2)

= pair(str(letRec),pair(str(v1),pair(str(v2),pair(pr1, pr 2)))).

If pr ∈ Prog, we say that pr represents pr , and that pr is represented by pr .
Each program is represented by a unique program representation, and every

program representation represents a unique program:

Proposition 5.1.3
· is a bijection from Prog to Rep.

The module Prog also defines the functions:

5.1 Programs and Recursive and RE Languages 323

val toRep : prog -> prog

val fromRep : prog -> prog

val isRep : prog -> bool

The function toRep converts a program to the program representation that
represents it. The function fromRep issues an error message if its argument
isn’t a program representation; otherwise it returns the program represented by
its argument. And the function isRep tests whether a program is a program
representation.

For example:

- val pr = Prog.input "";

@ app(lam(x, app(var(x), int(1))),

@ lam(y, var(y)))

@ .

val pr = - : prog

- val pr’ = Prog.toRep pr;

val pr’ = - : prog

- Prog.output("", pr’);

pair(str(app),

pair(pair(str(lam),

pair(str(x),

pair(str(app),

pair(pair(str(var), str(x)),

pair(str(int), int(1)))))),

pair(str(lam), pair(str(y), pair(str(var), str(y))))))

val it = () : unit

- val pr’’ = Prog.fromRep pr’;

val pr’’ = - : prog

- Prog.equal(pr’’, pr);

val it = true : bool

- Prog.isRep pr;

val it = false : bool

- Prog.isRep pr’;

val it = true : bool

- Prog.isRep(Prog.fromString "pair(str(x), str(y))");

val it = false : bool

It is easy to write a program that tests whether a program representation
represents a closed program, as well to write a program that tests whether a
program representation represents a value.

It is possible to write a function in our programming language that acts as
an interpreter:

• It takes in a value pr , representing a closed program pr .

• It begins evaluating pr , using the representation pr .

• If this evaluation results in an error, then the interpreter returns const(nil).

324 Recursive and Recursively Enumerable Languages

• Otherwise, if it results in a value pr ′ representing a value pr ′, then it
returns pr ′.

• Otherwise, it runs forever.

E.g., cond(const(true), const(false), const(nil)) evaluates to const(false).
We can also write a function in our programming language that acts as an

incremental interpreter:

• At each stage of its evaluation of a closed program, it carries out some
fixed number of steps of the evaluation.

• If during the execution of those steps, an error is detected, then it returns
const(nil).

• Otherwise, if a value pr ′ representing a value pr ′ has been produced, then
it returns this value.

• But otherwise, it returns an anonymous function that when called will
continue this process.

5.1.4 Recursive and Recursively Enumerable Languages

A string predicate program pr is a closed program such that, for all strings w,
eval(app(pr , str(w))) ∈ {norm(const(true)),norm(const(false))}.

A string w is accepted by a closed program pr iff eval(app(pr , str(w))) =
norm(const(true)). We write L(pr) for the set of all strings accepted by a
closed program pr . When this set is a language, then we refer to L(pr) as the
language accepted by pr . (E.g., if pr = lam(x, const(true)), then L(pr) = Str,
and so is not a language.)

The Prog module also includes:

val accepted : prog -> str * int -> unit

The function accepted takes in a program pr , and issues and error message if pr
is not closed. Otherwise, it returns a function f that behaves as follows, when
called with a pair (x, n). If n is negative, it issues an error message. Otherwise,
it proceeds by a case analysis of the result of running

pr ′ = Prog.run(Prog.app(pr , Prog.str x), n) :

• (ans(const(true))) It explains that x was accepted by pr .

• (ans(const(false))) It explains that x was rejected by pr , because the
application of pr to str(x) resulted in const(false).

• (ans pr ′′, where pr ′′ 6∈ {const(true), const(false)}) It explains that x was
rejected by pr , since the application of pr to str(x) resulted in some value
other than const(true) or const(false).

5.1 Programs and Recursive and RE Languages 325

• (fail pr ′′, where pr ′′ ∈ CP) It explains that x was rejected by pr , since
the application of pr to str(x) resulted in failure.

• (intermed pr ′′, where pr ′′ ∈ CP) It explains that (based on running pr ′

for n steps) it is unknown whether x is accepted by pr .

Suppose the file equal-prog contains the text:

lam(p,

calc(isZero,

calc(compare, var(p))))

Suppose the file succ-prog contains the text:

lam(p,

calc(isZero,

calc(compare, var(p))))

Suppose the file count-prog contains the text:

lam(equal, lam(succ, lam(a,

letRec(f, xs,

cond(calc(isNil, var(xs)),

pair(int(0), const(nil)),

cond(app(var(equal),

pair(calc(fst, var(xs)), var(a))),

letSimp(res,

app(var(f),

calc(snd, var(xs))),

pair(app(var(succ),

calc(fst, var(res))),

calc(snd, var(res)))),

pair(int(0), var(xs)))),

var(f)))))

And suppose the file zeros-ones-twos-prog contains the text:

lam(equal, lam(count, lam(x,

letSimp(xs, calc(strToSymList, var(x)),

letSimp(zeros,

app(app(var(count), sym(0)), var(xs)),

letSimp(ones,

app(app(var(count), sym(1)), calc(snd, var(zeros))),

letSimp(twos,

app(app(var(count), sym(2)), calc(snd, var(ones))),

cond(calc(isNil, calc(snd, var(twos))),

cond(app(var(equal),

pair(calc(fst, var(zeros)),

calc(fst, var(ones)))),

app(var(equal),

pair(calc(fst, var(ones)),

326 Recursive and Recursively Enumerable Languages

calc(fst, var(twos)))),

const(false)),

const(false)))))))))

We can construct—and experiment with—a program for testing whether a string
is an element of { 0n1n2n | n ∈ N }, as follows:

- val equal = Prog.input "equal-prog";

val equal = - : prog

- val succ = Prog.input "succ-prog";

val succ = - : prog

- val count =

= Prog.app

= (Prog.app(Prog.input "count-prog", equal),

= succ);

val count = - : prog

- val zerosOnesTwos =

= Prog.app

= (Prog.app(Prog.input "zeros-ones-twos-prog", equal),

= count);

val zerosOnesTwos = - : prog

- val accepted = Prog.accepted zerosOnesTwos;

val accepted = fn : str * int -> unit

- accepted(Str.fromString "%", 10);

unknown if accepted or rejected

val it = () : unit

- accepted(Str.fromString "%", 100);

accepted

val it = () : unit

- accepted(Str.fromString "012", 100);

accepted

val it = () : unit

- accepted(Str.fromString "000111222", 1000);

accepted

val it = () : unit

- accepted(Str.fromString "00011122", 1000);

rejected with false

val it = () : unit

- accepted(Str.fromString "00111222", 1000);

rejected with false

val it = () : unit

- accepted(Str.fromString "00011222", 1000);

rejected with false

val it = () : unit

- accepted(Str.fromString "021", 100);

rejected with false

val it = () : unit

- accepted(Str.fromString "112200", 1000);

rejected with false

5.1 Programs and Recursive and RE Languages 327

val it = () : unit

We say that a language L is:

• recursive iff L = L(pr), for some string predicate program pr ; and

• recursively enumerable (r.e.) iff L = L(pr), for some closed program pr .

