
The eXene Library Manual
(Version 0.4)

February 11, 1993

John H. Reppy
Emden R. Gansner

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974

COPYRIGHT c 1993 by AT&T Bell Laboratories
ALL RIGHTS RESERVED

Contents

1 Introduction 1

1.1 Roadmap : 1

2 Geometry 3

2.1 Point operations : 3

2.2 Size operations : 4

2.3 Rectangle operations : 4

3 Basic eXene objects 6

3.1 The display : 7

3.2 Screens : 7

3.3 Drawables : 8

3.3.1 Geometry of drawables : 8

3.3.2 Images : 8

3.3.3 Pixmaps and tiles : 9

3.4 Cursors : 10

3.4.1 The standard cursors : 10

3.5 Miscellaneous types and operations : 11

3.5.1 Other display operations : 11

3.5.2 Window hash tables : 11

3.5.3 Gravity : 11

4 Windows 13

4.1 Window creation : 13

4.2 Window configuration : 15

4.3 Other window operations : 15

5 Drawing 16

5.1 Pens : 16

5.2 Fonts : 16

i

ii

5.2.1 Opening a font : 16

5.2.2 Character metrics : 18

5.3 Pixmaps and Tiles : 18

5.4 Drawables : 20

5.5 Drawing graphics : 20

5.5.1 Area operations : 21

5.6 Drawing text : 22

6 Color 24

7 User interaction 26

7.1 Modifier buttons : 26

7.2 Mouse buttons : 27

7.3 The window environment : 27

7.3.1 Addressed messages and routing : 29

7.3.2 Control messages : 30

7.3.3 Keyboard messages : 31

7.3.4 Mouse messages : 31

7.4 Keysym translation : 31

7.5 Rubberbanding : 33

8 Inter-client communication 35

8.1 Atoms : 35

8.2 Selections : 35

8.3 Cut buffers : 35

8.4 Window hints : 36

9 Graphics utilities 37

9.1 Ellipses : 37

9.2 Splines : 37

9.3 Rounded rectangles : 38

10 Unsupported X-windows features 40

Draft of June 4, 1993 15:03

Chapter 1

Introduction

This document accompanies the beta release of eXene, a multi-threaded X-window toolkit for Standard

ML of New Jersey (SML/NJ). eXene is implemented on top of Concurrent ML (CML)[Rep90, Rep91a]. This

document is not an introduction to X-windows, SML, or CML; it assumes a working knowledge of all of

these systems. The reader should be familiar with X-windows at the level of Xlib (see [Nye90b] or [SG92]

for information); in general, we do not describe the semantics of an eXene operation or type when it is the

same as in Xlib. For information about SML see [Pau91]. CML is described in detail, including a language

tutorial, in [Rep90], and a formal description of its semantics can be found in [Rep91b, Rep92]. Furthermore,

this is not an eXene tutorial; look at the example applications included in the distribution to see how eXene
applications are constructed.

eXene provides a user-interaction model that is similar to the one advocated by [Pik89] and [Haa90].

User actions, such as mouse motion, are mapped onto streams of messages, which are routed from a top-level

window down the window hierarchy. Each window has an environment consisting of three input streams;

mouse, keyboard and control, and an output stream for requesting services from its parent. The paper [GR91],

which is included in the release documentation as the file overview.ps, provides an introduction to the

eXene system.

A companion document, [GR93], describes the prototype widget library that we have built on top of

eXene. It is intended that application programmers will primarily use widgets, which hide many of the

complexities of the message routing. Widget implementors, however, will need to be conversant with the

details of the library.

1.1 Roadmap

The user-level interface of eXene is organized into eight modules, which are grouped into the abstractionEXene. The EXenemodule is open by default, however, so its substructures are directly visible. Table 1.1 lists

these modules together with the source files of their signatures, the chapter(s) in which they are described,

and a brief description of their contents. In addition to the library, there is a collection of graphics utility

modules. These are discussed in Chapter 9.

