TheeXene Library Manual
(Version 0.4)

February 11, 1993

John H. Reppy
Emden R. Gansner

AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

COPYRIGHT (© 1993 by AT&T Bell Laboratories
ALL RIGHTS RESERVED

Contents

1

Introduction

Geometry

21 PoOintoperations e e e e e e e e e e e e e e e
22 SzeopealionS e e e e e e e e e e e e
23 Rectangleoperations L e e e e e e e e e

Basic eXene objects

31 Thedisplay o e e e e
32 SCreenS. o e e e e e e e e e
33 Drawables e e e e

B4 CUISOIS . v v v v e e e e e e e e e e e

35 Miscdlaneoustypesand operationsol oo e e
351 Otherdisplayoperations e
352 Windowhashtables
353 Gravity e e e

Windows
41 WIndow Creation e e e e e e e e e
4.2 Window configuration L e e e e

4.3 Otherwindow operations. o e e e e e e e

Drawing
51 Pens . . . e e

A A W W

© 00 00 00 N N O

521 Openingafont e
522 CharaCter metrics o e e e e
53 PixmapsandTiles e
54 Drawables
55 Drawinggraphics e
551 Areaoperaions e e e e e e
56 Drawingtext L e e e e e e

6 Color

7 User interaction
7.1 Modifierbuttons
7.2 Mousebuttons L L e e
7.3 Thewindowenvironment
731 Addressedmessagesandrouting L. oLl e
732 Controlmessages o i i e e e e e e e
733 Keyboardmessages oot e e
734 MOUSEMESSAOES . . « . v v v e e e e e e e e e e e e e e e e
74 Keysymtrandation. L. e e e
75 Rubberbanding L.

8 Inter-client communication
81 AIOMS e e e e e e
8.2 Sdections e e e
83 Cuthuffers e
84 Windowhints e

9 Graphicsutilities

10 Unsupported X-windowsfeatures

Draft of June 4, 1993 15:03

24

26
26
27
27
29
30
31
31
31
33

35
35
35
35
36

37
37
37
38

40

Chapter 1

| ntroduction

This document accompanies the beta release of eXene, a multi-threaded X-window toolkit for Standard
ML of New Jersey (SML/NJ). eXene isimplemented on top of Concurrent ML (CM L)[Rep%0 Rep91d Thijg
document is not an introduction to X-windows, SML, or CML; it assumes a working knowledge of al of
these systems. The reader should be familiar with X-windows at the level of Xlib (see [Nye90b] or [SG92]
for information); in general, we do not describe the semantics of an eXene operation or type when it is the
same asin Xlib. For information about SML see [Pau9l]. CML isdescribed in detail, including alanguage
tutorial, in[Rep90], and aformal description of itssemantics can be found in [Rep91b, Rep92]. Furthermore,
thisis not an eXene tutoria; look at the example applications included in the distribution to see how eXene
applications are constructed.

eXene provides a user-interaction moded that is similar to the one advocated by [Pik89] and [Haa90].
User actions, such as mouse motion, are mapped onto streams of messages, which are routed from atop-level
window down the window hierarchy. Each window has an environment consisting of three input streams;
mouse, keyboard and control, and an output stream for requesting servicesfromitsparent. The paper [GR91],
which is included in the release documentation as the file overview.ps, provides an introduction to the
eXene system.

A companion document, [GR93], describes the prototype widget library that we have built on top of
eXene. It isintended that application programmers will primarily use widgets, which hide many of the
complexities of the message routing. Widget implementors, however, will need to be conversant with the
details of thelibrary.

1.1 Roadmap

The user-level interface of eXene is organized into eight modules, which are grouped into the abstraction
EXene. TheEXene moduleisopen by default, however, soitssubstructuresare directly visible. Table1.1 lists
these modules together with the source files of their signatures, the chapter(s) in which they are described,
and a brief description of their contents. In addition to the library, there is a collection of graphics utility
modules. These are discussed in Chapter 9.

Module Signature sourcefile Chapter(s) Description

Geometry | user/geometry.sml 2 The basic geometric types and
operations.

EXeneBase | user/exene-base.sml 3and6 Basic type definitions, display and
screen operations, and other miscella-
neous operations.

Font user/font.sml 5 Support for handling fonts.

Drawing user/drawing.sml 5 Types and operations for drawing text
and graphics.

1cce user/iccc.sml 4and 8 Support for the X Inter-Client
Conventions.

Interact | user/interact.sml 7 Types and operations for handling user
interaction.

EXeneWin | user/exene-win.sml 4 Window creation and management.

StdCursor | user/std-cursor.sml 3 The names of the cursorsin the standard
X cursor font.

Table 1.1: The eXene modules

Acknowledgements

Mgajor portionsof thissystem wereimplemented by thefirst author whilehewasastudent at Cornell University
and was supported , in part, by the NSF and ONR under NSF grant CCR-85-14862, and by the NSF under
grant CCR-89-18233. Thomas Yan has provided corrections to this manual. Lennert Augustsson, Thomas
M. Breud, Timothy Griffin, Clifford Krumvieda, Huimin Lin, Roderick Moten and Thomas Yan have been

helpful testers of eXene.

Draft of June 4, 1993 15:03

Chapter 2

Geometry

eXene follows the X-window convention and uses a pixel-based coordinate system with the origin located at
the upper left corner of the screen. The Geometry structure provides definitions and operationsfor the basic
geometric objects:

datatype point = PT of {x : int, y : int}
datatype size = SIZE of {wid : int, ht : int}
datatype line = LINE of (point * point)
datatype rect = RECT of {x : int, y : int, wid : int, ht : int}
datatype arc = ARC of {

x : int, y : int,

wid : int, ht : int,

anglel : int, angle2 : int

}
datatype win_geom = WGEOM of {
pos : point,

sz : size,
border : int

}

Most of these types should be self-explanatory. Values of type win_geom describe the characteristics of a
window’s layout; see Chapter 4 for more information.> The rest of this chapter describes the operations
provided by the Geometry structure.

2.1 Point operations

Figure2.1 givesthe signature of the point operations. ThevaueoriginPt isthepoint (0, 0). The operations
xCoord0fPt and yCoord0fPt project the z and y coordinates of a point, respectively. Point arithmetic is
supported by addPt and subPt; scalePt scales both coordinates by a scalar value. Two partial orders,
lessThanPt and lessEqPt, on pointsare defined by:

lessThanPt((z1, 1), (z2,42)) <= (z1<22) and (y1 < y2)
lessEqPt ((z1, v1), (z2, y2)) < (z1<z2) and (y1<y2)

1This type may be moved to the EXeneWin structure in the future.

w

val originPt . point
val xCoord0fPt : point -> int
val yCoord0fPt : point -> int

val addPt : (point #* point) -> point
val subPt : (point #* point) -> point
val scalePt : (int * point) -> point

val lessThanPt : (point * point) -> bool
val lessEqPt : (point * point) -> bool

Figure 2.1: Point operations

2.2 Sizeoperations

Size values are used to describe the dimension of rectangular regions,; the size operations are given in
Figure2.2. Like points, sizes can be added, subtracted and scaled. In addition, a size can be added to a point

val addSz : (size * size) -> size
val subSz : (size * size) -> size
val scaleSz : (int * size) -> size
val addSzToPt : (point #* size) -> point
val 1imitPt : (size * point) -> point

Figure2.2: Size operations

by the addSzToPt operation. The function 1imitPt clipsa point to be within the bounding box defined by
the origin and the size, using orthogonal projection. Note that, in amost al uses in eXene, the width and
height components of asize value should be nonnegative, but that thisis not enforced by the type.