We define

RecLan = {L ∈ Lan | L is recursive }, and

RELan = {L ∈ Lan | L is recursively enumerable }.

Hence RecLan ⊆ RELan. Because CP is countably infinite, we have that
RecLan and RELan are countably infinite, so that RELan (Lan. Later we
will see that RecLan (RELan.

Proposition 5.1.4
For all L ∈ Lan, L is recursive iff there is a closed program pr such that, for all
w ∈ Str:

• if w ∈ L, then eval(app(pr , str(w))) = norm(const(true)); and

• if w 6∈ L, then eval(app(pr , str(w))) = norm(const(false)).

Proof.

(“only if” Since L is recursive, L = L(pr) for some string predicate program
pr . Suppose w ∈ Str. There are two cases to show.

• Suppose w ∈ L. Since L = L(pr), we have that
eval(app(pr , str(w))) = norm(const(true)).

• Suppose w 6∈ L. Since L = L(pr), we have that
eval(app(pr , str(w))) 6= norm(const(true)). But pr is a string pred-
icate program, and thus

eval(app(pr , str(w))) = norm(const(false)).

(“if”) To see that pr is a string predicate program, suppose w ∈ Str.
Since w ∈ L or w 6∈ L, we have that eval(app(pr , str(w))) ∈
{const(true), const(false)}. We will show that L = L(pr).

• Suppose w ∈ L. Then eval(app(pr , str(w))) = norm(const(true)),
so that w ∈ L(pr).

• Suppose w ∈ L(pr), so that eval(app(pr , str(w))) = norm
(const(true)). If w 6∈ L, then eval(app(pr , str(w))) =
norm(const(false))—contradiction. Thus w ∈ L.

328 Recursive and Recursively Enumerable Languages

✷

Proposition 5.1.5
For all L ∈ Lan, L is recursively enumerable iff there is a closed program pr
such that, for all w ∈ Str,

w ∈ L iff eval(app(pr , str(w))) = norm(const(true)).

Proof.

(“only if”) Since L is recursively enumerable, L = L(pr) for some closed
program pr . Suppose w ∈ Str.

• Suppose w ∈ L. Since L = L(pr), we have that
eval(app(pr , str(w))) = norm(const(true)).

• Suppose eval(app(pr , str(w))) = norm(const(true)). Thus w ∈
L(pr) = L.

(“if”) It suffices to show that L = L(pr).

• Suppose w ∈ L. Then eval(app(pr , str(w))) = norm(const(true)),
so that w ∈ L(pr).

• Suppose w ∈ L(pr). Then eval(app(pr , str(w))) = norm
(const(true)), so that w ∈ L.

✷

Theorem 5.1.6
The context-free languages are a proper subset of the recursive languages:
CFLan (RecLan.

Proof. To see that every context-free language is recursive, let L be a context-
free language. Thus there is a grammar G such that L = L(G). With some
work, we can write and prove the correctness of a string predicate program pr
that implements our algorithm (see Section 4.3) for checking whether a string is
generated by a grammar. Thus L is recursive.

To see that not every recursive language is context-free, let L = { 0n1n2n |
n ∈ N }. In Section 4.10, we learned that L is not context-free. And in the
preceding subsection, we wrote a string predicate program pr that tests whether
a string is in L. Thus L is recursive. ✷

5.1.5 Notes

Neil Jones [Jon97] pioneered the use of a programming language with structured
data as an alternative to Turing machines for studying the limits of what is com-
putable. In contrast to Jones’s approach, however, our programming language
is functional, not imperative (assignment-oriented), and it has explicit support
for the symbols and strings of formal language theory.

5.2 Closure Properties of Recursive and R.E. Languages 329

5.2 Closure Properties of Recursive and R.E. Lan-
guages

In this section, we will see that the recursive and recursively enumerable lan-
guages are closed under union, concatenation, closure and intersection. The
recursive languages are also closed under set difference and complementation.
In the next section, we will see that the recursively enumerable languages are
not closed under complementation or set difference. On the other hand, we will
see in this section that, if a language and its complement are both r.e., then the
language is recursive.

5.2.1 Closure Properties of Recursive Languages

Theorem 5.2.1
If L, L1 and L2 are recursive languages, then so are L1 ∪L2, L1L2, L

∗, L1 ∩L2

and L1 − L2.

Proof. Let’s consider the concatenation case as an example. Since L1 and L2

are recursive languages, there are string predicate programs pr 1 and pr2 that
test whether strings are in L1 and L2, respectively. We write a program pr with
form

lam(w,

letSimp(f1,

pr 1,

letSimp(f2,

pr 2,

· · ·))),

which tests whether its input is an element of L1L2.
The elided part of pr generates all of the pairs of strings (x1, x2) such that

x1x2 is equal to the value of w. Then it works though these pairs, one by one.
Given such a pair (x1, x2), pr calls f1 with x1 to check whether x1 ∈ L1. If the
answer is const(false), then it goes on to the next pair. Otherwise, it calls f2

with x2 to check whether x2 ∈ L2. If the answer is const(false), then it goes on
to the next pair. Otherwise, it returns const(true). If pr runs out of pairs to
check, then it returns const(false).

We can check that pr is a string predicate program testing whetherw ∈ L1L2.
Thus L1L2 is recursive. ✷

Corollary 5.2.2
If Σ is an alphabet and L ⊆ Σ∗ is recursive, then so is Σ∗ − L.

Proof. Follows from Theorem 5.2.1, since Σ∗ is recursive. ✷

330 Recursive and Recursively Enumerable Languages

5.2.2 Closure Properties of Recursively Enumerable Languages

Theorem 5.2.3
If L, L1 and L2 are recursively enumerable languages, then so are L1∪L2, L1L2,
L∗ and L1 ∩ L2.

Proof. We consider the concatenation case as an example. Since L1 and L2

are recursively enumerable, there are programs pr1 and pr 2 such that, for all
w ∈ Str, w ∈ L1 iff eval(app(pr1, str(w))) = norm(const(true)), and for all
w ∈ Str, w ∈ L2 iff eval(app(pr 2, str(w))) = norm(const(true)). (Remember
that pr 1 and pr 2 may fail to terminate on some inputs.)

To show that L1L2 is recursively enumerable, we will construct a pro-
gram pr such that, for all w ∈ Str, w ∈ L1L2 iff eval(app(pr , str(w))) =
norm(const(true)).

