
Substitution Revisited1Allen StoughtonComputer Science Subject GroupSchool of Mathematical and Physical SciencesUniversity of SussexFalmer, Brighton BN1 9QH, EnglandAbstract. A de�nition of simultaneous substitution for the lambda calculus is presented thatis easier to work with than standard single substitution because it is a de�nition by structuralrecursion, instead of recursion on the length of terms, and bound variables are always renamed.As a result, many proofs involving substitution are by structural induction, instead of inductionon the length of terms, and are simpler than the corresponding standard proofs because of thereduction in the number of cases that must be considered. Furthermore, because of the uniformrenaming of bound variables, identity substitutions normalize terms with respect to equivalenceup to the renaming of bound variables (�-congruence), allowing induction-free proofs of sometheorems that ordinarily would be proved by induction on the relation of �-congruence.A series of results relating simultaneous substitution and �-congruence are proved, and asimple proof of the \substitution lemma" of denotational semantics is given.1 IntroductionLogics for languages in which variables can be bound generally involve substitution. Unrestricted,naive substitution leads to inconsistencies, since free variables may be captured in the process. Twoways of avoiding this problem are common. In the �rst, as in many presentations of the �rst orderpredicate calculus, substitution is performed in the naive way but is only allowed when free variablesare not captured. In the second, as in the lambda calculus, unrestricted substitution is allowed butbound variables are renamed, as necessary, to avoid capturing. This paper focuses on unrestrictedsubstitution for the untyped lambda calculus. Most of the de�nitions and results will, however,apply easily to other languages.The standard de�nition of unrestricted substitution for the lambda calculus was given by Curryand Feys in [2] p. 94, where the notation [M=x]N was used to denote the substitution of M forthe free occurrences of x in N . (See also [6] p. 62 and [1] p. 578.) Unfortunately, proofs involvingthis de�nition of substitution are notoriously tedious. First, in cases when capturing would occur,[M=x]�y:N is de�ned to be �z:[M=x][z=y]N , for a new variable z. Since [z=y]N is not a subterm1Appears in Theoretical Computer Science, 59:317{325, 1988.1



of �y:N , [�=�]N is a de�nition by recursion on the length instead of the structure of N , and thusmany proofs must be by induction on the length of N , and contain two applications of the inductivehypothesis for this subcase. Second, there are three subcases to the abstraction case of the de�nition,since bound variables are renamed only when necessary, and thus there are three subcases to considerin many proofs. Because bound variables must sometimes be renamed, it is necessary, in general, towork with the equivalence of terms up to the renaming of bound variables (�-congruence) instead ofidentity. Complicating the de�nition by preserving identity whenever possible is thus questionable.For examples of these complexities see [2] pp. 95{104 for the proofs of a series of basic theoremsabout substitution, and [6] pp. 161{166 for a proof of the \substitution lemma" of denotationalsemantics. (This proof of the substitution lemma is incorrectly claimed to be by structural induction;it is actually by induction on the length of terms.)This paper gives a de�nition of simultaneous substitution that is by structural recursion, sincebound variables are renamed in parallel with substitutions, and in which bound variables are alwaysrenamed. As a result, many proofs involving substitution are by structural induction, and aresimpler than the corresponding standard proofs because of the reduction in the number of cases thatmust be considered. Furthermore, because of the uniform renaming of bound variables, identitysubstitutions normalize terms with respect to �-congruence, allowing induction-free proofs of sometheorems that ordinarily