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1 Introduction

In Plotkin’s applied typed lambda calculus PCF [Plo] it is natural to consider one term operationally
less defined than another iff whenever the first term converges to a constant in a ground context,
then the second term converges to the same constant in that context. Two terms are considered
operationally equivalent iff each is less defined than the other, 1.e., they have the same behaviour in
all ground contexts. Terms are thus equivalent when they are interchangeable in complete programs.
See [Mey] and [Sto] for detailed discussions of these concepts.

Over a decade ago, Robin Milner showed the existence of a unique order-extensional model of
PCF that is inequationally fully abstract in the sense that one term is operationally less defined than
another exactly when the meaning of the first is less than that of the second in the model [Mil].
(Models that consist of functions are called extensional; when in addition these functions are ordered
pointwise, the models are called order-extensional.) Milner constructed this model using term model
techniques, and considerable effort has been expended in attempts to synthesize his model in a more
natural or semantic way; see [BerCurLév] for a survey of this work.

In practice, term equivalence is probably of greater interest than term ordering, and this sug-
gests that one consider models that are equationally fully abstract in the sense that two terms are
operationally equivalent exactly when they are mapped to the same semantic value. Milner’s inequa-
tionally fully abstract model is clearly equationally fully abstract, and it 1s natural to ask whether
there exist equationally fully abstract models that are not inequationally fully abstract. The purpose
of this paper i1s to answer this question in the affirmative; and to begin the study of the category E
of extensional, equationally fully abstract models and structure-preserving functions.

The paper’s main results are as follows:

(i) E is a pre-ordering with arbitrary products and coproducts and whose initial and terminal
objects are not isomorphic.

(ii) All objects of E are strongly algebraic (SFP) and all isolated elements of these models are
definable by terms.

(iii) There is a morphism from an object A to an object B of E iff B relates at least as many
pairs of terms as does A (i.e., if the meaning of M is less than that of N in A, then the meaning of
M 1is less than that of N in B).

1 Appears in Fifth International Conference on the Mathematical Foundations of Programming Semantics, Lecture
Notes in Computer Science, vol. 442, pp. 271-283, Springer-Verlag, 1990.



(iv) Objects of E that relate the same pairs of terms are isomorphic.

(v) The initial object of E is also initial in the category of (not necessarily extensional) equa-
tionally fully abstract models.

(vi) The terminal object of E is order-extensional and inequationally fully abstract, i.e., is Mil-
ner’s original model.

2 Preliminaries

The reader is assumed to be familiar with such standard domain-theoretic concepts as complete
partial orders (cpo’s), continuous functions, and w-algebraic, strongly algebraic and consistently
complete cpo’s.

A function f: P—() over posets is an order-embedding iff for all py,ps € P, p1 C po iff fp1 T fps.

In the sequel we will make essential use of Berry’s category of dI-domains and stable functions,
the definitions of which we now review. A dI-domain P is an w-algebraic, consistently complete cpo
such that

(i) zN(yUz)=(xNy)U(xzNz), for all ,y,z € P such that {y, z} is consistent; and

(ii) for all isolated p € P, {p’ € P |p' C p} is finite.

A function f: P — () between dI-domains is stable iff it is continuous and for all p € P and ¢ € )
such that ¢ C f p, there exists a least p’ € P such that p’ C p and ¢ C fp’. Given dl-domains P and
@, the poset P - () consists of the set of all stable functions from P to @, with the stable ordering:
JEgaff

(i) fpE gp, for all p € P; and

(ii) for all p,p’ € Pand ¢ € Q,if ¢C fp,p’ Cpand ¢ C gp’ then ¢ C fp'.

In [Ber], it is shown that the collection of dI-domains is closed under -, and that the category of
dI-domains and stable functions, ordered with the stable ordering, is a cpo-enriched cartesian closed
category.

To see that the stable ordering is finer than the pointwise ordering, define functions f, g: Ny — N,
by

1 ifz=1, and
o & =

0 otherwise,

and gz = 0. Then f is less than g in the pointwise ordering, but not in the stable ordering.