1

2

Module Signature source file Chapter(s) DescriptionGeometry user/geometry.sml 2 The basic geometric types and
operations.EXeneBase user/exene-base.sml 3 and 6 Basic type definitions, display and
screen operations, and other miscella-
neous operations.Font user/font.sml 5 Support for handling fonts.Drawing user/drawing.sml 5 Types and operations for drawing text
and graphics.ICCC user/iccc.sml 4 and 8 Support for the X Inter-Client
Conventions.Interact user/interact.sml 7 Types and operations for handling user
interaction.EXeneWin user/exene-win.sml 4 Window creation and management.StdCursor user/std-cursor.sml 3 The names of the cursors in the standard
X cursor font.

Table 1.1: The eXene modules

Acknowledgements

Major portions of this system were implemented by the first author while he was a student at Cornell University

and was supported , in part, by the NSF and ONR under NSF grant CCR-85-14862, and by the NSF under

grant CCR-89-18233. Thomas Yan has provided corrections to this manual. Lennert Augustsson, Thomas

M. Breuel, Timothy Griffin, Clifford Krumvieda, Huimin Lin, Roderick Moten and Thomas Yan have been

helpful testers of eXene.

Draft of June 4, 1993 15:03

Chapter 2

Geometry

eXene follows the X-window convention and uses a pixel-based coordinate system with the origin located at

the upper left corner of the screen. The Geometry structure provides definitions and operations for the basic

geometric objects:datatype point = PT of {x : int, y : int}datatype size = SIZE of {wid : int, ht : int}datatype line = LINE of (point * point)datatype rect = RECT of {x : int, y : int, wid : int, ht : int}datatype arc = ARC of {x : int, y : int,wid : int, ht : int,angle1 : int, angle2 : int}datatype win_geom = WGEOM of {pos : point,sz : size,border : int}
Most of these types should be self-explanatory. Values of type win_geom describe the characteristics of a

window’s layout; see Chapter 4 for more information.1 The rest of this chapter describes the operations

provided by the Geometry structure.

2.1 Point operations

Figure 2.1 gives the signature of the point operations. The value originPt is the point (0; 0). The operationsxCoordOfPt and yCoordOfPt project the x and y coordinates of a point, respectively. Point arithmetic is

supported by addPt and subPt; scalePt scales both coordinates by a scalar value. Two partial orders,lessThanPt and lessEqPt, on points are defined by:lessThanPt((x1; y1); (x2; y2)) () (x1 < x2) and (y1 < y2)lessEqPt((x1; y1); (x2; y2)) () (x1 � x2) and (y1 � y2)
1This type may be moved to the EXeneWin structure in the future.

3

4val originPt : pointval xCoordOfPt : point -> intval yCoordOfPt : point -> intval addPt : (point * point) -> pointval subPt : (point * point) -> pointval scalePt : (int * point) -> pointval lessThanPt : (point * point) -> boolval lessEqPt : (point * point) -> bool
Figure 2.1: Point operations

2.2 Size operations

Size values are used to describe the dimension of rectangular regions; the size operations are given in

Figure 2.2. Like points, sizes can be added, subtracted and scaled. In addition, a size can be added to a pointval addSz : (size * size) -> sizeval subSz : (size * size) -> sizeval scaleSz : (int * size) -> sizeval addSzToPt : (point * size) -> pointval limitPt : (size * point) -> point
Figure 2.2: Size operations

by the addSzToPt operation. The function limitPt clips a point to be within the bounding box defined by

the origin and the size, using orthogonal projection. Note that, in almost all uses in eXene, the width and

height components of a size value should be nonnegative, but that this is not enforced by the type.