would be proved by induction on the relation of �-congruence.The idea of always renaming bound variables is fairly obvious, and is also used, e.g., in [4] p.379. The key technique of using simultaneous substitution in order to give a de�nition by structuralrecursion also appears in [3] pp. 49{56, where substitution for the predicate calculus is de�ned. Thispaper's contribution is to develop a simple, uni�ed theory, based upon these ideas.Section 2 of the paper gives the de�nitions of simultaneous substitution and �-congruence. Sec-tion 3 proves a series of results relating substitution and �-congruence. Finally, section 4 gives asimple proof of the \substitution lemma" of denotational semantics. With one exception, the resultsof section 4 are independent from those of section 3.2 De�nitionsThe application of a function f to an argument a is written f a. Function space formation, D!E,associates to the right, and function application to the left. For f :D!E, d 2 D and e 2 E, thefunction f [e=d] from D to E is de�ned byf [e=d] d0 = � e if d0 = d; andf d0 otherwise:Two functions f; g:D ! E are equal over a subset X of D, written f =X g, i� for all x 2 X,f x = g x.Let V be a denumerable set of variables, and choice be a choice function for V , i.e., a functionfrom (PV )�f;g to V such that choiceX 2 X, for all nonempty X � V . The set of terms T is leastsuch that x 2 T if x 2 V;M N 2 T if M 2 T and N 2 T; and�x:M 2 T if x 2 V andM 2 T:2



As usual, we use the lower case letters u, v, w, x, y and z and the upper case letters M and N torange over variables and terms, respectively.De�ne the free variable function FV(�):T!PV by structural recursion:FV(x) = fxg;FV(M N ) = FV(M ) [ FV(N ); andFV(�x:M ) = FV(M )� fxg:A variable x is free in a term M i� x 2 FV(M ).The set of substitutions S is V ! T , and we let � range over S. The identity substitution � isde�ned by � x = x. De�ne new :V !T!S! ((PV )� f;g) bynew xM � = f y j for all z 2 FV(M )� fxg; y 62 FV(� z) g;so that new xM � contains all but a �nite subset of V . The simultaneous substitution M � of � xfor the free occurrences of x in M , for all x, is de�ned by structural recursion:x� = � x;(M N )� = (M �)(N �); and(�x:M )� = �y:(M �[y=x]); where y = choice(new xM �):The composition �2 � �1 of substitutions �1 and �2 is de�ned by (�2 � �1)x = (�1 x)�2. Note that(�x:M )� is independent from � x, a fact which, in addition to making intuitive sense, is necessaryfor the validity of much of section 3, e.g., theorems 3.2 and 3.5.Let =� be the relation of �-congruence, i.e., the least equivalence relation over T such that(�) M N =� M 0N 0 if M =� M 0 and N =� N 0; and(�) �x:M =� �y:N if either(i) x = y and M =� N , or(ii) y 62 FV(M ) and M �[y=x] =� N .We say that M and N are �-congruent i� M =� N . Substitutions �1 and �2 are �-congruent overX � V , written �1 =X� �2, i� �1 x =� �2 x, for all x 2 X, and �-congruent, written �1 =� �2,i� �1 =V� �2. The hypothesis of condition (�) is used frequently below, and is abbreviated byM (x) =� N (y); it can be read as M and N are �-congruent up to the renaming of x to y. We willsee below that M (x) =� N (y) i� N (y) =� M (x) (corollary 3.7).3 Substitution and �-CongruenceLemma 3.1 (i) If y 62 FV(M ) then �x:M =� �y:(M �[y=x]).(ii) x 2 FV(M �) i� x 2 FV(� y), for some y 2 FV(M ).(iii) If M =� N then FV(M ) = FV(N ).(iv) If M1 =� M2 and �1 =FV(M1)�fxg� �2 then new xM1 �1 = new xM2 �2.(v) If �1 =FV(M) �2 then M �1 = M �2.(vi) M � =� M(vii) If M (x) =� N (y) then new xM � = new y N �.(viii) For y 2 new xM �1, new xM (�2 � �1) = new y (M �1[y=x])�2.3