When pr is called with str(w), for some w ∈ Str, it behaves as follows. First,
it generates all the pairs of strings (x1, x2) such that w = x1x2. Let these pairs
be (x1,1, x2,1), . . . , (x1,n, x2,n). Now, pr uses our incremental interpretation func-
tion to run a fixed number of steps of app(pr 1, str(x1,i)) and app(pr 2, str(x2,i))

(working with app(pr 1, str(x1,i)) and app(pr 2, str(x2,i))), for all i ∈ [1 : n], and
then repeat this over and over again.

• If, at some stage, the incremental interpretation of app(pr 1, str(x1,i)) re-

turns const(true), then x1,i is marked as being in L1.

• If, at some stage, the incremental interpretation of app(pr 2, str(x2,i)) re-

turns const(true), then the x2,i is marked as being in L2.

• If, at some stage, the incremental interpretation of app(pr 1, str(x1,i)) re-

turns something other than const(true), then the i’th pair is marked as
discarded.

• If, at some stage, the incremental interpretation of app(pr 2, str(x2,i)) re-

turns something other than const(true), then the i’th pair is marked as
discarded.

• If, at some stage, x1,i is marked as in L1 and x2,i is marked as in L2, then
Q returns const(true).

• If, at some stage, there are no remaining pairs, then pr returns
const(false).

✷

Theorem 5.2.4
If Σ is an alphabet, L ⊆ Σ∗ is a recursively enumerable language, and Σ∗ −L is
recursively enumerable, then L is recursive.

5.3 Diagonalization and Undecidable Problems 331

Proof. Since L and Σ∗−L are recursively enumerable languages, there are pro-
grams pr1 and pr 2 such that, for all w ∈ Str, w ∈ L iff eval(app(pr 1, str(w))) =
norm(const(true)), and for all w ∈ Str, w ∈ Σ∗−L iff eval(app(pr 2, str(w))) =
norm(const(true)).

We construct a string predicate program pr that tests whether its input is
in L. Given str(w), for w ∈ Str, pr proceeds as follows. If w 6∈ Σ∗, then pr re-
turns const(false). Otherwise, pr alternates between incrementally interpreting
app(pr 1, str(w)) (working with app(pr 1, str(w))) and app(pr 2, str(w)) (working
with app(pr 2, str(w))).

• If, at some stage, the first incremental interpretation returns const(true),
then pr returns const(true).

• If, at some stage, the second incremental interpretation returns
const(true), then pr returns const(false).

• If, at some stage, the first incremental interpretation returns anything
other than const(true), then pr returns const(false).

• If, at some stage, the second incremental interpretation returns anything
other than const(true), then pr returns const(true).

✷

5.2.3 Notes

Our approach to this section is standard, except for our using programs instead
of Turing machines.

5.3 Diagonalization and Undecidable Problems

In this section, we will use a technique called diagonalization to find a natural
language that isn’t recursively enumerable. This will lead us to a language that
is recursively enumerable but is not recursive. It will also enable us to prove the
undecidability of the halting problem.

5.3.1 Diagonalization

To find a non-r.e. language, we can use diagonalization, a technique we used in
Section 1.1 to show the uncountability of P N.

Let Σ be the alphabet used to describe programs: the digits and letters,
plus the elements of {〈comma〉, 〈perc〉, 〈tilde〉, 〈openPar〉, 〈closPar〉, 〈less〉, 〈great〉}.
Every element of Σ∗ either describes a unique closed program, or describes no
closed programs. Given w ∈ Σ∗, we write L(w) for:

332 Recursive and Recursively Enumerable Languages

wk

1 1 0

0 0 1

0 1 1

wi wj wk· · · · · · · · · · · ·

..

.

...

...

...

wi

wj

Figure 5.1: Example Diagonalization Table

• ∅, if w doesn’t describe a closed program; and

• L(pr), where pr is the unique closed program described by w, if w does
describe a closed program.

Thus L(w) will always be a set of strings, even though it won’t always be a
language.

Consider the infinite table of 0’s and 1’s in which both the rows and the
columns are indexed by the elements of Σ∗, listed in ascending order according to
our standard total ordering, and where a cell (wn, wm) contains 1 iff wn ∈ L(wm),
and contains 0 iff wn 6∈ L(wm). Each recursively enumerable language is L(wn)
for some (non-unique) n, but not all the L(wn) are languages. Figure 5.1 shows
how part of this table might look, where wi, wj and wk are sample elements of
Σ∗. Because of the table’s data, we have that wi ∈ L(wj) and wj 6∈ L(wi).

To define a non-r.e. Σ-language, we work our way down the diagonal of the
table, putting wn into our language just when cell (wn, wn) of the table is 0, i.e.,
when wn 6∈ L(wn). With our example table:

• L(wi) is not our language, since wi ∈ L(wi), but wi is not in our language;

• L(wj) is not our language, since wj 6∈ L(wj), but wj is in our language;
and

• L(wk) is not our language, since wk ∈ L(wk), but wk is not in our language.

5.3 Diagonalization and Undecidable Problems 333

In general, there is no n ∈ N such that L(wn) is our language. Consequently
our language is not recursively enumerable.

We formalize the above ideas as follows. Define languages Ld (“d” for “di-
agonal”) and La (“a” for “accepted”) by:

Ld = {w ∈ Σ∗ | w 6∈ L(w) }, and

La = {w ∈ Σ∗ | w ∈ L(w) }.

Thus Ld = Σ∗ − La. We have that, for all w ∈ Σ∗, w ∈ La iff w ∈ L(pr), where
pr is the unique closed program described by w.

Theorem 5.3.1
Ld is not recursively enumerable.

Proof. Suppose, toward a contradiction, that Ld is recursively enumerable.
Thus, there is a closed program pr such that Ld = L(pr). Let w ∈ Σ∗ be the
string describing pr . Thus L(w) = L(pr) = Ld.

There are two cases to consider.

• Suppose w ∈ Ld. Then w 6∈ L(w) = Ld—contradiction.

• Suppose w 6∈ Ld. Since w ∈ Σ∗, we have that w ∈ L(w) = Ld—
contradiction.

Since we obtained a contradiction in both cases, we have an overall contradiction.
Thus Ld is not recursively enumerable. ✷

Theorem 5.3.2
La is recursively enumerable.

Proof. Let acc be the program that, when given str(w), for some w ∈ Str, acts
as follows. First, it attempts to parse str(w) as a program pr , represented as
the value pr . If this attempt fails, acc returns const(false). If pr is not closed,
then acc returns const(false). Otherwise, it uses our interpreter function to
evaluate app(pr , str(w)), using app(pr , str(w)). If this interpretation returns
const(true), then acc returns const(true). If it returns anything other than
const(true), then acc returns const(false). (Thus, if the interpretation never
returns, then acc never terminates.)