2.3 Rectangle operations

Figure 2.3 gives the signature of rectangle operations. Rectangles have an origin (a point), corresponding to
the upper |eft corner, and a size; the functionmkRect buildsarectangle from apoint and size. The functions
originOfRect,size0fRect and originAndSz0fRect extract these values from arectangle. Thefunction
corner0fRect returnsthe point that isthelower right corner of the rectangle; thisiscomputed by trand ating
the origin of the rectangle by itssize. The function c1ipPt constrains a point to be within a rectangle (this
islike1imitPt on sizes). The function translate (respectively, rtranslate) trandates a rectangle by
adding (respectively, subtracting) the point to the rectangle's origin. The function intersect returns true
if itstwo argumentsintersect. Thefunction intersection returnsthelargest rectangle contained by both of
itsarguments; the exception Intersectionisraised if they do not intersect. The functionunion returnsthe
smallest rectangle containing both of its arguments. The function within teststo seeif a point is within a
rectangleand thefunction inside teststo seeif itsfirst argument isinsideits second. And lastly, thefunction
boundBox returns the smallest rectangle containing alist of points(i.e., a bounding box).

Draft of June 4, 1993 15:03

val mkRect : (point #* size) -> rect

val originOfRect : rect -> point

val sizeOfRect . rect -> size

val originAndSz0fRect : rect -> (point * size)

val cornerOfRect : rect -> point

val clipPt : (rect * point) -> point
val translate : (rect * point) -> rect

*
val rtranslate : (rect * point) -> rect
val intersect : (rect * rect) -> bool
exception Intersection

val intersection : (rect * rect) -> rect

val union : (rect * rect) -> rect
val within : (point #* rect) -> bool
val inside : (rect * rect) -> bool
val boundBox : point list -> rect

Figure 2.3: Rectangle operations

Draft of June 4, 1993 15:03

Chapter 3

Basic eXene objects

This chapter gives an overview of the principal kinds of objects used by X and eXene. For the most part,
these are defined in the structure EXeneBase.

EXene supports a number of opaque types; most of these are declared in the EXeneBase Structure (see
Figure 3.1). For those types that do not support equality, there are identity predicates that return trueif, and

type display
type screen
type window

type font
type pixmap
type tile

type cursor
eqtype std_cursor
eqtype atom

type color

Figure 3.1: eXene types

only if, the two arguments are the same object. These predicates are given in Figure 3.2. The rest of this

val sameDisplay : (display * display) -> bool

val sameScreen : (screen * screen) -> bool
val sameWindow : (window * window) -> bool
val sameFont : (font * font) -> bool

val samePixmap : (pixmap * pixmap) -> bool
val sameTile : (tile * tile) -> bool

val sameCursor : (cursor * cursor) -> bool
val sameColor : (color * color) -> bool

Figure 3.2: eXene types

chapter gives more detailed information about most of these types.

3.1 Thedisplay

In X terminol ogy, each connection from a client program to an X-server is called a display. The functions

exception BadAddr of string
val openDisplay : string -> display
val closeDisplay : display -> unit

handle opening and closing a connection with an X-server. The argument to openDisplay Specifies the
X-server’s host and the desired display and screen. In general, this string has the form:

host:d.s

where host specifies the machine running the server, d specifies the display number, and s specifies the
screen number. The host may either be the string “unix,” specifying a UNIX domain connection, or the
string representation of an internet address (e.g., “128.84.254.97”).1 On systems running Sun’s Network
Information Service (formerly Yellow Pages), one can get theinternet addressusing ypmatch(1). For example,
to get the address of maui, onetypesthe following (where % is the shell prompt):

% ypmatch maui hosts
128.84.254.97 maui.cs.cornell.edu maui.cs maui

%

Thisinformation is also sometimes available in the /etc/hosts file. Then one can open a connection for
screen 0 of display 0 onmaui by evaluating:

openDisplay "128.84.254.97:0.0"

Thefollowing abbreviations are supported in the argument to openDisplay:

" == '"unix:0.0"
nedn == ‘'unix:d.o"
":d.s" == ‘Munix:d.s"
"host:d" == "host:d.o"

If abadly formatted addressissupplied or if, for some reason, opening the connection fails, then the exception
BadAddr israised.

3.2 Screens

Each display supports one or more screens. One of these screens is designated as the default screen by the
command to open the display connection (as described in Section 3.1). The following two functions extract
screens from a display:

val defaultScreenOf : display -> screen
val screensOf : display -> screen list

Screens have a number of characteristics; the functionsin Figure 3.3 query these. The functionssize0fScr

1Because of alimitation in the SML/NJ run-time system, an internet connection must be specified using the actual internet address.
The examplesdirectory get-display hasan SML structure that implements display name lookup using a sub-process.

Draft of June 4, 1993 15:03

val displayOfScr : screen -> display

val sizeOfScr : screen —> G.size
val sizeMMOfScr : screen -> G.size
val depthOfScr : screen -> int

Figure 3.3: Screen query functions

and sizeMMOfScr givethe physica dimensions of the screen in pixels and millimeters, respectively, and the
depth, or number of planes, of the screen is given by the function depth0fScr. Characteristicsrelated to the
support of color and grey scale screens are discussed in Chapter 6.

3.3 Drawables

Windows, pixmaps and tiles are the three kinds of drawable surfaces (i.e., rectangular arrays of pixels)
supported by eXene. Windows are “on-screen” pixmaps and have additional properties associated with user
interaction, the window manager, and the window hierarchy. Chapter 4 discusses the creation of windows
and Chapter 5 discusses graphical operations on drawables. Tiles are immutable pixmaps. The remainder of
this section discusses the operations on drawabl es provided in the EXeneBase structure.

3.3.1 Geometry of drawables

All drawables have depth and size; in addition, windows have a position (in their parent’s coordinate system)
and aborder width. Operationsto query these propertiesare givenin Figure 3.4. Although pixmaps and tiles

val depthOfWin : window -> int

val depthOfPixmap : pixmap -> int

val depthOfTile : tile -> int

val sizeOfWin : window -> G.size

val sizeOfPixmap : pixmap -> G.size

val size0fTile : tile -> G.size

val geomOfWin : window -> {pos : G.point, sz : G.size, depth : int, border : int}
val geomOfPixmap : pixmap -> {pos : G.point, sz : G.size, depth : int, border : int}
val geomOfTile : tile -> {pos : G.point, sz : G.size, depth : int, border : int}

Figure 3.4: Drawable geometries

do not have a position or a border, to keep the interfaces uniform, the functions geom0fWin, geomOfPixmap
and geom0fTile al return the same type. For pixmaps and tiles, the positionis (0, 0) and the border width
isalso 0.

3.3.2 Images

Animageis a client-side description of arectangular array of pixels. Images are useful for specifying icons
and tiling patterns. Figure 3.5 gives the image type and operations. The function imageFromAscii isused
to create an image value from an ASCI| specification of the rows, which can be either a string representation

Draft of June 4, 1993 15:03

datatype image = IMAGE of {
sz : G.size,
data : string list list

1
exception BadImageData

val imageFromAscii : (int * string list list) -> image
Figure 3.5: Images

of abinary number (with "0b" prefix) or of a hexadecimal number (with"0x" prefix). Theinteger parameter
specifies the pixel width of the image; the height is determined by the length of the string list. For example,
the following “tic-tac-toe” image

IMAGE{
sz = G.SIZE{wid=8, ht=8},
data = [[
"\ 002\004", "\002\004", "\255\255", "\002\004",
"\ 002\004", "\255\255", "\002\004", "\002\004"
1]

can be specified in ASCII as either

imageFromAscii (8, [["0x24", '"0x24", "Oxff", '"0x24", "0x24", "Oxff", "0x24", "0x24"]1])

oras

imageFromiscii (8, [[
"0b00100100",
"0b00100100",
"Ob11111111",
"0b00100100",
"0b00100100",
"Ob11111111",
"0b00100100",
'"0b00100100"
1D

The exception BadImageDataisraised by imageFromAscii if thereisan error in the supplied data

3.3.3 Pixmapsand tiles

Pixmaps are off-screen rectangular regions of pixels; tiles are immutable pixmaps. There are a number of
different waysto create pixmaps and tiles; these are given in Figure 3.6. Thefunction createPixmap creates
an uninitialized pixmap of a given size and depth. Tiles and pixmaps may be created from either ASCII data
(asdescribed in Section 3.3.2) or fromimage data. Thefunction createTileFromPixmap creates atilewith
the same size and contents as an existing pixmap. Note that subsequent changes to the pixmap will not affect
thetile.