2.3 Rectangle operations

Figure 2.3 gives the signature of rectangle operations. Rectangles have an origin (a point), corresponding to

the upper left corner, and a size; the function mkRect builds a rectangle from a point and size. The functionsoriginOfRect,sizeOfRect and originAndSzOfRect extract these values from a rectangle. The functioncornerOfRect returns the point that is the lower right corner of the rectangle; this is computed by translating

the origin of the rectangle by its size. The function clipPt constrains a point to be within a rectangle (this

is like limitPt on sizes). The function translate (respectively, rtranslate) translates a rectangle by

adding (respectively, subtracting) the point to the rectangle’s origin. The function intersect returns true
if its two arguments intersect. The function intersection returns the largest rectangle contained by both of

its arguments; the exception Intersection is raised if they do not intersect. The function union returns the

smallest rectangle containing both of its arguments. The function within tests to see if a point is within a

rectangle and the function inside tests to see if its first argument is inside its second. And lastly, the functionboundBox returns the smallest rectangle containing a list of points (i.e., a bounding box).

Draft of June 4, 1993 15:03

5

val mkRect : (point * size) -> rectval originOfRect : rect -> pointval sizeOfRect : rect -> sizeval originAndSzOfRect : rect -> (point * size)val cornerOfRect : rect -> pointval clipPt : (rect * point) -> pointval translate : (rect * point) -> rectval rtranslate : (rect * point) -> rectval intersect : (rect * rect) -> boolexception Intersectionval intersection : (rect * rect) -> rectval union : (rect * rect) -> rectval within : (point * rect) -> boolval inside : (rect * rect) -> boolval boundBox : point list -> rect
Figure 2.3: Rectangle operations

Draft of June 4, 1993 15:03

Chapter 3

Basic eXene objects

This chapter gives an overview of the principal kinds of objects used by X and eXene. For the most part,

these are defined in the structure EXeneBase.

EXene supports a number of opaque types; most of these are declared in the EXeneBase structure (see

Figure 3.1). For those types that do not support equality, there are identity predicates that return true if, andtype displaytype screentype windowtype fonttype pixmaptype tiletype cursoreqtype std_cursoreqtype atomtype color
Figure 3.1: eXene types

only if, the two arguments are the same object. These predicates are given in Figure 3.2. The rest of thisval sameDisplay : (display * display) -> boolval sameScreen : (screen * screen) -> boolval sameWindow : (window * window) -> boolval sameFont : (font * font) -> boolval samePixmap : (pixmap * pixmap) -> boolval sameTile : (tile * tile) -> boolval sameCursor : (cursor * cursor) -> boolval sameColor : (color * color) -> bool
Figure 3.2: eXene types

chapter gives more detailed information about most of these types.

6

7

3.1 The display

In X terminology, each connection from a client program to an X-server is called a display. The functionsexception BadAddr of stringval openDisplay : string -> displayval closeDisplay : display -> unit
handle opening and closing a connection with an X-server. The argument to openDisplay specifies the

X-server’s host and the desired display and screen. In general, this string has the form:

host:d.s

where host specifies the machine running the server, d specifies the display number, and s specifies the

screen number. The host may either be the string “unix,” specifying a UNIX domain connection, or the

string representation of an internet address (e.g., “128.84.254.97”).1 On systems running Sun’s Network

InformationService (formerly Yellow Pages), one can get the internet address using ypmatch(1). For example,

to get the address of maui, one types the following (where % is the shell prompt):% ypmatch maui hosts128.84.254.97 maui.cs.cornell.edu maui.cs maui%
This information is also sometimes available in the /etc/hosts file. Then one can open a connection for

screen 0 of display 0 on maui by evaluating:openDisplay "128.84.254.97:0.0"
The following abbreviations are supported in the argument to openDisplay:"" == "unix:0.0"":d" == "unix:d.0"":d.s" == "unix:d.s""host:d" == "host:d.0"
If a badly formatted address is supplied or if, for some reason, opening the connection fails, then the exceptionBadAddr is raised.