We can check that, for all w ∈ Str, w ∈ La iff eval(app(acc, str(w))) =
norm(const(true)). Thus La is recursively enumerable. ✷

Corollary 5.3.3
There is an alphabet Σ and a recursively enumerable language L ⊆ Σ∗ such that
Σ∗ − L is not recursively enumerable.

Proof. La ⊆ Σ∗ is recursively enumerable, but Σ∗−La = Ld is not recursively
enumerable. ✷

334 Recursive and Recursively Enumerable Languages

Corollary 5.3.4
There are recursively enumerable languages L1 and L2 such that L1 −L2 is not
recursively enumerable.

Proof. Follows from Corollary 5.3.3, since Σ∗ is recursively enumerable. ✷

Corollary 5.3.5
La is not recursive.

Proof. Suppose, toward a contradiction, that La is recursive. Since the
recursive languages are closed under complementation, and La ⊆ Σ∗, we have
that Ld = Σ∗ − La is recursive—contradiction. Thus La is not recursive. ✷

Since La ∈ RELan and La 6∈ RecLan, we have:

Theorem 5.3.6
The recursive languages are a proper subset of the recursively enumerable lan-
guages: RecLan (RELan.

Combining this result with results from Sections 4.8 and 5.1, we have that

RegLan (CFLan (RecLan (RELan (Lan.

5.3.2 Undecidability of the Halting Problem

We say that a closed program pr halts iff eval pr 6= nonterm.

Theorem 5.3.7
There is no value halts such that, for all closed programs pr ,

• If pr halts, then eval(app(halts , pr)) = norm(const(true)); and

• If pr does not halt, then eval(app(halts , pr)) = norm(const(false)).

Proof. Suppose, toward a contradiction, that such a halts does exist. We use
halts to construct a program acc that behaves as follows when run on str(w), for
some w ∈ Str. First, it attempts to parse str(w) as a program pr , represented as
the value pr . If this attempt fails, it returns const(false). If pr is not closed, then
it returns const(false). Otherwise, it calls halts with argument app(pr , str(w)).

• If halts returns const(true) (so we know that app(pr , str(w)) halts), then
acc applies the interpreter function to app(pr , str(w)), using it to evaluate
app(pr , str(w)). If the interpreter returns const(true), then acc returns
const(true). Otherwise, the interpreter returns some other value, and acc
returns const(false).

• Otherwise, halts returns const(false) (so we know that app(pr , str(w))
does not halt), in which case acc returns const(false).

5.3 Diagonalization and Undecidable Problems 335

Now, we prove that acc is a string predicate program testing whether a string
is in La.

• Suppose w ∈ La. Thus w ∈ L(pr), where pr is the unique closed program
described by w. Hence eval(app(pr , str(w))) = norm(const(true)). It is
easy to show that eval(app(acc, str(w))) = norm(const(true)).

• Suppose w 6∈ La. If w 6∈ Σ∗, or w ∈ Σ∗ but w does not describe a program,
or w describes a program that isn’t closed, then eval(app(acc, str(w))) =
norm(const(false)). So, suppose w describes the closed program pr . Then
w 6∈ L(pr), i.e., eval(app(pr , str(w))) 6= norm(const(true)). It is easy to
show that eval(app(acc, str(w))) = norm(const(false)).

Thus La is recursive—contradiction. Thus there is no such halt . ✷

We say that a value pr halts on a value pr ′ iff eval(app(pr , pr ′)) 6= nonterm.

Corollary 5.3.8 (Undecidability of the Halting Problem)
There is no value haltsOn such that, for all values pr and pr ′:

• if pr halts on pr ′, then

eval(app(haltsOn ,pair(pr , pr ′))) = norm(const(true)); and

• If pr does not halt on pr ′, then

eval(app(haltsOn ,pair(pr , pr ′))) = norm(const(false)).

Proof. Suppose, toward a contradiction, that such a haltsOn exists. Let halts
be the value that takes in a value pr representing a closed program pr , and then
calls haltsOn with pair(lam(x, pr), const(nil)). Then this program satisfies the
property of Theorem 5.3.7—contradiction. Thus such a haltsOn does not exist.
✷

5.3.3 Other Undecidable Problems

Here are two other undecidable problems:

• Determining whether two grammars generate the same language. (In con-
trast, we gave an algorithm for checking whether two FAs are equivalent,
and this algorithm can be implemented as a program.)

• Determining whether a grammar is ambiguous.

336 Recursive and Recursively Enumerable Languages

5.3.4 Notes

Because a closed program can be evaluated by itself, i.e., without being supplied
an input, our treatment of the undecidability of the halting problem is nonstan-
dard. First, we prove that there is no program that takes in a program as data
and tests whether that program halts. Our version of the undecidability of the
halting then follows as a corollary.

Bibliography

[AM91] A. W. Appel and D. B. MacQueen. Standard ML of New Jer-
sey. In Programming Language Implementation and Logic Program-
ming, volume 528 of Lecture Notes in Computer Science, pages 1–26.
Springer-Verlag, 1991.

[BE93] J. Barwise and J. Etchemendy. Turing’s World 3.0 for Mac: An
Introduction to Computability Theory. Cambridge University Press,
1993.

[BLP+97] A. O. Bilska, K. H. Leider, M. Procopiuc, O. Procopiuc, S. H.
Rodger, J. R. Salemme, and E. Tsang. A collection of tools for mak-
ing automata theory and formal languages come alive. In Twenty-
eighth ACM SIGCSE Technical Symposium on Computer Science
Education, pages 15–19. ACM Press, 1997.

[End77] H. B. Enderton. Elements of Set Theory. Academic Press, 1977.

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison-Wesley,
second edition, 2001.

[HR00] T. Hung and S. H. Rodger. Increasing visualization and interac-
tion in the automata theory course. In Thirty-first ACM SIGCSE
Technical Symposium on Computer Science Education, pages 6–10.
ACM Press, 2000.

[Jon97] N. J. Jones. Computability and Complexity: From a Programming
Perspective. The MIT Press, 1997.

[Koz97] D. C. Kozen. Automata and Computability. Springer-Verlag, 1997.

[Lei00] H. Leiß. The Automata Library. http://www.cis.uni-muenchen.
de/~leiss/sml-automata.html, 2000.

[Lin01] P. Linz. An Introduction to Formal Languages and Automata. Jones
and Bartlett Publishers, 2001.

337

http://www.cis.uni-muenchen.de/~leiss/sml-automata.html
http://www.cis.uni-muenchen.de/~leiss/sml-automata.html

338 BIBLIOGRAPHY

[LP98] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of
Computation. Prentice Hall, second edition, 1998.

[LRGS04] S. Lombardy, Y. Régis-Gianas, and J. Sakarovitch. Introducing
vaucanson. Theoretical Computer Science, 328:77–96, 2004.

[Mar91] J. C. Martin. Introduction to Languages and the Theory of Compu-
tation. McGraw Hill, second edition, 1991.