3 Fully Abstract Models of Programming Languages

In this section, we recall—very briefly—the definitions and results from [Sto] that will be required
in the sequel. A gentle introduction to this material can be found in this reference.

The reader is assumed to be familiar with many-sorted signatures X over sets of sorts S, as well
as algebras over such signatures. Signatures are assumed to contain distinguished constants €, at
each sort s, which intuitively stand for divergence. We use uppercase script letters (A, B, etc.) to
denote algebras and the corresponding italic letters (A, B, etc.) to stand for their carriers. We write
Ts, (or just 7) for the initial (term) algebra, so that Ty is the set of terms of sort s. Given an algebra
A and a term ¢ of sort s, [t]a (or just [{]) is the meaning of ¢ in As, i.e., the image of ¢ under the
unique homomorphism from 7 to A. An algebra is reachable iff all of its elements are denotable
(definable) by terms. A pre-ordering over an algebra is substitutive iff it is respected by all of the



operations of that algebra. Substitutive equivalence relations are called congruences, as usual. A
pre-ordering over an algebra in which the € constants are least elements at all sorts is referred to
as Q-least. The congruence over 7 that is induced by an algebra A is called & 4: two terms are
congruent, when they are mapped to the same element of A. When we say that c[vy,...,v,] is a
derived operator of type s; X --- X s, — s', this means that ¢ is a context of sort s’ over context
variables v; of sort s;. We write ¢4 for the corresponding derived operation over an algebra A.

Familiarity with ordered algebras, i.e., algebras whose carriers are S-indexed families of posets
with least elements denoted by the €2 constants, and whose operations are monotone functions,
is also assumed. Such an algebra is called complete when its carrier is a cpo and operations are
continuous, and a homomorphism over complete ordered algebras is called continuous when it is
continuous on the underlying cpo’s. Two complete ordered algebras are order-isomorphic iff there
exists a continuous homomorphism from one to the other that is a surjective order-embedding on
the underlying cpo’s. In any full subcategory of the category of complete ordered algebras and
continuous homomorphisms, objects are isomorphic exactly when they are order-isomorphic. We
write O7s (or just OT) for the initial ordered algebra, which consists of 7 with the “Q-match”
ordering: one term is less than another when the second can be formed by replacing occurrences
of © in the first by terms. A complete ordered algebra is called inductively reachable iff all of its
elements can be reached by the following transfinite process: start with the denotable elements, and
close under lub’s of directed sets. Complete ordered algebras whose carriers are w-algebraic and
whose isolated elements are all denotable are thus inductively reachable, but the converse is false.
The Q-least substitutive pre-ordering over 7 that is induced by an ordered algebra A is called < 4:
one term is less than another when the meaning of the first is less than that of the second in A.

If PC S, Ais an algebra and R is a pre-ordering over A|P then R¢, the conlextualization of R,
is the relation over A defined by: a R¢ o' iff ¢{a) R, c{a’), for all derived operators ¢[v] of type s —p,
peP.

Lemma 3.1 If P C S, A is a reachable algebra and R is a pre-ordering (respectively, equivalence
relation) over A|P then R® is the greatest substitutive pre-ordering (respectively, congruence) over
A whose restriction to P is included in R.

Proof. See lemmas 2.2.25 and 2.2.29 of [Sto]. O

Let = be a congruence over 7 and A be an algebra. Then A is &-equationally correct iff 4 C =,
and =s-equationally fully abstract iff 4 = =.

Let < be an Q-least substitutive pre-ordering over 7 and A be an ordered algebra. Then A is
=<-inequationally correct iff <4 C <, and <-inequationally fully abstract iff <4 = <.

Let & be a congruence over 7 and A be an algebra. Then A is &-contezrtually correct iff for all
derived operators ¢1[vy, ..., v,] and cafvy, ..., v,] of type s1 X -+ X 5, — &,

ifey g =cagq then forallt; € Ty, 1 <i<nyeq{ty, ... tn) & ca{ty, ..., Tn),

and A is s-contextually fully abstract iff for all derived operators ¢q[vy, ..., v,] and cavy, ..., v,] of
type 1 X -+ X 8, — '

ClA =C24 iff for all ¢; € Ts,,1§ 1 <, Cl<t1,...,tn> g Cz(tl,...,tn>.