Draft of June 4, 1993 15:03

10

val createPixmap : screen -> (G.size * int) -> pixmap
val createPixmapFromAsciiData : screen -> (int * string list) -> pixmap
val createPixmapFromImage . screen -> image -> pixmap

val createTileFromAsciiData : screen -> (int * string list) -> tile
val createTileFromImage . screen -> image -> tile
val createTileFromPixmap : pixmap -> tile

Figure 3.6: Pixmap and tile creation functions

There are al so two functionsfor creating images from pixmaps or tiles:

val createImageFromPixmap : pixmap -> image
val createImageFromTile : tile -> image

3.4 Cursors

Currently, eXene only supportsthe, so called, standard cursors. These are described below. The color of a
cursor can be changed using the function

val recolorCursor : {cursor : cursor, fore_rgb : rgb, back_rgb : rgb} -> unit
where the type rgb is defined as’

datatype rgb = RGB of {red : int, green : int, blue : int}
The function

val changeActiveGrabCursor : display -> cursor -> unit

is used to change the cursor during an active grab of the pointer device (see Chapter 7).

3.4.1 Thestandard cursors

The X distribution provides a standard cursor font. The eXene type std_cursor is used to name these
cursors. Given a standard cursor name, one can create a cursor using the function

val stdCursor : display -> std_cursor -> cursor

The structure StdCursor contains al of the standard cursor names; see Appendix | of [Nye90c] for more
information.

2In the long run, we hope to have a device independent color model for cursor colors and eliminate the rgb type.

Draft of June 4, 1993 15:03

11

3.5 Miscellaneoustypes and operations

3.5.1 Other display operations

There are a number of operationsthat are global to a display connection. For example, the function

val ringBell : display -> int -> unit

generates an audible beep on the user’s terminal. The integer argument, which should be in the range
[—100, 100] defines the volume of the beep according to the following formula

b—%—l—p ifp>0
b+ & ifp<0

where b isthe base volume and p is the argument value. Currently, the base volume cannot be changed from
exXene.

3.5.2 Window hash tables

Because it is often necessary to key searches by awindow’sidentity, generic hash tables with window keys
are provided.

type ’a window_map

exception WindowNotFound

val newMap : unit -> ’1a window_map

val insert : ’2a window_map -> (window * ’2a) -> unit
val find : ’a window_map -> window -> ’a

val remove : ’a window_map -> window -> ’a

val list : ’a window_map -> ’a list

The operations are fairly obvious. newlap creates a new hash table; insert inserts an item keyed by a
window; find returnsthe item keyed by the given window; remove removes and returnsan item; and 1ist
returnsalist of theitemsin thetable. The exception WindowNotFound israised by find and remove in the
case that the given window is not in the table.

3.5.3 Gravity

TheEXeneBase structure aso includes a datatype for specifying awindows“gravity,” i.e., how it isgoing to
be relocated when its parent isresized.

Draft of June 4, 1993 15:03

12

datatype gravity
= ForgetGravity (* bit gravity only *)

| UnmapGravity (* window gravity only *)
| NorthWestGravity

| NorthGravity

| NorthEastGravity

| WestGravity

| CenterGravity

| EastGravity

| SouthWestGravity

| SouthGravity

| SouthEastGravity

| StaticGravity

Thistypeisused in window manager and size hints (see Sections 4 and 8).

Draft of June 4, 1993 15:03

Chapter 4

Windows

Windows are the basic unit of graphical output and user input. This chapter discusses the operations for
window creation and organization; Chapter 5 discusses drawing on windows and Chapter 7 discusses the
eXene user interaction model. Thetypesand operationsdiscussed in thischapter can befoundin the structure

EXeneWin.

eXene supports five kinds of windows: top-level windows, subwindows, transient windows, popup
windows, and input-onlywindows. A top-level window istheroot of awindow hierarchy, and is managed by
the window manager. The descendants of atop-level window in awindow hierarchy are called subwindows.
Transient windows are managed top-level windows with short lifetimes, such as dial ogue boxes, and popup
windowsare unmanaged top-level windows, such as menus. Input-only windows provide a new input context
for an existing window.

4.1 Window creation

Figure4.1 givesthe signatures of the creation functionsfor the different kindsof windows. Thefirst argument
for thesefunctionsisthe parent of thewindow: thisisthe screen for top-level and popup windows, and another
window for subwindows. The second argument is arecord that specifies the window’s preferred geometry,*
border width, and background color. The point supplied in the window geometry isthe origin of the window
in its parent’s coordinate system. Note that this is the upper left corner of the entire window, including the
window’s border, and not the origin of the window’s drawing region, whose dimensions are specified by the
size component of the geometry. For top-level and popup windows, the create function returns the window
and itsinput environment, which is derived from the X-event stream.

Once a top-level window has been created, certain window-manager properties can be set for it. This
should be done before the window is mapped using the following function:

1For top-level windows, the actual geometry is usually decided by the user or window manager, with hints provided by setWMProp-
erties.

13

14

val createSimpleTopWin : EXB.screen -> {
geom : G.win_geom,
border : EXB.color,
backgrnd : EXB.color
} -> (window * Interact.in_env)
val createSimpleSubwin : window -> {
geom : G.win_geom,
border : EXB.color option,
backgrnd : EXB.color option
} -> window
val createTransientWin : EXB.window -> {
geom : G.win_geom,
border : EXB.color,
backgrnd : EXB.color
} -> (window * Interact.in_env)
val createSimplePopupWin : EXB.screen -> {
geom : G.win_geom,
border : EXB.color,
backgrnd : EXB.color
} -> (window * Interact.in_env)
val createInputOnlyWin : window -> G.rect -> window
exception InputOnly

Figure 4.1: Window cresation functions

val setWMProperties : window -> {

win_name : string option,

icon_name : string option,

argv . string list,

size_hints : ICCC.size_hints list,

wm_hints : ICCC.wm_hints list,

class_hints : {res_class : string, res_name : string} option
} -> unit

See Chapter 8 for a description of the size and window manager hints.

To get a window to actually appear on the screen, it (and al of its ancestors) must be mapped. The
function

val mapWin : window -> unit

maps a window. To avoid having the screen flash, it is a good idea to map a window hierarchy from the
bottom up, mapping the top-level window last. The functions

val unmapWin : window -> unit
val destroyWin : window -> unit

respectively unmap and destroy awindow. In X, destroying awindow implicitly destroysall of itssubwindows.

4.2 Window configuration
The configuration of awindow (position, size, etc.) can be controlled using the following operations:

Draft of June 4, 1993 15:03

15

val configureWin : window -> window_config list -> unit
val moveWin : window -> G.point -> unit

val resizeWin : window -> G.size -> unit

val moveAndResizeWin : window -> G.rect -> unit

The constructors of the window_config datatype are described in Table 4.1.

Description Value

Window origin WC_Origin point

Window size WC_Size Size

Window’s border width WC_BorderWidn

Stacking mode WC_StackMode mode

Stacking mode relative to | WC_RelStackMode (win, mode)
asibling window

Table4.1: Window configuration values

4.3 Window attributes

The cursor used by awindow is set using the following function:

val setCursor : window -> EXB.cursor option -> unit

val setBackground : window -> EXB.color option -> unit
val changeWinAttrs : window -> window_attr list -> unit

4.4 Other window operations

There are afew other miscellaneous operations on windows. Given a point in awindow’s coordinate system,
it can be trangdlated to a point in the screen’s absol ute coordinate system by the function:

val winPtToScrPt : window -> G.point -> G.point

The screen and dispay associated with awindow can be found using the functions:

val screen0fWin : window -> EXB.screen
val display0fWin : window -> EXB.display

Draft of June 4, 1993 15:03

Chapter 5

Drawing

This chapter describesthe various operations and types provided by eXene to support bitmap graphics. These
operations and types are defined in the Drawing structure.