[MTHM97] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition
of Standard ML—Revised 1997. The MIT Press, 1997.

[Pau96] L. C. Paulson. ML for the Working Programmer. Cambridge Uni-
versity Press, second edition, 1996.

[RHND99] M. B. Robinson, J. A. Hamshar, J. E. Novillo, and A. T. Duchowski.
A Java-based tool for reasoning about models of computation
through simulating finite automata and turing machines. In Thirti-
eth ACM SIGCSE Technical Symposium on Computer Science Ed-
ucation, pages 105–109. ACM Press, 1999.

[Rod06] S. H. Rodger. JFLAP: An Interactive Formal Languages and Au-
tomata Package. Jones and Bartlett Publishers, 2006.

[RW94] D. Raymond and D. Wood. Grail: A C++ library for automata and
expressions. Journal of Symbolic Computation, 17:341–350, 1994.

[Sar02] J. Saraiva. HaLeX: A Haskell library to model, manipulate and
animate regular languages. In ACM Workshop on Functional
and Declarative Programming in Education (FDPE/PLI’02), Pitts-
burgh, October 2002.

[Sto05] A. Stoughton. Experimenting with formal languages. In Thirty-sixth
ACM SIGCSE Technical Symposium on Computer Science Educa-
tion, page 566. ACM Press, 2005.

[Sto08] A. Stoughton. Experimenting with formal languages using Forlan.
In FDPE ’08: Proceedings of the 2008 International Workshop on
Functional and Declarative Programming in Education, pages 41–
50, New York, NY, USA, 2008. ACM.

[Sut92] K. Sutner. Implementing finite state machines. In N. Dean and G. E.
Shannon, editors, Computational Support for Discrete Mathematics,
DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, volume 15, pages 347–363. American Mathematical Society,
1992.

BIBLIOGRAPHY 339

[Ull98] J. D. Ullman. Elements of ML Programming: ML97 Edition. Pren-
tice Hall, 1998.

[Yu02] S. Yu. Grail+: A symbolic computation environment for finite-state
machines, regular expressions, and finite languages. http://www.

csd.uwo.ca/Research/grail/, 2002.

http://www.csd.uwo.ca/Research/grail/
http://www.csd.uwo.ca/Research/grail/

Index

@, 14, 66
◦, 6, 8
−, 4
∈, 2
∅, 1
(), 48
=, 2
≈, 79
· ·, 8
⋂

, 5
⋃

, 5
♯·, 9
·(·), 8
∩, 4
[· : ·], 3
·−1(·), 20
·−1(·), 8
[·, · · · , ·], 14
�, 13
(·, ·), 4, 61
(·, ·, ·), 4
%, 34
··, 35, 66, 206
×, 4
(, 2
), 2
·|·, 8
·R, 41, 203
∼=, 10
{. . .}, 1
{ · · · | · · · }, 3, 6
→, 8
| · |, 11, 34
·∗, 37, 38
⊆, 2
⊇, 2
∪, 4
·[· 7→ ·], 8

a, b, c, 34
α, β, γ, 69
alphabet, 37

·∗, 37
language, 38, 68
Σ, 37

alphabet, 37, 38, 41, 68, 72
alphabet renaming

grammar, 276
language, 206, 276
string, 206

and, 14
antisymmetric, 7
application, see function, application
associative

function composition, 8
intersection, 4
language concatenation, 66
list concatenation, 15
relation composition, 6
string concatenation, 35
union, 4

Axiom of Choice, 13

bijection from set to set, 9
Bool, 13
bool, 49
boolean, 13–14

and, 14
Bool, 13
conjunction, 14
disjunction, 14
false, 13
negation, 13
not, 13
or, 14
true, 13

bound variable, 3

cardinality, 9–13

341

342 INDEX

closure
language, 67
regular expression, 69

commutative
intersection, 4
union, 4

composition
function, see function, composition
relation, see relation, composition

concat, 239
concatenation

language, 65
associative, 66
identity, 66
power, 66
zero, 66

list, 14
associative, 15
identity, 14

regular expression, 69
string, 34
associative, 35
identity, 35
power, 35

conservative approximation to subset
testing, 107

context-free language, 243
closure properties, 275–282

contradiction, 17
proof by, 11

countable, 11, 38
countably infinite, 11, 34, 37, 38
curried function, 62

data structure, 13–15
dead state, 142
∆·, 137
deterministic finite automaton

alphabet renaming, 206
efaToDFA, 236
exponential blowup, 179
minAndRen, 236
minimize, 233, 236
minus, 238
nfaToDFA, 233, 236
regToDFA, 236
renameAlphabet, 206, 211
renameStatesCanonically, 233,

236

DFA

inter, 234, 241
minimize, 234, 241
minus, 241
renameAlphabet, 211
renameStatesCanonically, 234,

241
diagonalization

cardinality, 11
diff , 44
difference

set, 4
difference function, 44
distributivity, 4
domain, 6
domain, 6

EFA

concat, 241
prefix, 211
renameStatesCanonically, 241
rev, 210
union, 234

efaToDFA, 236
efaToNFA, 233, 236
efaToNFA, 234, 241
element of, 2
empty set, 1
empty-string finite automaton

alphabet renaming, 206
concat, 239
efaToDFA, 236
efaToNFA, 233, 236
faToEFA, 236
inter, 238
prefix, 205, 211
prefix-closure, 205, 211
regToEFA, 236
renameAlphabet, 206, 211
renameStatesCanonically, 239
rev, 210
rev, 203, 210
reversal, 203
substring, 205
substring-closure, 205
suffix, 205
suffix-closure, 205
union, 233

equal

INDEX 343

set, 2
existentially quantified, 3

FA, 135, 140, 145
accepted, 140
findAcceptingLP, 140
findIsomorphism, 135
findLP, 140
isomorphic, 135
isomorphism, 135
processStr, 140
renameAlphabet, 211
renameStates, 135
renameStatesCanonically, 135
rev, 210
simplified, 145
simplify, 145

false, 13
faToEFA, 236
faToEFA, 241
finite, 11
finite automaton

alphabet renaming, 206
calculating ∆·(·, ·), 137
characterizing L(·), 139
checking for string acceptance, 136
dead state, 142
∆·, 137
design, 232
faToEFA, 236
iso, 130
isomorphic, 130
isomorphism, 130–136
checking whether FAs are iso-
morphic, 132

isomorphism from FA to FA, 130
L(·), 139
live state, 142
reachable state, 142
regToFA, 236
renameAlphabet, 206, 211
renameStates, 131
renameStatesCanonically, 132
renaming states, 131
rev, 203, 210
reversal, 203, 210
searching for labeled paths, 136,