Theorem 3.2 Suppose A is an inductively reachable complete ordered algebra and ~ is a congruence
over T. Then A is ms-fully abstract iff A is ms-contextually fully abstract.

Proof. See theorem 5.3.1 of [Sto]. O

A family of least fized point constraints ® is an S-indexed family of sets such that for all s € 5,
®, C T, x PT,, and for all (¢,7") € &, T' is a directed set in OT;. We write t=| |T” instead of
(t,T") for elements of ¥;.

A family of least fixed point constraints ® is closed iff for all ¢ € ¥ of type s1 x - -+ x 5, — s, i
=T € @5, 1 < i< n,and T" is a cofinal subset of o(T7] x - -xT) then {ty, ..., t, )= |T" € ®,.
We write ® for the closure of ®, i.e., the least closed family of least fixed point constraints containing
.

A complete ordered algebra A satisfies ® iff for all t=| [T” € &, s € S, [t] = LH{[¢'] | ¥ € T" }.
An Q-least substitutive pre-ordering < over 7 satisfies ® iff for all t=| |T" € &;, s € S, ¢ is a lub of
T in (T, <s).

Lemma 3.3 Lel @ be a family of least fized point constraints and A be a complete ordered algebra.
If A satisfies ®, then A satisfies .

Proof. See lemma 3.2.7 of [Sto]. O

Lemma 3.4 Let A be a complete ordered algebra that satisfies ®, and P C S. Define a pre-ordering
=< over T|P by: t1 =<, ta iff [t1] C, [t2]. Then <° is an Q-least substitutive pre-ordering over T
that satisfies .

Proof. See the proofs of lemma 4.1.1 and theorem 7.1.1 of [Sto]. O

Theorem 3.5 Suppose @ is a closed famuly of least fized point constraints and < is an §2-least sub-
stitutive pre-ordering over T that satisfies ®. There exists an inductively reachable, <-inequationally
fully abstract, complete ordered algebra I(=, ®) satisfying @, such that if A is a complete ordered al-
gebra satisfying ® with the property that < C <4, then there is a unique continuous homomorphism
hI(=,0)— A

Proof. See theorem 5.1.3 and corollary 5.1.6 of [Sto]. DO

4 Syntax and Semantics of PCF

In this section, we collect together the various definitions and theorems about the syntax and se-
mantics of PCF that we require in the sequel. For technical simplicity, we have chosen to work with
a combinatory logic version of PCF with a single ground type ¢, whose intended interpretation is
the natural numbers. From the viewpoint of the conditional operations, zero is interpreted as false
and non-zero as true.

We begin by defining the syntax of PCF, i.e., its signature. The sorts of this signature consists
of PCF’s types. The set of sorts S is least such that

(i) t € 5, and

(ii) s1 — s, € S'if s; € S and s2 € S.



O = and /"t = 4 — " The signature ¥ over S has the following

Define 7, for n € w, by: ¢
operators:

(i) Qs of type s,
K, s, of type (s1 — s2 — 1),
1) Sy 55,55 Of type ((s1 — 52 — s3) — (51 — $2) — 1 — 53),

Y; of type ((s — s) — s),

(vi

(vii

)
)
)

(v) n of type ¢, for n € w,
) Succ and Pred of type (¢ —¢),
)

If; of type (¢t — s —s—s), and

(viil) -4, s, of type (s1 — s2) X $1 — $3,
where the compound sorts are parenthesized in order to avoid confusion. Thus - (application) is a
binary operator, and all of the other operators are nullary. In keeping with standard practice, we
usually abbreviate M - N to M N, and let application associate to the left.

Next, we define several combinators that will be required below. We confuse use and mention
for these combinators: given a combinator C', we also write C' for its denotation in any model that
may be at hand.