Proof. For (i), M �[y=x] =� M �[y=x], by reexivity, and the result follows from (�).(ii) follows by structural induction over M .(iii) is by induction on =�, i.e., de�ne a relation � � =� by M � N i� M =� N and FV(M ) =FV(N ), and show that � satis�es the de�ning conditions of =�. (ii) is used to show that � satis�es(�).(iv) is a consequence of (iii).(v) is by structural induction on M , using (iv) for the abstraction case.(vi) follows by structural induction on M , using (i) for the abstraction case.(vii) follows easily from (iii).We give a detailed proof of (viii), as an example. First, suppose w 2 new xM (�2 ��1). To showthat w 2 new y (M �1[y=x])�2, suppose z 2 FV(M �1[y=x])�fyg; we must show that w 62 FV(�2 z).Then z 2 FV(�1[y=x] v), for some v 2 FV(M ), and, since z 6= y, it follows that v 6= x andz 2 FV(�1 v). Since w 2 new xM (�2��1) and v 2 FV(M )�fxg, w 62 FV((�2��1)v) = FV((�1 v)�2),and thus w 62 FV(�2 u), for all u 2 FV(�1 v). But z 2 FV(�1 v), and thus w 62 FV(�2 z), asrequired. Second, suppose w 2 new y (M �1[y=x])�2. To show that w 2 new xM (�2 � �1), supposez 2 FV(M ) � fxg. We must show that w 62 FV((�1 z)�2), and this will follow from showing thatw 62 FV(�2 v), under the assumption that v 2 FV(�1 z). Then v 2 FV(�1[y=x] z), since z 6= x,and thus v 2 FV(M �1[y=x]). Furthermore, v 6= y, since, by its de�nition, y 62 FV(�1 z). But thenv 2 FV(M �1[y=x])�fyg, and, since w 2 new y (M �1[y=x])�2, we can conclude that w 62 FV(�2 v),as required. 2From (v) and (vi) of lemma 3.1, if x 62 FV(M ) then M �[N=x] =� M .The following Syntactic Substitution Theorem shows that performing the composition of twosubstitutions yields the same result as performing those substitutions sequentially.Theorem 3.2 (M �1)�2 = M (�2 � �1)Proof. By structural induction on M . The variable and application cases are trivial. For anabstraction �x:M ,((�x:M )�1)�2 = (�y:(M �1[y=x]))�2= �y0:((M �1[y=x])�2[y0=y])= �y0:(M (�2[y0=y] � (�1[y=x]))) (induction);where y = choice(new xM �1) and y0 = choice(new y (M �1[y=x])�2), and(�x:M )(�2 � �1) = �z:(M (�2 � �1)[z=x]);where z = choice(new xM (�2 � �1)). But z = y0, by lemma 3.1 (viii), andM (�2[z=y] � (�1[y=x])) = M (�2 � �1)[z=x]follows by two applications of lemma 3.1 (v). 2Corollary 3.3 If y 62 FV(M ) then (M �[y=x])�[N=y] = M �[N=x].Proof. Follows easily from theorem 3.2 and lemma 3.1 (v). 24



Corollary 3.4 (i) � � � =� � = � � �(ii) �3 � (�2 � �1) = (�3 � �2) � �1Proof. (i) is by lemma 3.1 (vi), and (ii) follows easily from theorem 3.2. 2The following theorem, the basis of the remainder of the section, is remarkable: applying asubstitution to each of two �-congruent terms yields equal|not just �-congruent|results! Animmediate corollary is that identity substitutions normalize terms with respect to �-congruence, afact which allows induction-free proofs of some theorems (like corollaries 3.10 and 4.5) that ordinarilywould be proved by induction on =�.Theorem 3.5 If M =� N then M � = N �.Proof. By induction on =�, i.e., de�ne a relation � � =� byM � N i� M =� N and M � = N �,for all �, and show that � satis�es the de�ning conditions of =�. Obviously � is an equivalencerelation and satis�es (�). For (�), suppose that either(i) x = y and M � N , or(ii) y 62 FV(M ) and M �[y=x] � N .We must show that (�x:M )� = (�y:N )�, for all �. By lemma 3.1 (vii), new xM � = new y N �,and thus (�x:M )� = �z:(M �[z=x])and (�y:N )� = �z:(N �[z=y]);for z = choice(new xM �). If (i) then M �[z=x] = N �[z=x] = N �[z=y], by induction. Alternatively,if (ii) then M �[z=x] = (M �[y=x])�[z=y] = N �[z=y], by corollary 3.3 and induction. 2Corollary 3.6 (i) M =� N i� M � = N �(ii) �1 =X� �2 i� � � �1 =X � � �2Proof. (i) follows from theorem 3.5 and lemma 3.1 (vi), and (ii) is immediate from (i). 2Surprisingly, we can only now prove the following simply stated result.Corollary 3.7 M (x) =� N (y) i� N (y) =� M (x)Proof. Follows easily from lemma 3.1 (iii) and (vi), corollary 3.3 and theorem 3.5. 2The following corollary shows that substitution and �-congruence are compatible.Corollary 3.8 If M1 =� M2 and �1 =FV(M1)� �2 then M1 �1 =� M2 �2.Proof. By corollary 3.6 (ii), � � �1 =FV(M1) � � �2, and thusM1 �1 =� (M1 �1)� = M1(� � �1) = M1(� � �2) = M2(� � �2) = (M2 �2)� =� M2 �2;by lemma 3.1 (vi), theorem 3.2, lemma 3.1 (v) and theorem 3.5. 2The following is a companion result to corollary 3.3. Unfortunately, it cannot be strengthenedfrom =� to =. 5