5.1 Pens

A pen is similar to the graphics context provided by Xlib. The principa differences are that pens are
immutable, do not specify a font, and can specify clipping rectangles and dash lists (which are handled
separately in the X protocol). The basic operations on pens are:

type pen

val newPen : pen_val list -> pen
val updatePen : (pen * pen_val list) -> pen
val defaultPen : pen

The datatype pen_val is used to specify the non-default values when creating a new pen. Table 5.1 liststhe
components of a pen, the possible values for each component, and the default value. The drawing functions
used with PV_Function are defined by the datatype graphics_op; these specify how source and destination
colors are logically combined in graphics operations, and are explained by Table 5.2. The newPen function
creates anew pen with the specified values. The updatePen function does a non-destructive update of a pen.
eXene provides a default pen for those rare instances when all default values are appropriate. The semantics
of a pen basically follow the semantics of the Xlib graphics contexts (see Chapter 5 of [Nye90b]).

5.2 Fonts

Unlikein Xlib, fontsare not part of the graphics context (pen in our case). The text drawing operations (see
Section 5.6) take the font as a separate argument.

5.2.1 Openingafont

To open afont, use the function

16

17

Component Values Default
Function PV_Functionop PV_Function OP_Copy
Plane mask PV_PlaneMask mask all ones

Foreground color

PV_Foreground color

PV_Foreground color0

Background color

PV_Background color

PV_Background coloril

Line width

PV_LineWidth width

PV_LineWidth O

Linestyle

PV_LineStyle_Solid
PV_LineStyle_0OnOffDash
PV_LineStyle_DoubleDash

PV_LineStyle_Solid

Cap style

PV_CapStyle_Butt
PV_CapStyle_NotLast
PV_CapStyle_Round
PV_CapStyle_Projecting

PV_CapStyle_Butt

Join style

PV_JoinStyle_Miter
PV_JoinStyle_Round
PV_JoinStyle_Bevel

PV_JoinStyle_Miter

Fill style

PV_FillStyle_Solid
PV_FillStyle_Tiled
PV_FillStyle_Stippled
PV_FillStyle_OpaqueStippled

PV_FillStyle_Solid

Fill rule

PV_FillRule_EvenOdd
PV_FillRule_Winding

PV_FillRule_EvenOdd

Arc mode

PV_ArcMode_PieSlice
PV_ArcMode_Chord

PV_ArcMode_PieSlice

Tile

PV_Tiletile

Stipple

PV_Stippletile

Tile/stipple origin

PV_TSOrigin pt

PV_TSOrigin(PT{x=0,y=0})

Subwindow mode

PV_ClipByChildren
PV_IncludeInferiors

PV_ClipByChildren

Clip origin

PV_ClipOriginpt

PV_ClipOrigin(PT{x=0,y=0})

Clip mask

PV_ClipMask_None

PV_ClipMask pixmap
PV_ClipMask_UnsortedRects rects
PV_ClipMask_YSortedRects rects
PV_ClipMask_YXSortedRects rects
PV_ClipMask_YXBandedRects rects

PV_ClipMask_None

Dash offset

PV_DashOffsetn

PV_DashOffset 0O

Dashes

PV_Dash_Fixedn
PV_DashList dashes

PV_Dash_Fixed 4

Table 5.1: Pen component values

Draft of June 4, 1993 15:03

18

0P_Clr dst < O
0P_And dst « src A dst
0P_AndNot dst « src A dst
OP_Copy dst + src
OP_AndInverted | dst « SICA dst
OP_Nop dst « dst
0P_Xor dst « src @ dst
0P_Or dst « srcv dst
OP_Nor dst « STCA dst
0OP_Equiv dst «+ Src @ dst
0P_Not dst « dst
OP_Orlot dst « srcv dst
OP_CopyNot dst + SrC
0P_OrInverted dst « Src v dst
OP_Nand dst « SrcV dst
0P_Set dst « 1

Table 5.2: Graphica operators
The symbol Vv is logical or, A is logical and, and & is exclusive-or, and the

notation z is the logical negation of z.

exception FontNotFound
val openFont : EXB.display -> string -> font

which returns the opened font or raises the exception FontNotFound, if the font cannot be found in the
server’sfont path. For information on font naming conventions, see [MIT89].

5.2.2 Character metrics

Fonts and their related character metrics follow the standard X model. However, in eXene, font information
isviewed aslogically part of thefont; thereis no separate font information data structure. Figure5.1 givesthe
types and operationsrelated to the character metrics of fonts. Look in [Nye90b] or [SG92] for an explanation
of the different character metrics.

The function charInfo0f returnsinformation about the give character (specified as an ordina); it raises
the the exception NoCharInfo if the integer argument does not correspond to a character in the font. The
function textWidth returns the width in pixels of the given string in the given font, and charPositions
returnsthe position of each character in the string.

5.3 Pixmapsand Tiles

A pixmap is an off-screen rectangle of colors; any drawing operation that will work on a window will also
work on apixmap. A tileisan immutable pixmap. More information about pixmaps and tiles can be found
in Section 3.3.

Draft of June 4, 1993 15:03

19

datatype font_draw_dir = FontLeftToRight | FontRightToLeft

datatype font_prop = FontProp of {
name : EXB.atom, (* the name of the property *)
value : string (* the property value: interpret according to the *)
(* property. *)

datatype char_info = CharInfo of {
left_bearing : int,
right_bearing : int,
char_wid : int,
ascent : int,
descent : int,
attributes : int

exception FontPropNotFound
val fontProperty0f : font -> EXB.atom -> string
val fontInfoOf : font -> {

min_bounds : char_info,

max_bounds : char_info,

min_char : int,

max_char : int

exception NoCharInfo
val charInfoOf : font -> int -> char_info
val textWidth : font -> string -> int
val charPositions : font -> string -> int list
val textExtents : font -> string -> {
dir : font_draw_dir,
font_ascent : int, font_descent : int,
overall_info : char_info
}

val fontHt : font -> {ascent : int, descent : int}

Figure5.1: Font and character metrics

Draft of June 4, 1993 15:03

20

5.4 Drawables

A drawableisan abstract typethat collectstogether windows, pixmaps, and overlays (discussed in Section 7.5).
Thefollowing functions are used to get the drawable of a window or pixmap:

val drawableOfPM : pixmap -> drawable
val drawable0fWin : window -> drawable

Thereisaso afunction to return the depth of a drawable:

val depthOfDrawable : drawable -> int

5.5 Drawing graphics

EXene provides a number of drawing operations on drawables; Figure 5.2 gives the signature of these
operations. The semantics of the drawing operations are essentially the same as defined by Xlib, athough

exception BadDrawParameter

val drawPts : drawable -> pen -> point list -> unit
val drawPtPath : drawable -> pen -> point list -> unit
val drawPt : drawable -> pen -> point -> unit

val drawLines : drawable -> pen -> point list -> unit
val drawPath : drawable -> pen -> point list -> unit
val drawSegs : drawable -> pen -> line list -> unit
val drawSeg : drawable -> pen -> line -> unit

datatype shape = ComplexShape | NonconvexShape | ConvexShape
val fillPolygon : drawable -> pen -> {verts: point list, shape : shape} -> unit

val fillPath : drawable -> pen -> {path : point list, shape : shape} -> unit
val drawRects : drawable -> pen -> rect list -> unit

val drawRect : drawable -> pen -> rect -> unit

val fillRects : drawable -> pen -> rect list -> unit

val fillRect : drawable -> pen -> rect -> unit

val drawArcs : drawable -> pen -> arc list -> unit

val drawArc : drawable -> pen -> arc -> unit

val fillArcs : drawable -> pen -> arc list -> unit

val fillArc : drawable -> pen -> arc -> unit

val drawCircle : drawable -> pen -> {center : point, rad : int} -> unit
val £fillCircle : drawable -> pen -> {center : point, rad : int} -> unit

Figure 5.2: Drawing operations

the names are different. Functionsthat draw paths (e.g., drawPtPath) treat their point list argument as
alist of relative coordinates. The first element specifies an absol ute coordinate and each successive el ement
specifies an offset relative to the previous coordinate. All other operations use absolute coordinates. The
exception BadDrawParameter israised if the argument to adrawableisinvalid.