139
simplification, 142–147

simplification algorithm, 144
simplified, 143
simplify, 144
synthesis, 241
useful state, 142

finite state system
design, 232
synthesis, 241

fn, 52
Forlan, 48–64

exiting, 49
input prompt, 56
installing, 48
interrupting, 49
primary prompt, 49
regular expression syntax, 75
running, 48
secondary prompt, 52
string syntax, 59

formal language, see language
forming sets, 3, 6
function, 7, 52

· ·, 8
◦, 8
·(·), 8
·−1(·), 20
·−1(·), 8
·|·, 8
·[· 7→ ·], 8
application, 8
bijection from set to set, 9
composition, 8
associative, 8
identity, 8

equality, 8
from set to set, 8
id, 8
identity, 8
image under, 8
injection, 10
injective, 10
inverse image of relation under, 20
inverse image under, 8
restriction, 8
updating, 8

generalized intersection, 5
generalized union, 5
Gram

344 INDEX

closure, 279
concat, 279
emptySet, 279
emptyStr, 279
fromStr, 279
fromSym, 279
inter, 279
minus, 279
prefix, 279
renameAlphabet, 279
rev, 279
union, 279

grammar
alphabet renaming, 276
prefix-closure, 276
reversal, 276
substring-closure, 276
suffix-closure, 276

hasEmp, 106
hasSym, 106

id, 6, 8
idempotent

intersection, 4
union, 4

identity
function composition, 8
language concatenation, 66
list concatenation, 14
relation composition, 6
string concatenation, 35
union, 4

identity function, 8
identity relation, 6, 8
iff, 2
image under

function, see function, image under
inclusion, 79
induction, 15–22

mathematical, see mathematical
induction

strong, see strong induction
well-founded, see well-founded in-

duction
inductive definition, 42, 44

induction principle, 43, 44
inductive hypothesis

mathematical induction, 16

strong induction, 17
well-founded induction, 19

infinite, 11
countably, see countably infinite

injDFAToEFA, 234, 241
injection, 10
injective, 10
int, 49
integer, 1
integers

[· : ·], 3
interval, 3

inter, 238
interactive input, 56
intersection

language, 65
set, 4
associative, 4
commutative, 4
generalized, 5
idempotent, 4
zero, 4

inverse image under
function, see function, inverse im-

age under
iso, 130

reflexive, 131
symmetric, 131
transitive, 131

isomorphic
finite automaton, 130

isomorphism
finite automaton, 130–136
checking whether FAs are iso-
morphic, 132

iso, 130
isomorphic, 130
isomorphism from FA to FA, 130

JForlan, xii, xv, 78

Kleene closure, see closure

L(·), 71, 139
Lan, 38
language, 37–38, 60

@, 66
··, 66, 206
·R, 203

INDEX 345

alphabet, 38, 68
alphabet, 38, 68
alphabet renaming, 206, 276
closure, 82
concatenation, 65, 81
associative, 66
identity, 66
power, 66
zero, 66

Lan, 38
operation precedence, 68
prefix-closure, 204, 276
regular, see regular language
reversal, 203, 276
Σ-language, 37
substring-closure, 204, 276
suffix-closure, 204, 276

left string induction, 40
length

string, 34
List ·, 15
list, 14–15, 34

@, 14
concatenation, 14
associative, 15
identity, 14

List ·, 15
·-list, 15

·-list, 15
lists

[·, · · · , ·], 14
live state, 142

mathematical induction, 15, 35
inductive hypothesis, 16

minAndRen, 236
minimize, 233, 236
minus, 238

N, 1
natural number, 1
natural numbers

[· : ·], 3
interval, 3

NFA

prefix, 211
renameAlphabet, 211

nfaToDFA, 233, 236
nfaToDFA, 234, 241

no bigger, 13
nondeterministic finite automaton

alphabet renaming, 206
efaToNFA, 233, 236
nfaToDFA, 233, 236
prefix, 205, 211
prefix-closure, 205, 211
renameAlphabet, 206, 211

none, 14
not, 13
numConcats, 95
numSyms, 95

obviousSubset, 107
one-to-one correspondence, 9
Option, 14
option, 14

none, 14
Option, 14
some ·, 14

or, 14
ordered pair, 4, 61
ordered triple, 4
ordered n-tuple, 4

palindrome, 38, 42
powerset, 4
P , 4
predecessor, 19
predN, 20
predessor relation, 20
prefix, 36

proper, 36
prefix, 205, 211
rev, 210
prefix-closure

empty-string finite automaton, 205,
211

grammar, 276
language, 204, 276
nondeterministic finite automaton,

205, 211
product, 4, 9
programming language, 243

parser, 243
parsing, 243

projection, 9
prompt

input, 56

346 INDEX

primary, 49
secondary, 52

proof by contradiction, 11
proper

prefix, 36
subset, 2
substring, 36
suffix, 36
superset, 2

pumping lemma
regular languages, 223–226

quantification
existential, 3
universal, 3

R, 1
range, 6
range, 6
reachable state, 142
real number, 1
recursion, 26–30

natural numbers, 35
string, 37, 41
left, 37
right, 37

reflexive on set, 7
≈, 80
iso, 131

Reg, 69
Reg, 75

allStr, 75
allSym, 75
alphabet, 75
closure, 75
compare, 75
concat, 75, 241
concatsToList, 75
emptySet, 75
emptyStr, 75
equal, 75
fromStr, 75
fromString, 241
fromStrSet, 75
fromSym, 75
genConcat, 75
genUnion, 75
height, 75
input, 75

numLeaves, 75
output, 75
power, 75, 241
reg, 75
renameAlphabet, 210
rev, 210
rightConcat, 75
rightUnion, 75
size, 75
sortUnions, 75
union, 75
unionsToList, 75

reg, 75
RegLab, 69
RegLan, 74
regToDFA, 236
regToEFA, 236
regToFA, 236
regToFA, 241
regular expression, 69–120

≈, 79
reflexive, 80
symmetric, 80
transitive, 80

abbreviated notation, 70
α, β, γ, 69
alphabet, 72
alphabet renaming, 206
closure, 69
concatenation, 69
conservative approximation to sub-

set testing, 107
conservative subset test, 107
design(, 84
design), 92
equivalence, 79–84
Forlan syntax, 75
hasEmp, 106
hasSym, 106
L(·), 71
label, 69
language generated by, 71
meaning, 71
number of concatenations, 95
number of symbols, 95
numConcats, 95
numSyms, 95
obviousSubset, 107
operator associativity, 70