For s € S, we write I, for the term S ., K; s K s of sort s — 5. I will be the identity
operation in all models. For s € S, define approximations Y;* to Y; of sort (s — s) — s by

0 1
Ys = Q(s—»s)—»sa st+ — Sg—»s,s,s Is—»s sta

so that ¥{" is an w-chain in OT;_,)_,. For alln € w and s € S, define syntactic projections ¥¢ of
sort s — s by
g =YY" F L = Az Ay (97, (x(YY ),

§1—82

where F of sort (¢ —¢) — ¢ — ¢ is
Az. Ay. (If y (Suce(z(Pred y))) 0).

Expanding the abstractions, one can see that the U7 form an w-chain in OT;_.;. Let the equality
test Fq of sort t — ¢ — ¢ be

Y(Az. Az Ay.(If « (If y (2(Pred x)(Pred y)) 0) (If y 0 1))).
FEq yields 1 for true and 0 for false. Define glb operators Infs of sort s — s — s by

Inf, = dx. dy. (If (Fqxy)xQ),
Infs, s, = Az Ay Az (Infs, (2 2)(y 2)).

For n € w, define operators And,, of sort «™ by: Andg = 1 and
Andpy1 = Ax Ayr. o  Ayn. (If 2 (Andpy1 -+ yn) 0).
Define step operators St,, of sort ¢ — ¢, for n € w, by

Stp, = Az (If (Bqnz)1Q).



Sty yields true (1) if its argument is n, and diverges otherwise. Define alternative identify operators
I of sort s — s by

Il=Y,.,F, I =Xz Ay (I, (=(1], )))-

$1—82
I’ will be identical to I in some models.

A model A of PCF is a complete ordered algebra such that the following conditions hold:
(i) A, is the flat cpo

(i1) For all 51,82 € S, a1 € A,, and as € A, K,y 5, 01 a2 = ay;

(iii) For all s1,s2,83 € S, a1 € As; 5,54, 02 € As, s, and az € A, S
ay as (Clz 03);

(iv) Forall s € S, Yy = | |, ¢ Y4

(v) For all a € A,, Succaisequal to L, ifa= L1,, and is equal toa+ 1, if a € w;

s1,52,83 @1 G2 A3 =

(vi) For all @ € A,, Pred ais equal to L,,if a = L,, is equal to 0, if a = 0, and is equal to a — 1,
if a e N —{0}.

(vii) For all s € S, a; € A,, and ag,a3 € A, If; a1 az az is equal to L, if a3 = L, is equal to
as, if a; € N — {0}, and is equal to as, if a3 = 0.

A model A is extensional iff for all ay, a2 € As,—s,, if a1 a = aza, for all @ € A, then a1 = a9,
and order-extensional iff for all a1, a2 € A5, 5., 1l a1 a Cs, asa, for all a € Ag,; then a1 T, 5, as.
Finally, morphisms between models are simply continuous homomorphisms between the complete
ordered algebras.

Application is left-strict in all models A since Ly, s, Ty s, Koy 5q Loy, and thus Ly, a Ty,
Koy s, Ls,a=1,,, forallae As,.

The following theorem introduces the stable function model, which features prominently below
[Ber][BerCurLév].

Theorem 4.1 (Berry) There is a unique model A constructed from the category of dI-domains and
stable functions in the natural way, i.e., such that A, = Ny, As,—s, = As; = As,, a1 - a2 = ag as,
and ng =n. A is extensional but not order-extensional.

The following theorem is proved by making use of an operational semantics for PCF; see theorem

3.1 of [Plo].
Theorem 4.2 (Plotkin) For all models A and B and terms M of sort ¢, [M]a = [M]s5.

This theorem allows us to define the meaning [M] € N of a term M of sort ¢ to be [M]4, for
an arbitrary model A.

We now define notions of program ordering and equivalence for PCF. Define a pre-ordering
over T|{¢} by: M C, N iff [M] C [N], and let & be the equivalence relation over T'|{¢} induced
by C. Then, C° is an {2-least substitutive pre-ordering over 7, &° is a congruence over 7, and C°
induces ~°.