Draft of June 4, 1993 15:03

21

55.1 Areaoperations

To clear arectangular region (or all) of adrawable, use the functions:

val clearArea : drawable -> rect -> unit
val clearDrawable : drawable -> unit

For awindow, these functionsfill with the background color; for a pixmap, they fill with 0. For clearirea,
if the rectangle’ s width is zero, then the cleared rectangle is extended to the right edge of the drawable, and
if the height is zero, then the cleared rectangle is extended to the bottom of the drawable. The function
clearDrawable Clearsthe entire drawable.

The X-protocol providestwo operationsfor copying arectangle from onedrawableto another: CopyArea
and CopyPlane. Tofurther complicatethings, theseoperationscan haverepliesintheformof GraphicsExpose
and NoExpose X-events. When the source drawable is a window, then it is possible that some or all of the
source rectangle might be obscured; in this case, the portions of the destination that did not get updated need
to be redrawn.

In eXene, we providethree versions of four operations, which are fully synchronous

exception DepthMismatch
exception BadPlane

val pixelBlt : drawable -> pen -> {
src : draw_src, src_rect : G.rect, dst_pos : G.point
} -> G.rect list

val bitBlt : drawable -> pen -> {
src : draw_src, src_rect : G.rect, dst_pos : G.point
} -> G.rect list

val planeBlt : drawable -> pen -> {
src : draw_src, src_rect : G.rect, dst_pos : G.point, plane : int
} -> G.rect list

val copyBlt : drawable -> pen -> {
dst_pos : G.point, src_rect : G.rect
} -> G.rect list

pixelB1lt provides the semantics of CopyArea; the exception DepthMismatch israised if the source and
destination do not have the same depth. planeBlt provides the semantics of CopyPlane; the exception
BadPlane israised if the value of plane does not correspond to alegal bitplanein the source. bitBlt isthe
same aSplaneBlt withplane set to zero. The copyBlt functionisapixelB1t operation where the source
and destination are the same drawabl e,

The source drawable may be a window, pixmap or tile, and is specified using the following datatype:

datatype draw_src
= WSRC of window
| PMSRC of pixmap
| TSRC of tile

Thereturn valueisalist of rectanglesin the destination, which were not updated because the corresponding
source rectangles were obscured. When the source drawable is atile or pixmap, then the return result will

Draft of June 4, 1993 15:03

22

always be the empty list; if the source tile or pixmap is smaller than the destination rectangle, then the extra
space will be filled with the zero pixel (i.e., color0).

The synchronous forms of the BLT operations can produce a performance bottleneck; thisis why the X-
protocol uses eventsinstead of replies. In CM L, however, we can provide an asynchronous remote-procedure
call (or promise) interface to these operations, and thus can hide the X-events. To do this, we provide
event-valued forms of the above operations:

val pixelBltEvt : drawable -> pen -> {
src : draw_src, src_rect : G.rect, dst_pos : G.point
} -> G.rect list CML.event
val bitBltEvt : drawable -> pen -> {

src : draw_src, src_rect : G.rect, dst_pos : G.point
} -> G.rect list CML.event

val planeBltEvt : drawable -> pen -> {
src : draw_src, src_rect : G.rect, dst_pos : G.point, plane : int
} -> G.rect list CML.event
val copyBltEvt : drawable -> pen -> {

dst_pos : G.point, src_rect : G.rect
} -> G.rect list CML.event

Note that when the source drawable is not a window, then no synchronization is necessary.

The operation

val tileBlt : drawable -> pen -> {src : tile, dst_pos : G.point} -> unit

isabitB1lt operation using a depth-1tile as the source. The source rectangleisthe wholetile.

5.6 Drawing text
Figure 5.3 givesthe signature of the varioustext drawing operations provided by eXene. There are two styles

val drawString : drawable -> pen -> font -> (point * string) -> unit
val imageString : drawable -> pen -> font -> (point * string) -> unit
datatype text

= TEXT of (font * text_item list)
and text_item

= TXT_FONT of (font * text_item list)

| TXT_STR of string

| TXT_DELTA of int

val drawText : drawable -> pen -> (point * text) -> unit

Figure 5.3: Text drawing operations

of text drawing: opaque and transparent. Opaque text, provided by imageString, isdrawn by first filling

Draft of June 4, 1993 15:03

23

in the bounding rectangle with the background color, and then drawing the text with the foreground color.
The functionand fill-style of the pen are ignored, replaced in effect by 0P_Copy and PV_FillStyle_Solid.
In transparent text, as provided by drawString and drawText, the pixels corresponding to bits set in a
character’s glyph are drawn using the foreground color in the context of the other relevant pen values, while
the other pixels are unmodified. The drawText function provides a user-level batching mechanism for
drawing multiple strings of the same line with possible intervening font changes or horizonta shifts.

Draft of June 4, 1993 15:03

Chapter 6

Color

This release of eXene supports the most basic use of color supported by X: read-only access to the default
colormap using either RGB vaues or names to specify the color. A device-independent mechanism for
specifying colors is part of the X11R5 standardl ™91 5592 We plan to use this as the basis for future color
supportineXene. The current color interfaceisdefined intheEXeneBase structureand isgivenin Figure6.1.
To determine whether ascreen supportscolor, one can usethefunctiondisplayClass0fScr to determinethe

datatype display_class
= StaticGray | GrayScale | StaticColor | PseudoColor | TrueColor | DirectColor

val displayClassOfScr : screen -> display_class

datatype color_spec
= CMS_Name of string
| CMS_RGB of {red : int, green : int, blue : int}

val white : color_spec
val black : color_spec

val color0O : color
val colorl : color

exception BadRBG
exception NoColorCell

val colorOfScr : screen -> color_spec —-> color
val black0OfScr : screen -> color
val whiteOfScr : screen -> color

Figure 6.1: eXene color operations

screen’s display class. A monochrome screen, for example, will usually have the display class StaticGray
and a depth of one. For a discussion of the display classes and X color model, see Chapter 7 of [Nye90b].

Colors are specified by either name or RGB value, using the color_spec datatype. The values black
and white specify their respective colors. A color_spec valueis mapped to an abstract color value using
the function color0fScr. The functionsblack0fScr and whiteOfScr return the black and white colors

24

25

for the given screen. Thecolorscolor0 and colori represent the 0 and 1 pixel values, and are used to draw
on pixmaps.

Draft of June 4, 1993 15:03

Chapter 7

User interaction

It isin the area of handling user input that eXene differs most significantly from traditional X libraries.
Traditiona X libraries, such as Xlib, Xt, and CL X, use event loops and call-back functions to smulate
concurrency; in eXene we make the concurrency explicit.

The X protocol provides33 different event messages and a complicated semantics of which eventsaclient
will receive and under what circumstances. In eXene we have tried to simplify the model.

7.1 Modifier buttons

X attempts to provide a portable model of input devices; part of thisincludes support for modifier keys; i.e.,
keys that do not have an individua meaning, but which modify the meaning of other keys. The following
datatype represents the X modifier keys:

datatype modkey = ShiftKey | LockKey | ControlKey
| ModiKey | Mod2Key | Mod3Key | Mod4Key | Mod5Key
| AnyModifier

The state of the modifier buttons (i.e., which are depressed) is represented by the type:

eqtype modkey_state

A modifier key state can be built using the function

val mkModState : modkey list -> modkey_state

which returns the state with exactly the listed buttons depressed. The standard set operations are supported
on modifier states:

val unionMod : (modkey_state * modkey_state) -> modkey_state
val intersectMod : (modkey_state * modkey_state) -> modkey_state

Thefollowing predicates test modifier states for status of individua buttons:

26

27

val emptyMod : modkey_state -> bool
val shiftIsSet : modkey_state -> bool
val lockIsSet : modkey_state —> bool
val cntrlIsSet : modkey_state —> bool
val modIsSet : (modkey_state * int) -> bool

A modifier state created with AnyModifier isspecia; essentially itisthe T of the set lattice.