INDEX 347

operator precedence, 70
order, 70
power, 72
proof of correctness(, 84
proof of correctness), 92
regToDFA, 236
regToEFA, 236
regToFA, 236
renameAlphabet, 206, 210
rev, 203, 210
reversal, 203
simplification, 92–120
standardized, 96
structural rule, 110
testing for membership of empty

string, 106
testing for membership of symbol,

106
union, 69
weakly simplified, 99

regular expression), 92
regular language, 74, 243

pumping lemma, 223–226
showing that languages are non-

regular, 223–228
relation, 6, 61

◦, 6, 8
antisymmetric, 7
composition, 6, 8
associative, 6
identity, 6

domain, 6
domain, 6
function, see function
id, 6
identity, 6, 8
inverse, 6
range, 6
range, 6
reflexive on set, 7
symmetric, 7
total, 7
transitive, 7
well-founded, 19
· ⊲ ·, 21
lexicographic order, 21
R-eqtxtminimal, 19
predecessor, 19
predN, 20

predecessor relation, 20
relation from set to set, 6
renameAlphabet, 206, 210, 211
renameStates, 131
renameStatesCanonically, 132, 233,

236, 239
restriction

function, see function, restriction
rev, 203, 210
reversal

empty-string finite automaton, 203,
210

finite automaton, 203, 210
grammar, 276
language, 203, 276
regular expression, 203
string, 41

right string induction, 39, 41

same size, 10
Schröder-Bernstein Theorem, 13
Set, 56

empty, 57
filter, 57
’a set, 57
sing, 57
size, 57
toList, 57

set, 1–15
−, 4
∈, 2
∅, 1
=, 2
⋂

, 5
⋃

, 5
∩, 4
�, 13
×, 4
(, 2
), 2
∼=, 10
{. . .}, 1
{ · · · | · · · }, 3, 6
→, 8
| · |, 11
⊆, 2
⊇, 2
∪, 4
cardinality, 9–13

348 INDEX

countable, 11
difference, 4
element of, 2
empty, 1
equal, 2
finite, 11, 57
formation, 3, 6
inclusion, 79
infinite, 11
countably, see countably infinite

intersection, see intersection, set
no bigger, 13
powerset, 4
P , 4
product, 4
same size, 10
singleton, 1
size, 9–13
strictly smaller, 13
subset, 2
proper, 2

superset, 2
proper, 2

uncountable, see uncountable
union, see union, set

’a set, 57, 60, 304
set difference

language, 65
Σ, 37
Σ-language, 37
simplification

finite automaton, 142–147
algorithm, 144
simplified, 143
simplify, 144

regular expression, 92–120
structural rule, 110
weakly simplified, 99

simplified
finite automaton, 143

simplify, 144
singleton set, 1
size

set, 9–13
some ·, 14
Standard ML, 55

o, 53
associativity, 53, 54
bool, 49

composition, 53
curried function, 62
declaration, 51
function, 52
curried, 62
recursive, 54

function type, 52
int, 49
NONE, 50
option type, 50
precedence, 53
product type, 49
;, 49, 52
NONE, 50
string, 49
type, 49
value, 49

standardized, 96
Str, 34, 38
Str, 58

allButLast, 59
alphabet, 59
compare, 59
input, 59
last, 59
output, 59
power, 59
prefix, 59
str, 58
substr, 59
suffix, 59

str, 58
strictly smaller, 13
string, 34–37, 58

%, 34
··, 35, 206
·R, 41
| · |, 34
alphabet, 37, 41
alphabet, 37, 41
alphabet renaming, 206
concatenation, 34
associative, 35
identity, 35
power, 35

diff , 44
difference function, 44
empty, 34
Forlan syntax, 59

INDEX 349

length, 34
ordering, 34
palindrome, 38, 42
power, 35
prefix, 36
proper, 36

reversal, 41
Str, 34
stuttering, 234
substring, 36
proper, 36

suffix, 36
proper, 36

u, v, w, x, y, z, 34
string, 49
string induction

left, see left string induction
right, see right string induction
strong, see strong string induction

strong induction, 16
inductive hypothesis, 17

strong string induction, 40, 45
StrSet, 60

alphabet, 60
concat, 68
equal, 60
fromList, 60
getInter, 60
genUnion, 60
input, 60
inter, 60
memb, 60
minus, 60
output, 60
power, 68
subset, 60
union, 60

strToGram, 279
strToReg, 76
structural rule, 110
stuttering, 234
subset, 2

proper, 2
substring, 36

proper, 36
substring-closure

empty-string finite automaton, 205
grammar, 276
language, 204, 276

suffix, 36
proper, 36

suffix-closure
empty-string finite automaton, 205
grammar, 276
language, 204, 276

superset, 2
proper, 2

Sym, 34, 38
Sym, 55

compare, 55
fromString, 56
input, 55
output, 55
sym, 55
toString, 56

sym, 55
sym_rel, 61
symbol, 33–34, 55

a, b, c, 34
ordering, 34
Sym, 34

symmetric, 7
≈, 80

symmetry
iso, 131

SymRel, 61
antisymmetric, 62
applyFunction, 62
bijectionFromTo, 62
compose, 62
domain, 62
equal, 62
fromList, 62
function, 62
functionFromTo, 62
genInter, 62
genUnion, 62
injection, 62
input, 62
inter, 62
inverse, 62
memb, 62
minus, 62
output, 62
range, 62
reflexive, 62
relationFromTo, 62
subset, 62

350 INDEX

sym_rel, 61
symmetric, 62
total, 62
transitive, 62
union, 62

SymSet, 57
equal, 57
fromList, 57
genInter, 57
genUnion, 57
input, 57
inter, 57
memb, 57
minus, 57
output, 57
subset, 57
union, 57

symToGram, 279
symToReg, 76

total, 7
total ordering, 7
transitive, 7

≈, 80
iso, 131

tree, 23–26, 69
TreeX , 69

TreeX , 69
true, 13
tuple

projection, 9

u, v, w, x, y, z, 34
uncountable, 11, 12, 38
union

language, 65
regular expression, 69
set, 4
associative, 4
commutative, 4
generalized, 5
idempotent, 4
identity, 4

union, 233
unit, 48
universally quantified, 3
updating

function, see function, updating
use, 54

useful state, 142

val, 51
VarSet, 304

equal, 304
fromList, 304
genInter, 304
genUnion, 304
input, 304
inter, 304
memb, 304
minus, 304
output, 304
subset, 304
union, 304

weakly simplified, 99
well-founded induction, 19

inductive hypothesis, 19
well-founded relation, 19

· ⊲ ·, 21
lexicographic order, 21
R-eqtxtminimal, 19
predecessor, 19
predN, 20
predecessor relation, 20

Z, 1
zero

intersection, 4
language concatenation, 66

	Preface
	1 Mathematical Background
	1.1 Basic Set Theory
	1.1.1 Describing Sets by Listing Their Elements
	1.1.2 Sets of Numbers
	1.1.3 Relationships between Sets
	1.1.4 Set Formation
	1.1.5 Operations on Sets
	1.1.6 Relations and Functions
	1.1.7 Set Cardinality
	1.1.8 Data Structures
	1.1.9 Notes