Specializing the notions of the previous section, we say that a model is



(i) inequationally correct iff it is C-inequationally correct;
11) tnequationally fully abstract iff 1t 1s T -inequationally fully abstract,;
t Uy fully abstract iff it is C° t Uy fully abstract
11) equationally correct iff 1t 1s &°-equationally correct;
quat lly tiff 1t “-equat lly t;
)
)

(iv) equationally fully abstract iff it is ~=°-equationally fully abstract;

(v
(vi) contextually fully abstract iff it is m°-contextually fully abstract.
It is not hard to show that all models are inequationally, equationally and contextually correct.

contextually correct iff it 1s &®-contextually correct; and

Clearly inequational full abstraction implies equational full abstraction, but the converse, as we shall
see, is false. The stable function model is not even equationally fully abstract [Ber][BerCurLév].

Finally, we recall Milner’s important result concerning the order-extensional nature of C° and
the extensional nature of a&¢; see lemma 4.1.11 of [Cur].

Theorem 4.3 (Milner) (i) ] =, and =° = =,.
(11) For all My, Ms € Tsl—>52; M, C¢ Ms iﬁfOT all N € Tsl, M N ;; Ms N.

(111) For all My, Ms € Tsl—>52; My ~¢ Ms iﬁfOT all N € Tsl, M N %52 Ms N.

~s1—52

From theorem 4.3 (i), we know that for all terms M of sort ¢, either M ~¢ Q or M =% n, for

some n € w.

5 Equationally Fully Abstract Models

This section consists of the paper’s main results, concerning the category E of extensional, equa-
tionally fully abstract models and their morphisms. To begin with, we introduce our main technical
device. Let @ be the family of least fixed point constraints such that

q>(8—>8)—>s = {YSEI_I{ st | necuw }}a

for all s € S, and &, = ), whenever s does not have the form (s' — s') — s'. A least fived point
ordering < is an Q-least substitutive pre-ordering over 7 that induces ~° and satisfies ®. We write
L for the set of all least fixed point orderings, ordered by inclusion.

By lemma 3.3, all models satisfy ®. Lemma 3.4 allows us to conclude that C° is an element of

L.

Lemma 5.1 For all least fized point orderings < and terms M, N of sort ¢, M <, N iff either
M =fQ or M ¢ N. Thus, all least fized point orderings agree at sort .

Proof. Suppose that < € L and m <, n, for m,n € w. Define a term M of sort + — ¢+ which
yields n when applied to m and m when applied to n. Then n ~{ M m <, M n =/ m, showing that
n <, m, and thus m ~¢ n. The rest follows easily. O

Lemma 5.2 Let A be an extensional model and P = {t,0.— 1}. Define a pre-ordering < over T|P
by: M <, N iff [M]C, [N]. Then <° is a least fized point ordering.

Proof. By lemma 3.4, all that remains to be shown is that <* N >¢ = &°. Clearly, <* C C°, and
thus <¢ N> C ~*¢. For the opposite inclusion, suppose that My a¢ Ms, and let ¢[v] be a derived
operator of type s — (¢ —¢). We must show that [e{M;}] = [e(M2)], and since A is extensional and
all elements of 4, are denotable, it suffices to show that [¢(M;) N] = [¢{Ms) NJ, for all terms N of
sort ¢. But this follows from the assumption that My ~ M,. O



Theorem 5.3 L is a nontrivial complete lattice whose greatest element is C°.

Proof. We have already observed that C° € L. To see that L is nontrivial, let .4 be the stable
function model, and define < as in the statement of lemma 5.2. The lemma then allows us to
conclude that <° € L. To see that ¢ and <° are distinct, define terms M, N of sort + — ¢ by
M =Xe.(If 00) and N = Az.0. Then M 7, N by theorem 4.3 (ii), but M £°_, N since M is
not less than N in A4,_.,.

Showing that L is closed under arbitrary nonempty intersections is straightforward, and it re-
mains to show that C° is the greatest element of L. Suppose that < € L, M <; N and let ¢[v] be
a derived operator of type s — ¢. Then ¢(M) <, ¢(N}, and thus ¢(M) T, ¢(N) by lemma 5.1. But

~it
then M S N, as required. O

bl

We write < for the least element of L.