7.2 Mousebuttons

The buttons on the mouse are represented by values of the type

datatype mbutton = MButton of int

where theinteger ranges from 1 to 5. Aswith the modifier keys, it is often necessary to know the state of the
buttons; the abstract type

eqtype mbutton_state

represents a mouse button state (i.e., a set of depressed mouse buttons). The function

val mkButState : mbutton list -> mbutton_state

returns a button state with the listed buttons depressed. Some standard set operations on mouse states are
provided:

val unionMBut : (mbutton_state * mbutton_state) -> mbutton_state
val intersectMBut : (mbutton_state * mbutton_state) —-> mbutton_state
val invertMBut : (mbutton_state * mbutton) -> mbutton_state

ThefunctionsunionMBut and intersectMBut dotheobvious. Thefunction invertMBut invertsthe setting
of the given button. There are a number of predicates on mouse states:

val mbutAllClr : mbutton_state -> bool
val mbutSomeSet : mbutton_state -> bool
val mbutlIsSet : mbutton_state -> bool
val mbut2IsSet : mbutton_state -> bool
val mbut3IsSet : mbutton_state -> bool
val mbut4IsSet : mbutton_state -> bool
val mbut5IsSet : mbutton_state -> bool
val mbutIsSet : (mbutton_state * mbutton) -> bool

The predicate mbutAl1C1r istrueif no buttons are depressed; mbutSomeSet is trueif one or more buttons
isset. The other predicatestest the status of single button.

7.3 Thewindow environment

eXene provides a model of input that is similar to that of [Pik89] and [Haa90]. Each window has an
environment, consisting of three input streams (mouse, keyboard and control) and an output stream for talking

Draft of June 4, 1993 15:03

28

tothewindow’sparent. Therearetwo sidesto an environment: the parent sees an output environment for each
child, and each child sees an input environment from its parent. Each side of this connection is represented
by its own type (see Figure 7.1). The function

datatype in_env = InEnv of { (* this is the window’s view of its %)
(* environment *)
k : kbd_msg addr_msg CML.event,
m : mouse_msg addr_msg CML.event,
ci : cmd_in addr_msg CML.event,
co : cmd_out -> unit CML.event

}
datatype out_env = OutEnv of { (* this is the parent’s view of one of its %)
(* children’s environment. *)

k : kbd_msg addr_msg -> unit CML.event,
m : mouse_msg addr_msg -> unit CML.event,
ci : cmd_in addr_msg -> unit CML.event,
co : cmd_out CML.event

}

Figure 7.1: Window environment types

val createWinEnv : unit -> (in_env * out_env)

creates the channels for awindow’s environment and returns the input and output sides.

There are anumber of operationsfor reconfiguringinput environments. The following operations provide
applicative updates of agiven input stream:

val replacelMouse : (in_env * mouse_msg addr_msg CML.event) -> in_env
val replaceKey : (in_env * kbd_msg addr_msg CML.event) -> in_env
val replaceCI : (in_env # cmd_in addr_msg CML.event) -> in_env

Often, a window will want to ignore a given input stream, but since communication is synchronous it must
till read messages to avoid locking its parent. The following operationsattach null threads to the given input
stream and replace the stream with another:

val ignorelouse : in_env -> in_env
val ignoreKey : in_env -> in_env
val ignorelnput : in_env -> in_env
val ignoreAll : in_env -> in_env

The function ignoreInput causes both the mouse and keyboard streams to be ignored, while the function
ignoreAll aso ignoresthe control stream.

Sometimesathread will intercept messages onasinglestream, while passing on those on the other streams.
A new environment, which has adummy in theintercepted g ot can be created by using the appropriatereplace
function from above and the value

val nullStream : ’a addr_msg CML.event

Draft of June 4, 1993 15:03

29

This stream will never produce a message; synchronizing on it will block.

Because many applications, such as menus, need to wait until the mouse has reached a stable state, eXene
providesthe function

val whileMouseState : (mbutton_state -> bool) -> (mbutton_state * mouse_msg CML.event)
-> unit

which eats mouse events until the given predicate is satisfied. The mbutton_state argument isthe initial
mouse button state and the mouse_msg event value provides the stream of mouse events. The predicates
described in Section 7.2 are useful for this purpose. For example, the function

fun downLoop (mouseEvt, mouseBut) = let
val whileSomeSet = whileMouseState mbutSomeSet
fun loop () = (case (msgBodyOf (sync mevt))
of (MOUSE_Up {but, state, ...}) => if (but = mouseBut)
then (action (); whileSomeSet (state, mevt))
else loop ()
| (MOUSE_LastUp _) => action()
| _ => loop O))
in
loop ()
end

will read mouse events from the stream represented by mouseEvt until the specified mouse button (mbut) is
released. At that time, it will call the action function and then wait until all mouse buttons are up before
returning. Thisidiomis useful for guaranteeing that the mouse buttons are in a stable state before handling
more mouse button transitions.

7.3.1 Addressed messages and routing

The messages passed aong the environment streams are addressed to a particular target window (e.g., the
window in which amouse click occurred). Addressed messages have the type

type ’a addr_msg

The actua contents of an addressed message can be extracted using

val msgBodyOf : ’a addr_msg -> ’a

A message address is a path through the window hierarchy. There are a number of operations designed to
support routing of addressed messages:

datatype ’a next_win = Here of ’a | ToChild of ’a addr_msg
val stripMsg : ’a addr_msg -> ’a next_win

exception NoMatchWin
val whichWindow : (EXB.window * ’a) list -> ’b addr_msg -> ’a

val toWindow : (’a addr_msg * EXB.window) -> bool
val addrLookup : ’a EXB.window_map -> ’b addr_msg -> ’a

Draft of June 4, 1993 15:03

30

The function stripMsg looks at the next step in the path and returns Here, if the message has reached its
destination, otherwise it returns ToChild with one address stripped from the path. The function toWindow
compares the next window in a path with a specific window and returns true if they match. The function
whichWindow searches alist of windows for an address match; it raises the exception NoMatchWin if no
match isfound. When awindow has many children, amore efficient lookup scheme is necessary; thefunction
addrLookup does an address |ookup in awindow hash table (see Section 3.5.2).

Because we divide the stream of input events into three separate streams, we lose the causal ordering of
input events. For most applications, thisisn’t important, but to handle the cases in which it isimportant, there
isatotal ordering on addressed messages. The function

val beforeMsg : (’a addr_msg * ’a addr_msg) -> bool

will return trueif itsfirst argument is beforeits second argument in the ordering.

7.3.2 Control messages

Control messages are used by a parent window to notify its children of changesin their status and by a child
window to request changes.

The control messages passed down from the top-level window are addressed messages and correspond to
X-events. The messages currently provided are

datatype cmd_in
= CI_Redraw of G.rect list
| CI_Resize of G.rect
| CI_ChildBirth of EXB.window
| CI_ChildDeath of EXB.window
| CI_OwnDeath

The CI_Redraw message isanotification that a window has been damaged; the argument isalist of damaged
rectangles. TheCI_Resize messageisanotification of achangeinthesizeof awindow. TheCI_ChildBirth
and CI_ChildDeath messages are used to inform a window of changes in the status of its children. The
system guarantees that a CI_ChildBirth message will be seen before any other control messages for that
child, and that there will be no control messages for thechild after theCI_ChildDeath message. Inaddition,
corresponding synchronization messages are aso passed down the mouse and keyboard streams to allow a
barrier style synchronization on configuration changes (see sections 7.3.3 and 7.3.4). These messages are
used in the widget message routers to automatically reconfigure the message routing in composite widgets
(see Chapter 5 of [GR93]). The CI_0wnDeath message tellsawindow that it isdead (i.e, that it no longer
exists on the X-server).