3.2 Screens

Each display supports one or more screens. One of these screens is designated as the default screen by the

command to open the display connection (as described in Section 3.1). The following two functions extract

screens from a display:val defaultScreenOf : display -> screenval screensOf : display -> screen list
Screens have a number of characteristics; the functions in Figure 3.3 query these. The functions sizeOfScr

1Because of a limitation in the SML/NJ run-time system, an internet connection must be specified using the actual internet address.
The examples directory get-displayhas an SML structure that implements display name lookup using a sub-process.

Draft of June 4, 1993 15:03

8val displayOfScr : screen -> displayval sizeOfScr : screen -> G.sizeval sizeMMOfScr : screen -> G.sizeval depthOfScr : screen -> int
Figure 3.3: Screen query functions

and sizeMMOfScr give the physical dimensions of the screen in pixels and millimeters, respectively, and the

depth, or number of planes, of the screen is given by the function depthOfScr. Characteristics related to the

support of color and grey scale screens are discussed in Chapter 6.

3.3 Drawables

Windows, pixmaps and tiles are the three kinds of drawable surfaces (i.e., rectangular arrays of pixels)

supported by eXene. Windows are “on-screen” pixmaps and have additional properties associated with user

interaction, the window manager, and the window hierarchy. Chapter 4 discusses the creation of windows

and Chapter 5 discusses graphical operations on drawables. Tiles are immutable pixmaps. The remainder of

this section discusses the operations on drawables provided in the EXeneBase structure.

3.3.1 Geometry of drawables

All drawables have depth and size; in addition, windows have a position (in their parent’s coordinate system)

and a border width. Operations to query these properties are given in Figure 3.4. Although pixmaps and tilesval depthOfWin : window -> intval depthOfPixmap : pixmap -> intval depthOfTile : tile -> intval sizeOfWin : window -> G.sizeval sizeOfPixmap : pixmap -> G.sizeval sizeOfTile : tile -> G.sizeval geomOfWin : window -> {pos : G.point, sz : G.size, depth : int, border : int}val geomOfPixmap : pixmap -> {pos : G.point, sz : G.size, depth : int, border : int}val geomOfTile : tile -> {pos : G.point, sz : G.size, depth : int, border : int}
Figure 3.4: Drawable geometries

do not have a position or a border, to keep the interfaces uniform, the functions geomOfWin, geomOfPixmap
and geomOfTile all return the same type. For pixmaps and tiles, the position is (0; 0) and the border width

is also 0.

3.3.2 Images

An image is a client-side description of a rectangular array of pixels. Images are useful for specifying icons

and tiling patterns. Figure 3.5 gives the image type and operations. The function imageFromAscii is used

to create an image value from an ASCII specification of the rows, which can be either a string representation

Draft of June 4, 1993 15:03

9datatype image = IMAGE of {sz : G.size,data : string list list}exception BadImageDataval imageFromAscii : (int * string list list) -> image
Figure 3.5: Images

of a binary number (with "0b" prefix) or of a hexadecimal number (with "0x" prefix). The integer parameter

specifies the pixel width of the image; the height is determined by the length of the string list. For example,

the following “tic-tac-toe” imageIMAGE{sz = G.SIZE{wid=8, ht=8},data = [["\002\004", "\002\004", "\255\255", "\002\004","\002\004", "\255\255", "\002\004", "\002\004"]]}
can be specified in ASCII as eitherimageFromAscii (8, [["0x24", "0x24", "0xff", "0x24", "0x24", "0xff", "0x24", "0x24"]])
or asimageFromAscii (8, [["0b00100100","0b00100100","0b11111111","0b00100100","0b00100100","0b11111111","0b00100100","0b00100100"]])
The exception BadImageData is raised by imageFromAscii if there is an error in the supplied data.

3.3.3 Pixmaps and tiles

Pixmaps are off-screen rectangular regions of pixels; tiles are immutable pixmaps. There are a number of

different ways to create pixmaps and tiles; these are given in Figure 3.6. The function createPixmap creates

an uninitialized pixmap of a given size and depth. Tiles and pixmaps may be created from either ASCII data

(as described in Section 3.3.2) or from image data. The function createTileFromPixmap creates a tile with

the same size and contents as an existing pixmap. Note that subsequent changes to the pixmap will not affect

the tile.