Theorem 5.4 For each least fizred point ordering =<, there is an nductively reachable, <-
inequationally fully abstract model M(=X), such that for all models A with the property that < C <4,
there is a unique morphism from M(X) to A. In particular, M(=X) is initial in the category of <-
mequationally fully abstract models and their morphisms.

Proof. By theorem 3.5, we know all that is necessary about M (=) except conditions (i)—(iii) and
(v)—(vii) of the definition of model. Condition (i) holds since the denotable elements are ordered
properly (lemma5.1) and M(=<) is inductively reachable. The remaining conditions can be expressed
by sets of equations (pairs of derived operators), and these equations hold in M(=) since it is
contextually fully abstract (theorem 3.2) and all models are contextually correct. O

M(=) is uniquely specified, up to order-isomorphism.

A model A is syntactically strongly algebraic (or syntactically SFP) iff the following conditions
hold:

(1) (U7 a) = U7 q, forall a € A;, n € w and s € S;

(i) @ = | ¢, (¥} a), for all a € A and s € S; and

(iii)) { Y7 a | a € A, } is finite, for all n € w and s € S.

The carrier of any syntactically SFP model is clearly SFP. Furthermore, if such a model is
inductively reachable then ¥? « is isolated and thus denotable, for all ¢ € A; and n € w.

Lemma 5.5 (Milner) (i) Extensional models are syntactically SFP.

(ii) For all models A and a1, a2 € A,, Inf, a1 az is the glb of a1 and as. If A is order-extensional,
then for all s € S and a1,as € Ag, Infs ay as s the ¢lb of a; and as.

(iii) The carriers of order-extensional models are Scott domains, i.e., consistently complete, w-
algebraic cpo’s.

Proof. (i) and (ii) are straightforward inductions on S. For (iii), each A is w-algebraic, by part (i).
For consistent completeness, it suffices to show that each consistent pair a1, as of 1solated elements
of As has a lub. Let n € w be such that " a; = a;, for i = 1,2, and X = {¥"a | a Jd; {a1,a2}}.
Then X is nonempty and finite, and thus has a glb z, by part (ii). But z is easily seen to be the lub
of a; and as. O

Lemma 5.5 tells us, in particular, that the stable function model is syntactically SFP.



Theorem 5.6 Inductively reachable, equationally fully abstract models are syntactically SFP and
extensional. If, in addition, a model is inequationally fully abstract, then it is order-extensional.

Proof. Let A be such a model. Condition (i) of the definition of syntactic strong algebraicity
holds, since A is contextually fully abstract and (i) holds in, e.g., the stable function model, which is
contextually correct. Expanding the identifier abstractions, one can see that I'=| {97 |n €w } €
®,_,, for all s € S. Since A is equationally fully abstract, we have that I’ = I, and thus that
I'a=a, forall a € A; and s € S. Thus condition (ii) holds.

For condition (iii), we prove by induction on A that for all @ € A;, s € S, and n € w, there is a
term M of sort s such that ¥7 ¢ = [¥? M]. This is obvious for denotable elements. Suppose that
it is true for the elements of a directed set D. Then

v | [p=| {vrdldeD}=| {[¥N]|INeT},

for a set of terms T”. But {[¥? N] | N € T’} is finite (since it is finite in, e.g., the stable function
model) and thus contains its own lub, which is some [¥? N7, thus completing the induction. Then,
{U?a|a€ A, }isequal to {[¥? M] | M €T}, and thus is finite by the above reasoning.

For the extensionality of A, suppose that a1, as € As, s, and a1 ¢’ = az d’, for all &’ € A;,. To
show that a; = as, it suffices to show that W¢ __  a; =¥
, a2 are denotable. Furthermore, for all denotable

¥ s, a2, for all n € w. From the above

n

induction, we know that ¢

a € As,,

n
a; and WP

(W, s, a1) @’ = WP, (ar (W], a')) = W (as(WF, o)) = (WF, _,, az)a’.

a; = N\
Order-extensionality under the additional hypothesis that A is inequationally fully abstract fol-

Thus, by the obvious semantic restatement of theorem 4.3 (iii), ¥ as, as required.

n n
851—82 851—82

lows similarly, using theorem 4.3 (ii). O

Theorem 5.7 (Milner/Berry) Eztensional, equationally fully abstract models are syniactically
SFP and inductively reachable.