The control messages going from the child to the parent are not addressed, since they only need to go one
hop. There are currently only two messages supported:

datatype cmd_out
= CO_ResizeReq
| CO_KillReq

These messages are requests for services that the parent window may choose to honor. The actual protocol for

Draft of June 4, 1993 15:03

31

using these messages is |eft to the widget level, but it is worth noting that the bi-directional communication
provided by control messages is a potential source of deadlock.

7.3.3 Keyboard messages

Keyboard messages are addressed messages that notify a window of keyboard events that occurred while the
keyboard focus was in the window. The messages are

datatype kbd_msg
= KEY_Press of (keysym * modkey_state)
| KEY_Release of (keysym * modkey_state)
| KEY_ConfigSync

The first two of these correspond to the pressing and releasing of a key by the user. The argument to these
messages specifies the actua key pressed via a keysym and the state of the modifier keys. Keysyms are a
portabl e representation of keys; Section 7.4 discusses the trandation of keysymsinto ASCII strings.

When certain changes occur in awindow’s configuration, the parent window is notified of these changes
through a control message (e.g., the CI_ChildBirth and CI_ChildDeath messages in Section 7.3.2). In
order for the parent to synchronize its state with the three event channels, aKEY_ConfigSync message is
generated at the same time on its keyboard channel. A similar message is also generated on the mouse
channel.

7.34 Mouse messages

M ouse messages are addressed messages that notify the target window of mouse events. Figure 7.2 givesthe
mouse_msg datatype. The MOUSE_Motion message is a notification of a change in the mouse position; its
arguments specify the mouse position in the window’s coordinates (pt) and in absolute screen coordinates
(scr_pt). Thetime of the mouse motionis given as a value of the type

datatype time = TIME of {sec : int, usec : int}

The messages MOUSE_FirstDown,MOUSE_Down, MOUSE_LastUp, and MOUSE_Up are notificationsof changes
in the state of the mouse buttons. The arguments to these messages includes position and time infor-
mation, the button being pressed and the state of al of the mouse buttons after the transition®. The
MOUSE_Enter and MOUSE_Leave messages notify the window that the mouse has entered or |eft the window.
The MOUSE_ConfigSync message plays the same role for the mouse channd that the KEY_ConfigSync
message plays for the keyboard channel (cf. Section 7.3.3).

7.4 Keysym trandlation

Keysyms are a portable representation of the symbols on the key caps (see [Nye904] for the list of keysym
codes).

datatype keysym = KEYSYM of int | NoSymbol

INotethat this differs from the semantics of the ButtonPress and ButtonRelease X-events, which report the pre-transition state.

Draft of June 4, 1993 15:03

32

datatype mouse_msg
= MOUSE_Motion of {
pt : G.point,
scr_pt : G.point,
time : time
}
MOUSE_FirstDown of {
but : mbutton,
pt : G.point,
scr_pt : G.point,
time : time
}
| MOUSE_LastUp of {
but : mbutton,
pt : G.point,
scr_pt : G.point,
time : time
}
| MOUSE_Down of {
but : mbutton,
pt : G.point,
scr_pt : G.point,
state : mbutton_state,
time : time
}
| MOUSE_Up of {
but : mbutton,
pt : G.point,
scr_pt : G.point,
state : mbutton_state,

time : time
}
| MOUSE_Enter
| MOUSE_Leave
| MOUSE_ConfigSync

Figure 7.2: Mouse messages

Draft of June 4, 1993 15:03

33

A complex algorithmis used trand ate a keysym and modifier state to an actual ASCII character. In eXene,
thistrandation is supported by the following type and operations

type translation

exception KeysymNotFound

val defaultTranslation : translation

val lookupString : translation -> (keysym * modkey_state) -> string

val rebind : translation -> (keysym * modkey list * string) -> translation

The function lookupString uses a translation to map a keysym and modifier state (as carried by the
KEY_Press message) to astring. For thedefaultTranslation, this mapping returnsthe singleton strings
for the ASCII key set. Additiona or different bindings can be added using rebind.

7.5 Rubberbanding

Rubberbanding is a technique for supplying the user with immediate graphical feedback when specifying
a geometric object. EXene supports rubberbanding with two separate mechanisms. overlay windows and
feedback drawables.

An overlay window provides exclusive access to a window’s drawing surface, so that other graphical

operationsdo not interfere with the feedback drawing. An overlay is created by the function:

val createOverlay : window -> {drawable : drawable, release : unit -> unit}

fromtheDrawing structure. The result of createOverlay isthe drawable to use for the feedback graphics,
and a function to rel ease the exclusive access when the rubberbanding is finished.

A feedback drawableis an unbuffered connection to the server, which can be used to provide immediate
graphical response to user interaction. The function

val feedback : drawable -> drawable

is used to create a feedback drawable from an existing drawable.?

A common example of rubberbanding is sweeping out a rectangle to specify the size of a window.
Figure 7.3 gives the code for such an interaction. When the user presses the mouse button, the current cursor
position is fixed as an anchor point. Asthe mouse is moved, feedback in the form of a rectangle with one
corner at thefixed anchor point and the opposite corner at the current mouse position. When the mouse button
isreleased, the window is created using the current rectangle as its size and shape.

?Note that using feedback drawable reduces performance, because of extra system-call overhead.

Draft of June 4, 1993 15:03

34

fun getRect (win, anchorPt, mevt) = let
val {release, drawable} = createOverlay win
val draw = drawRect (feedback drawable)
(newPen [PV_Function OP_Xor, PV_Foreground colori])
val {sz=sz as SIZE{wid, ht}, ...} = geomOfWin win
fun clip (PT{x, y}) = PT{
x = if x < 0 then 0 else if x >= wid then (wid-1) else x,
y = if y < 0 then 0 else if y >= ht then (ht-1) else y
}
fun ptsToRect (PT{x, y}, PT{x=x’, y=y’}) = let
fun minmax (a : int, b) = if a <= b then (a, b-a) else (b, a-b)
val (ox, sx) = minmax(x, x’)
val (oy, sy) = minmax(y, y’)
in

RECT{x=0x, y=oy, wid=sx, ht=sy}
end
fun doRect () = let
val initRect = ptsToRect (anchorPt, anchorPt)
fun loopRect (r, p) = (case (msgBodyOf (sync mevt))
of MOUSE_LastUp{but, pt, ...} => (draw r; release(); r)
| MOUSE_Motion{pt, ...} => update (r, p, clip pt)
| _ => loopRect (r,p)
(* end case *))
and update (oldRect, 0ldPt, newPt) =
if newPt = o0ldPt
then loopRect (oldRect, 0ldPt)
else let
val newRect = ptsToRect (anchorPt, newPt)
in
draw oldRect; draw newRect;
loopRect (newRect, newPt)
end
in
draw initRect;
loopRect (initRect, anchorPt)
end (* doRect *)
in
doRect ()
end (* getRect *)

Figure 7.3: Codeto get arectangle from the user

Draft of June 4, 1993 15:03

Chapter 8

| nter-client communication

The X standard includes a complex set of conventions for inter-client communicationtRo$9, While eXene
does not currently support these conventions, we consider such support vital to making eXene useful for
building applications. A futurerelease will support (at the minimum) both selections and cut buffers.

8.1 Atoms

Atoms are unique identifiers corresponding to a string name; the X-server maintains the mapping between
the string names and atoms. The following operations on atoms are provided:

val internAtom : display -> string -> atom
val lookupAtom : display -> string -> atom option
val nameOfAtom : display -> atom -> string

The internitom function maps a string name to an atom, creating a new atom if necessary. The function
lookupAtom alSO maps a string to an atom, but, if the atom does not already exist, then NONE isreturned. A
client can get the string name associated with an atom by calling name0f At om.

