IKripke: a Countermodel Checker for
Intuitionistic Propositional Logic

Christian Haack
Department of Computing and Information Sciences
Kansas State University
234 Nichols Hall
Manhattan, Kansas 66506, U.S.A.
haack@cis.ksu.edu

October 22, 1996

The file “kripke.sml” contains an ML-program that generates a Unix executable.
The generated executable takes in a Kripke-tree and a sequent of propositional
formulas and decides whether the Kripke-tree is a countermodel to the sequent,
1.e. whether its root forces all assumptions of the sequent but not the conclusion.
As another option it annotates the nodes of the tree with all forced subformulas
of formulas that appear in the sequent. A third option finds a maximal node
that forces all assumptions of the sequent but not the conclusion, if such a node
exists. Finally, there is an option that lists all maximal nodes of that kind.

How to execute the executable

Let’s assume you have called the generated executable kripke. In order to
execute it type a command of the following format:

% kripke [option]... filename sequent

Possible options are:

-m --minimal use minimal logic

-¢ --check check whether the tree’s root forces the sequent’s
assumptions but not its conclusion (default)

-a --annotate annotate tree with forced subformulas

-f --find find a maximal node that forces assumptions but

not conclusion

-1 --list list all maximal nodes that force assumptions but
not conclusion

-h --help output help information and exit

The sequent 1s of the form
formula, ..., formula => formula

Each formula is a propositional formula built up using parentheses, whitespace,
propositional variables and the following symbols:

(falsity)
- (negation) highest, precedence
& (conjunction) . right associative
| (disjunction) . right associative
-> (implication) . right associative
<-> (biimplication) lowest precedence right associative

A propositional variable is a nonempty string of lower case letters, upper case
letters and digits whose first character is either an upper case letter or a digit.

filename 1s the name of a file that contains a labeled tree. A labeled tree is
represented by a sequence of blank and non-blank lines. Each non-blank line
represents a node of the labeled tree and is of the following form:

name : { wvarlList }

The name of the node is a nonempty string of lower case letters, upper case
letters and digits. warList is a possibly empty list of propositional variables
separated by commas. In connection with the option ——minimal the falsity
symbol £ is also a legal element of a varList. Each line can be indented. The
indentation level is used to indicate how two nodes that are represented by
adjacent lines are related.

For each natural number n we define sets Tree(n) and Forest(n) of sequences
of lines of the above format. Tree(n) will contain labeled trees where the line
representing the root is indented to column n. Forest(n) will contain forests of
labeled trees where each line representing a root is indented to column n. These
sets are defined inductively by the following rules:

1. () € Forest(n), for each natural number n.

Figure 1: A labeled tree

2:{P}
1:{}
3:{}
0:{}

2. If (k1, .., ks) € Forest(n) and (I1,..,1) € Tree(n) then (k1,.., ks, {1, .., 1) €

Forest(n), for each natural number n.

3. If is a line indented to column n, m > n and (kq, .., k) € Forest(m) then
(k1, .., kr, 1) € Tree(n), for all natural numbers n and m.

Now, a labeled tree is a sequence of lines such that when neglecting all blank
lines the resulting sequence of lines is an element of Tree(n) for some natural
number n. From the inductive definition it is clear how such a sequence of lines
represents a tree whose nodes are labeled with sets of propositional variables.
The representation mapping that maps every such sequence of lines to a labeled
tree is given in the obvious recursive way. The labeled tree that is obtained is
not a Kripke-tree yet, because there might be nodes whose labeling sets do not
include the labeling sets of all their ancestors. However, the labeling sets can
be extended to obtain a Kripke-tree by adding to the labeling set of each node
the labeling sets of all of its ancestors.

Examples

Figures 1 and 2 show labeled trees. The sequence of lines in figure 3 is not a
labeled tree because of improper indentation. Figures 4 and 5 show the Kripke-
trees represented by the labeled trees from figures 1 and 2. Figures 6, 7, 8, 9,
11 and 12 show example responses to different invocations of kripke. In those
examples figl, £fig2 and £igl0 are names of files that contain the trees from
figures 1, 2 and 10, respectively.

Figure 2: A labeled tree

aaaa:{R}
aaa:{Q}
aa:{P}
abaa:{Q}
aba:{R}
ab: {P}
aca:{Q,R}
ac:{P}
a:{}

Figure 3: Not a labeled tree

o {)
o:{)
a:{}

Figure 4: The Kripke-tree represented by figure 1

2 P

Figure 5: The Kripke-tree represented by figure 2

aaaa ¢ P QR abaaeP QR

aaa e p () abae PR aca { P.Q.R

aa

P ab

P ac P

Figure 6: The check option (default)
% kripke figl " => (""P->P) | "P | ~"P "
The assumptions of the sequent hold in the model but the conclusion does not.

[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]

Figure 7: The annotate option

% kripke -a figl " => (*"P ->P) | "P | ""P "
3: { P,
“P | P,
"p->P) | "P | "7P,
“"pP ->P }
2: { P,
~’p,
“P | “"P,
¢p->P) | "P | ""P,
“"pP -> P }
1: { ~°P,
“P | P,
(""P->P) | "P | "7P }
o: { 3}

The assumptions of the sequent hold in the model but the conclusion does not.

[0.010 sec user cpu time (0.010 sec non-gc, 0.000 sec gc)]

Figure 8: The find option
% kripke -f fig2 " (P -> Q) -> R => (P -> ""Q) -> R "
Node "ab" forces all assumptions but not the conclusion.

[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]

Figure 9: The list option
% kripke -1 fig2 " (P -> Q) -> R => (P -> “"Q) -> R "
Hode(s) "ab'", "ac" force(s) all assumptions but not the conclusion.

[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]

Figure 10: A representation of a Kripke-tree for minimal logic

1:{f,P}

0:{}

Figure 11: The minimal option
% kripke -m figlO " P -> ""Q => "“(P -> Q) "
The assumptions of the sequent hold in the model but the conclusion does not.

[0.000 sec user cpu time (0.000 sec non-gc, 0.000 sec gc)]

Figure 12: The minimal option in connection with the annotate option
% kripke -m -a figl0 " “"P -> Q= (P -> Q) "

1: { £,
P,
“p,
“q,
~~p,
q,
“(P -> Q),
(P -> Q),
TP -> 77Q
o: { P,
“q,
(P ->0Q),
P> 77Q %

The assumptions of the sequent hold in the model but the conclusion does not.

[0.020 sec user cpu time (0.020 sec non-gc, 0.000 sec gc)]