Proof. Adapted from theorem 3.6.18 of [Ber]. Let A be such a model, which is syntactically SFP
by lemma 5.5. Clearly, all elements of A, are denotable. Suppose that s = s; — ... — s, — ¢, for
n > 1, is such that all isolated elements of each A, are denotable. Suppose, toward a contradiction,
that there is a non-denotable i1solated element a of A;. Let n € w be such that ¥™ ¢ = a. Define a
pre-ordering < over A; by: a < d' iff aay -+ a, C, @’ ay - ay, for all a; € A,,. Let X be the set
of all denotable elements of {¥"a’ |a' € As}, XT ={ze€ X |a<zr}and X~ = X — XT.

Let 61,...,0, be the elements of X ~; here p > 1, since L € X~. Then, for all 1 < ¢ < p, there
exist 1solated w;: € As; and z; € w such that awi w; = z and §; wli w; # z;. Let VVJZ be

terms denoting the w;:, and let @ of sort s — ¢ be

Az. (Andp(St,, (z wi-wh) - (St., (x WP - WE))).

There are now two cases to consider:

(X is nonempty) Suppose that z; and z, are elements of Xt that are denoted by terms X
and Xo, respectively. Let X3 = ¥"(Inf X1 X2) and #3 be the meaning of X5. A bit of work then
shows that z3 is a <-lower bound of x; = ¥" x; and s = ¥” 25, and that a = V" a < x3, l.e.,
r3 € Xt. Thus we can conclude that there is a <-least element v of Xt. There exist isolated



u; € As, and v € w such that auy --- v, = L and yu; --- uy, = v. Let U; be terms denoting the u;,
and define terms M; and M, of sort s — ¢ by

My = Ax (Q(I" »)),
My = dx. (Ando(Q(¥" ) (Sty, (O 2 Uy -+ Uy))).

Then the meaning of M; applied to a is 1, whereas the meaning of Ms applied to a is L. On
the other hand, we can use theorem 4.3 (iii) to show that M; =¢_,, Ms. But this contradicts the
equational full abstraction of A.

(X is empty) Similar to the nonempty case, with M; defined as before and My = Q. O

Since all objects of E are inductively reachable (theorem 5.7), it follows that E is a pre-ordering.
Lemma 5.8 If A is an equationally fully abstract model then <4 ts a least fived point ordering.
Proof. Immediate from lemma 3.3. O

Theorem 5.9 If A is an extensional, equationally fully abstract model then it is order-isomorphic

to M(=<4).

Proof. Let B = M(=<4) and ¢ be the unique continuous homomorphism from B to .A. By theorem
5.7, A is inductively reachable, and thus it suffices to show that 7 is an order-embedding. Suppose
that i3 b1 Cg ¢5 bo. Then, for all n € w,

i (W by) = U7 (iy by) Sy W (i by) = iy (U™ by).

But ¥ b; and ¥" b5 are denotable, and thus ¥ by C; W™ by. Thus by C; bs, since B 1s syntactically
SFP. O

Proposition 5.10 Suppose A and B are extensional, equationally fully abstract models. If <4 C
<, then there is a unique morphism from A to B. If there is a morphism from A to B, then
<4 < =<5

Proof. The first part follows from theorems 5.9 and 5.4, and the second part is obvious. O
Corollary 5.11 E and L are equivalent categories.
Proof. Immediate from theorems 5.4, 5.6 and 5.9 and proposition 5.10. O

From the above results, we know that M(=y) and M(C?) are the initial and terminal objects,
respectively, of E. Tt is easy to see that M(=g) is also initial in the category of (not necessarily
extensional) equationally fully abstract models and their morphisms. M(C?) is the only object of E
that is order-extensional, since models that are order-extensional, SFP and whose isolated elements
are all denotable are easily seen to be inequationally fully abstract. Another fact about M(Z°) is
that its carrier is consistently complete; it is unknown whether there are other objects of E with
consistently complete carriers. Another obvious open question is whether M(<;) and M(C°) are
the only objects of E.
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