X defines a set of standard atoms; these atoms are defined inthe ICCC structure. A standard atom nameis
represented by theidentifier atom_name. For example, the PRIMARY atom isrepresented by atom_PRIMARY.

8.2 Sdections

Selections are currently unsupported.

8.3 Cut buffers

Cut buffers are currently unsupported.

35

36

8.4 Window hints

The variouswindow manager and size hintsused by the setWlMProperties function (described in Chapter 4)
are defined in the ICCC structure.

datatype size_hints
HINT_USPosition

HINT_PPosition of G.point (* obsoletein X11R4 *)
HINT_USSize
HINT_PSize of G.size (* obsoletein X11R4 *)

HINT_PMaxSize of G.size

HINT_PResizelnc of G.size

HINT _PAspect of {min : int * int, max : int * int}
HINT_PBaseSize of G.size

I

I

I

| HINT_PMinSize of G.size

I

I

I

I

| HINT_PWinGravity of EXB.gravity

datatype wm_hints

= HINT_Input of bool

| HINT_WithdrawnState

| HINT_NormalState

| HINT_IconicState
| HINT_IconTile of EXB.tile
| HINT IconPixmap of EXB.pixmap
| HINT_IconWindow of EXB.window
| HINT_ IconMask of EXB.pixmap
| HINT IconPosition of G.point
| HINT_WindowGroup of EXB.window

Draft of June 4, 1993 15:03

Chapter 9

Graphics utilities

In additionto the library, thereisa collection of graphics utilitiesthat are neither part of thelibrary or widget
set. We describe these here.

9.1 Ellipses

TheEllipse structure provides code for drawing rotated ellipses. It has the following signature:

signature ELLIPSE =
sig
structure G : GEOMETRY

exception BadAxis
val ellipse : (G.point # int * int * real) -> G.point list

end; (* ELLIPSE x)

The application ellipse (pt, a, b, ¢) produces a list of points describing the elipse defined by the

following equation:
2 2

z Y

2T
trand ated to the the point pt and rotated by ¢ radiansin a counterclockwise direction. Thefunctionellipse
raises the exception BadAxis, if either a or bislessthan zero. If either a or b is zero, then the empty list is

returned. The result of applyingellipse can be drawn using thedrawLines function.

=1

9.2 Splines

The Spline structure provides routinesfor drawing Bézier splines. The signature of this structureis:

37

38

signature SPLINE =
sig
structure G : GEOMETRY
val curve : (G.point * G.point * G.point * G.point) -> G.point list
val simpleBSpline : G.point list -> G.point list
val bSpline : G.point list -> G.point list

val closedBSpline : G.point list -> G.point list

end (* SPLINE %)
The meanings of the operations are:

curve (po, p1, P2, P2)
Return alist of points corresponding to a Bézier cubic section, starting at po, ending at ps3, with p1, p2

as control points.

simpleBSpline [po, ..., Pnl
Compute a simple B-splinewith the given control points.

bSpline [po, ..., Pnl
Thisisdefined as

simpleBSpline ([p1, P1, P1s -++s Pns Pns Pnl)

Thereplication of p; and p,, constrains the resultant spline to connect p; and p;, .

closedBSpline [po, p1, P2, -+, Pnl
Compute aclosed B-spline. Thisisdefined as

simpleBSpline [p07 P1, P2y -+ Pny POy P1, p2]

Note that thefirst and last points of the result are the same.

9.3 Rounded rectangles
Two utility functions are provided for drawing rectangles with rounded corners. These can be found in the
structureRoundedRect, which has the following signature:
signature ROUNDED_RECT =
sig
structure G : GEOMETRY

val drawRoundedRect : Drawing.drawable -> Drawing.pen
-> {rect : G.rect, c_wid : int, c_ht : int} -> unit

val fillRoundedRect : Drawing.drawable -> Drawing.pen
-> {rect : G.rect, c_wid : int, c_ht : int} -> unit

end (* ROUNDED_RECT *)

Draft of June 4, 1993 15:03

39

The function drawRoundedRect draws the outline of a rectangle, while the function fillRoundedRect
drawsafilled rectangle. The argumentsc_wid and c_ht specify thewidth and height of the rounded corners.

9.4 Bitmap I/O

Draft of June 4, 1993 15:03

Chapter 10

Unsupported X-windows features

X-windows is a large and complicated system and there are many aspects of the X-protocol and Xlib that
eXene does not support. Some of these are features that we plan to support in the near future, others are
unlikely to ever be supported. The following is a partial list of the currently unsupported features and our
plans with respect to support:

Full color support: This release only supports the default static colormap provided for each screen (see
chapter 6).

X resources: We have an implementation of the X resource database, but it is currently not included in the
release. We will includeit once we understand how to use resources to configure widgets.

ICCC: Thereisonly limited support for the X Inter-Client Communication Conventions. As we add more
pieces to eXene we expect this support to fill out into full compliance with the standard!Ros89,

Extensions. The X-window specification isdesigned to be extensible and there are a fair number of existing
extensions, such asthe MIT Shape extension and the Adobe Display Postscript extension. Thisrelease
of eXene does not support extensions, but we are planning on adding such support. A future release
will contain support for binding new extensions as well as a sample implementation (probably for the
Shape extension).

Window-manager support: A large fraction of the X-protocol’ sfunction is designed to support the imple-
mentation of window managers as clients. We have made no attempt to support these operationsin
eXene, and it isunlikely that we ever will. Note, however, that the protocol trandation routines (in the
filesprotocol/xrequest.sml and protocol/xreply.sml)do implement those features.

40

Bibliography

[GRO1]

[GRO3]

[Haa90]

[MIT89]
[Nyed0a]
[Nye90b]
[Nye90c]

[Pau9l]

[Piks9]

[Rep90]

[Rep9lal

[Rep91b]

[Rep92]

[Ros89]
[SG92]

[TA9]

Gansner, E. R. and J. H. Reppy. eXene. In Proceedings of the 1991 CMU Wbrkshop on Standard
ML, Carnegie Méellon University, September 1991.

Gansner, E. R. and J. H. Reppy. The eXene Widgets Manual. AT&T Bell Laboratories, Murray
Hill, N.J. 07974, February 1993. Included in the eXene distribution.

Haahr, D. Montage: Breaking windowsinto small pieces. In USENIX Summer Conference, June
1990, pp. 289-297.

MIT X Consortium Standard. Logical Font Description Conventions (version 1.3), 1989.
Nye, A. X Protocol Reference Manual, vol. 0. O’ Reilly & Associates, Inc., 1990.

Nye, A. Xlib Programming Manual, vol. 1. O’'Reilly & Associates, Inc., 1990.

Nye, A. (ed.). Xlib Reference Manual, vol. 2. O'Reilly & Associates, Inc., 1990.

Paulson, L. C. ML for the Working Programmer. Cambridge University Press, New York, N.Y.,
1991.

Pike, R. A concurrent window system. Computing Systems, 2(2), 1989, pp. 133-153.

Reppy, J. H. Concurrent programming with events — The Concurrent ML manual. Department
of Computer Science, Cornell University, Ithaca, N.Y., November 1990. (Last revised February
1993).

Reppy, J. H. CML: A higher-order concurrent language. In Proceedings of the SGPLAN' 91
Conference on Programming Language Design and Implementation, June 1991, pp. 293-305.

Reppy, J. H. An operational semantics of first-class synchronous operations. Technical Report TR
91-1232, Department of Computer Science, Cornell University, August 1991.

Reppy, J. H. Higher-order concurrency. Ph.D. dissertation, Department of Computer Science,
Cornell University, Ithaca, NY, January 1992. Available as Technical Report TR 92-1285.

Rosenthal, D. Inter-Client Conventions Manual (version 1.0). MIT X Consortium Standard, 1989.
Scheifler, R. W. and J. Gettys. The X Window System. Digita Press, 3rd edition, 1992.

Tabayoyan, A. and C. Adams. X Color Management System— An Xlib Enhancement (Public Review
Draft), April 1991.

41