	1.2 Induction
	1.2.1 Mathematical Induction
	1.2.2 Strong Induction
	1.2.3 Well-founded Induction
	1.2.4 Notes

	1.3 Inductive Definitions and Recursion
	1.3.1 Inductive Definition of Trees
	1.3.2 Recursion
	1.3.3 Paths in Trees
	1.3.4 Notes

	2 Formal Languages
	2.1 Symbols, Strings, Alphabets and (Formal) Languages
	2.1.1 Symbols
	2.1.2 Strings
	2.1.3 Alphabets
	2.1.4 Languages
	2.1.5 Notes

	2.2 Using Induction to Prove Language Equalities
	2.2.1 String Induction Principles
	2.2.2 Proving Language Equalities
	2.2.3 Notes

	2.3 Introduction to Forlan
	2.3.1 Invoking Forlan
	2.3.2 The SML Core of Forlan
	2.3.3 Symbols
	2.3.4 Sets
	2.3.5 Sets of Symbols
	2.3.6 Strings
	2.3.7 Sets of Strings
	2.3.8 Relations on Symbols
	2.3.9 Notes

	3 Regular Languages
	3.1 Regular Expressions and Languages
	3.1.1 Operations on Languages
	3.1.2 Regular Expressions
	3.1.3 Processing Regular Expressions in Forlan
	3.1.4 Notes

	3.2 Equivalence and Correctness of Regular Expressions
	3.2.1 Equivalence of Regular Expressions
	3.2.2 Proving the Correctness of Regular Expressions
	3.2.3 Notes

	3.3 Simplification of Regular Expressions
	3.3.1 Regular Expression Complexity
	3.3.2 Weak Simplification
	3.3.3 Local and Global Simplification
	3.3.4 Notes

	3.4 Finite Automata and Labeled Paths
	3.4.1 Finite Automata
	3.4.2 Labeled Paths and FA Meaning
	3.4.3 Design of Finite Automata
	3.4.4 Notes

	3.5 Isomorphism of Finite Automata
	3.5.1 Definition and Algorithm
	3.5.2 Isomorphism Finding/Checking in Forlan
	3.5.3 Notes

	3.6 Checking Acceptance and Finding Accepting Paths
	3.6.1 Processing a String from a Set of States
	3.6.2 Checking String Acceptance and Finding Accepting Paths
	3.6.3 Notes

	3.7 Simplification of Finite Automata
	3.7.1 Notes

	3.8 Proving the Correctness of Finite Automata
	3.8.1 Definition of
	3.8.2 Proving that Enough is Accepted
	3.8.3 Proving that Everything Accepted is Wanted
	3.8.4 Notes

	3.9 Empty-string Finite Automata
	3.9.1 Definition of EFAs
	3.9.2 Converting FAs to EFAs
	3.9.3 Processing EFAs in Forlan
	3.9.4 Notes

	3.10 Nondeterministic Finite Automata
	3.10.1 Definition of NFAs
	3.10.2 Converting EFAs to NFAs
	3.10.3 Converting EFAs to NFAs, and Processing NFAs in Forlan
	3.10.4 Notes

	3.11 Deterministic Finite Automata
	3.11.1 Definition of DFAs
	3.11.2 Proving the Correctness of DFAs
	3.11.3 Simplification of DFAs
	3.11.4 Converting NFAs to DFAs
	3.11.5 Processing DFAs in Forlan
	3.11.6 Notes

	3.12 Closure Properties of Regular Languages
	3.12.1 Converting Regular Expressions to FAs
	3.12.2 Converting FAs to Regular Expressions
	3.12.3 Characterization of Regular Languages
	3.12.4 More Closure Properties/Algorithms
	3.12.5 Notes

	3.13 Equivalence-testing and Minimization of DFAs
	3.13.1 Testing the Equivalence of DFAs
	3.13.2 Minimization of DFAs
	3.13.3 Notes

	3.14 The Pumping Lemma for Regular Languages
	3.14.1 Experimenting with the Pumping Lemma Using Forlan
	3.14.2 Notes

	3.15 Applications of Finite Automata and Regular Expressions
	3.15.1 Representing Character Sets and Files
	3.15.2 Searching for Regular Expression in Files
	3.15.3 Lexical Analysis
	3.15.4 Notes

	4 Context-free Languages
	4.1 Grammars, Parse Trees and Context-free Languages
	4.1.1 Grammars
	4.1.2 Parse Trees and Grammar Meaning
	4.1.3 Grammar Synthesis
	4.1.4 Notes

	4.2 Isomorphism of Grammars
	4.2.1 Definition and Algorithm
	4.2.2 Isomorphism Finding/Checking in Forlan
	4.2.3 Notes

	4.3 A Parsing Algorithm
	4.3.1 Algorithm
	4.3.2 Parsing in Forlan
	4.3.3 Notes

	4.4 Simplification of Grammars
	4.4.1 Definition and Algorithm
	4.4.2 Simplification in Forlan
	4.4.3 Notes

	4.5 Proving the Correctness of Grammars
	4.5.1 Preliminaries
	4.5.2 Proving that Enough is Generated
	4.5.3 Proving that Everything Generated is Wanted
	4.5.4 Notes

	4.6 Ambiguity of Grammars
	4.6.1 Definition
	4.6.2 Disambiguating Grammars of Operators
	4.6.3 Top-down Parsing
	4.6.4 Notes

	4.7 Closure Properties of Context-free Languages
	4.7.1 Operations on Grammars
	4.7.2 Operations on Grammars in Forlan
	4.7.3 Notes

	4.8 Converting Regular Expressions and FA to Grammars
	4.8.1 Converting Regular Expressions to Grammars
	4.8.2 Converting Finite Automata to Grammars
	4.8.3 Notes

	4.9 Chomsky Normal Form
	4.9.1 Removing %-Productions
	4.9.2 Removing Unit Productions
	4.9.3 Chomsky Normal Form
	4.9.4 Notes

	4.10 The Pumping Lemma for Context-free Languages
	4.10.1 Statement, Application and Proof of Pumping Lemma
	4.10.2 Experimenting with the Pumping Lemma Using Forlan
	4.10.3 Consequences of Pumping Lemma
	4.10.4 Notes

	5 Recursive and Recursively Enumerable Languages
	5.1 Programs and Recursive and RE Languages
	5.1.1 Programs
	5.1.2 Program Meaning
	5.1.3 Programs as Data
	5.1.4 Recursive and Recursively Enumerable Languages
	5.1.5 Notes

	5.2 Closure Properties of Recursive and R.E. Languages
	5.2.1 Closure Properties of Recursive Languages
	5.2.2 Closure Properties of Recursively Enumerable Languages
	5.2.3 Notes

	5.3 Diagonalization and Undecidable Problems
	5.3.1 Diagonalization
	5.3.2 Undecidability of the Halting Problem
	5.3.3 Other Undecidable Problems
	5.3.4 Notes

	Bibliography
	Index