Draft of June 4, 1993 15:03

10val createPixmap : screen -> (G.size * int) -> pixmapval createPixmapFromAsciiData : screen -> (int * string list) -> pixmapval createPixmapFromImage : screen -> image -> pixmapval createTileFromAsciiData : screen -> (int * string list) -> tileval createTileFromImage : screen -> image -> tileval createTileFromPixmap : pixmap -> tile
Figure 3.6: Pixmap and tile creation functions

There are also two functions for creating images from pixmaps or tiles:val createImageFromPixmap : pixmap -> imageval createImageFromTile : tile -> image
3.4 Cursors

Currently, eXene only supports the, so called, standard cursors. These are described below. The color of a

cursor can be changed using the functionval recolorCursor : {cursor : cursor, fore_rgb : rgb, back_rgb : rgb} -> unit
where the type rgb is defined as2datatype rgb = RGB of {red : int, green : int, blue : int}
The functionval changeActiveGrabCursor : display -> cursor -> unit
is used to change the cursor during an active grab of the pointer device (see Chapter 7).

3.4.1 The standard cursors

The X distribution provides a standard cursor font. The eXene type std_cursor is used to name these

cursors. Given a standard cursor name, one can create a cursor using the functionval stdCursor : display -> std_cursor -> cursor
The structure StdCursor contains all of the standard cursor names; see Appendix I of [Nye90c] for more

information.
2In the long run, we hope to have a device independent color model for cursor colors and eliminate the rgb type.

Draft of June 4, 1993 15:03

11

3.5 Miscellaneous types and operations

3.5.1 Other display operations

There are a number of operations that are global to a display connection. For example, the functionval ringBell : display -> int -> unit
generates an audible beep on the user’s terminal. The integer argument, which should be in the range[�100; 100] defines the volume of the beep according to the following formulav =8<: b� bp

100 + p if p � 0b+ bp
100 if p < 0

where b is the base volume and p is the argument value. Currently, the base volume cannot be changed from

eXene.

3.5.2 Window hash tables

Because it is often necessary to key searches by a window’s identity, generic hash tables with window keys

are provided.type 'a window_mapexception WindowNotFoundval newMap : unit -> '1a window_mapval insert : '2a window_map -> (window * '2a) -> unitval find : 'a window_map -> window -> 'aval remove : 'a window_map -> window -> 'aval list : 'a window_map -> 'a list
The operations are fairly obvious: newMap creates a new hash table; insert inserts an item keyed by a

window; find returns the item keyed by the given window; remove removes and returns an item; and list
returns a list of the items in the table. The exception WindowNotFound is raised by find and remove in the

case that the given window is not in the table.

3.5.3 Gravity

The EXeneBase structure also includes a datatype for specifying a windows “gravity,” i.e., how it is going to

be relocated when its parent is resized.

Draft of June 4, 1993 15:03

12datatype gravity= ForgetGravity (* bit gravity only *)| UnmapGravity (* window gravity only *)| NorthWestGravity| NorthGravity| NorthEastGravity| WestGravity| CenterGravity| EastGravity| SouthWestGravity| SouthGravity| SouthEastGravity| StaticGravity
This type is used in window manager and size hints (see Sections 4 and 8).

Draft of June 4, 1993 15:03

Chapter 4

Windows

Windows are the basic unit of graphical output and user input. This chapter discusses the operations for

window creation and organization; Chapter 5 discusses drawing on windows and Chapter 7 discusses the

eXene user interaction model. The types and operations discussed in this chapter can be found in the structureEXeneWin.

eXene supports five kinds of windows: top-level windows, subwindows, transient windows, popup

windows, and input-only windows. A top-level window is the root of a window hierarchy, and is managed by

the window manager. The descendants of a top-level window in a window hierarchy are called subwindows.