Corollary 3.9 If y 2 new xM � then (M �[y=x])�[N=y] =� M �[N=x].Proof. Follows easily from theorem 3.2 and corollary 3.8. 2Now we are able to characterize the structure of �-congruence.Corollary 3.10 If M =� N then one of the following conditions holds:(i) M and N are equal variables;(ii) M and N are applications M1M2 and N1N2, respectively, and Mi =� Ni, for i = 1; 2;(iii) M and N are abstractions �x:M 0 and �y:N 0, respectively, and M 0(x) =� N 0(y).Proof. If M =� N then M � = N �, by corollary 3.6 (i). There are three cases to consider.(i) If M is a variable x then x = x � = N �, and thus N = x.(ii) If M is an application M1M2 then (M1 �)(M2 �) = N �, and thus N is an application N1N2,and Mi � = Ni �, for i = 1; 2. But then Mi =� Ni, for i = 1; 2, by corollary 3.6 (i).(iii) If M is an abstraction �x:M 0 then �z:(M 0 �[z=x]) = N �, for z = choice(new xM 0 �), andthus N is an abstraction �y:N 0, and (�y:N 0)� = �z:(N 0 �[z=y]). Since M 0 �[z=x] = N 0 �[z=y],M 0 �[y=x] =� (M 0 �[z=x])�[y=z] = (N 0 �[z=y])�[y=z] =� N 0 �[y=y] = N 0 � =� N 0;by corollary 3.9. If x = y then M 0 =� M 0 � = M 0 �[y=x] =� N 0. Alternatively, if x 6= y theny 62 FV(M 0), since y 62 FV(�y:N 0) = FV(�x:M 0). In either case, M 0(x) =� N 0(y), as required. 2Our �nal corollary shows that, up to �-congruence, any element of new xM � may be chosen asthe bound variable of (�x:M )�.Corollary 3.11 If y 2 new xM � then (�x:M )� =� �y:(M �[y=x]).Proof. Follows from corollary 3.9. 24 Substitution and Denotational SemanticsThis section consists of a proof of the \substitution lemma" of denotational semantics. Familiaritywith some standard de�nitions and results about complete partial orders (cpo's) and continuousfunctions, which can be found, e.g., in [5], is assumed. Our denotational semantics is taken from [7],with the exception that cpo's instead of complete lattices are used.Let the cpo E of expression values be a nontrivial solution to the isomorphism equation E �= E!E, and in: (E!E)!E and out :E! (E!E) be continuous functions such that out � in = idE!Eand in � out = idE . Let the cpo U of environments be V !E, ordered componentwise; we use � torange over U . De�ne a denotational semantics E :T!U!E by structural recursion:E [[x]] = ��:� x;E [[M N ]] = ��:(out E [[M ]]�)E [[N ]]�; andE [[�x:M ]] = ��:in �e:E [[M ]]�[e=x]:The composition � � � of an environment � and a substitution � is the environment de�ned by(� � �)x = E [[�x]]�. 6



Lemma 4.1 If �1 =FV(M) �2 then E [[M ]]�1 = E [[M ]]�2.Proof. An easy structural induction over M . 2We can now state and prove the simultaneous substitution form of the \substitution lemma". Aspecialization to single substitution follows as a corollary.Theorem 4.2 E [[M �]]� = E [[M ]](� � �)Proof. By induction on the structure of M . The variable and application cases are obvious. Foran abstraction �x:M ,E [[(�x:M )�]]� = E [[�y:(M �[y=x])]]�= in �e:E [[M �[y=x]]]�[e=y]= in �e:E [[M ]](�[e=y] � �[y=x]) (induction);where y = choice(new xM �), andE [[�x:M ]](� � �) = in �e:E [[M ]](� � �)[e=x]:Thus, by lemma 4.1, it is su�cient to show that(�[e=y] � �[y=x])z = ((� � �)[e=x])z;for all z 2 FV(M ). If z = x then both sides of this equation are e. Alternatively, if z 6= x then(�[e=y] � �[y=x])z = E [[� z]]�[e=y]= E [[� z]]� (lemma 4.1)= ((� � �)[e=x])z;since, by its de�nition, y 62 FV(� z). 2Theorem 4.2 is easily seen to be the semantic analogue of theorem 3.2, the Syntactic SubstitutionTheorem.Corollary 4.3 E [[M �[N=x]]]� = E [[M ]]�[E [[N ]]�=x]Proof. Immediate from theorem 4.2. 2Corollary 4.4 (i) � � � = �(ii) � � (�2 � �1) = (� � �2) � �1Proof. (i) is obvious, and (ii) is a consequence of theorem 4.2. 2All of the proofs presented so far in this section are completely independent from the results ofsection 3. A direct proof of the following, �nal corollary is also possible, by induction on =�; weprefer, however, to give an induction-free proof, exploiting the normalizing e�ect of substitution.Corollary 4.5 If M =� N then E [[M ]] = E [[N ]].Proof. If M =� N then M � = N �, by corollary 3.6, and thusE [[M ]]� = E [[M ]](� � �) = E [[M �]]� = E [[N �]]� = E [[N ]](� � �) = E [[N ]]�;for all �, showing that E [[M ]] = E [[N ]]. 2 7
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