Transient windows are managed top-level windows with short lifetimes, such as dialogue boxes, and popup

windows are unmanaged top-level windows, such as menus. Input-only windows provide a new input context

for an existing window.

4.1 Window creation

Figure 4.1 gives the signatures of the creation functions for the different kinds of windows. The first argument

for these functions is the parent of the window: this is the screen for top-level and popup windows, and another

window for subwindows. The second argument is a record that specifies the window’s preferred geometry,1

border width, and background color. The point supplied in the window geometry is the origin of the window

in its parent’s coordinate system. Note that this is the upper left corner of the entire window, including the

window’s border, and not the origin of the window’s drawing region, whose dimensions are specified by the

size component of the geometry. For top-level and popup windows, the create function returns the window

and its input environment, which is derived from the X-event stream.

Once a top-level window has been created, certain window-manager properties can be set for it. This

should be done before the window is mapped using the following function:

1For top-level windows, the actual geometry is usually decided by the user or window manager, with hints provided by setWMProp-erties.

13

14val createSimpleTopWin : EXB.screen -> {geom : G.win_geom,border : EXB.color,backgrnd : EXB.color} -> (window * Interact.in_env)val createSimpleSubwin : window -> {geom : G.win_geom,border : EXB.color option,backgrnd : EXB.color option} -> windowval createTransientWin : EXB.window -> {geom : G.win_geom,border : EXB.color,backgrnd : EXB.color} -> (window * Interact.in_env)val createSimplePopupWin : EXB.screen -> {geom : G.win_geom,border : EXB.color,backgrnd : EXB.color} -> (window * Interact.in_env)val createInputOnlyWin : window -> G.rect -> windowexception InputOnly
Figure 4.1: Window creation functionsval setWMProperties : window -> {win_name : string option,icon_name : string option,argv : string list,size_hints : ICCC.size_hints list,wm_hints : ICCC.wm_hints list,class_hints : {res_class : string, res_name : string} option} -> unit

See Chapter 8 for a description of the size and window manager hints.

To get a window to actually appear on the screen, it (and all of its ancestors) must be mapped. The

functionval mapWin : window -> unit
maps a window. To avoid having the screen flash, it is a good idea to map a window hierarchy from the

bottom up, mapping the top-level window last. The functionsval unmapWin : window -> unitval destroyWin : window -> unit
respectively unmap and destroy a window. In X, destroying a window implicitly destroys all of its subwindows.

4.2 Window configuration

The configuration of a window (position, size, etc.) can be controlled using the following operations:

Draft of June 4, 1993 15:03

15val configureWin : window -> window_config list -> unitval moveWin : window -> G.point -> unitval resizeWin : window -> G.size -> unitval moveAndResizeWin : window -> G.rect -> unit
The constructors of the window_config datatype are described in Table 4.1.

Description Value
Window origin WC_Origin point
Window size WC_Size size
Window’s border width WC_BorderWid n
Stacking mode WC_StackModemode
Stacking mode relative to WC_RelStackMode(win,mode)
a sibling window

Table 4.1: Window configuration values

4.3 Window attributes

The cursor used by a window is set using the following function:val setCursor : window -> EXB.cursor option -> unitval setBackground : window -> EXB.color option -> unitval changeWinAttrs : window -> window_attr list -> unit
4.4 Other window operations

There are a few other miscellaneous operations on windows. Given a point in a window’s coordinate system,

it can be translated to a point in the screen’s absolute coordinate system by the function:val winPtToScrPt : window -> G.point -> G.point
The screen and dispay associated with a window can be found using the functions:val screenOfWin : window -> EXB.screenval displayOfWin : window -> EXB.display

Draft of June 4, 1993 15:03

Chapter 5

Drawing

This chapter describes the various operations and types provided by eXene to support bitmap graphics. These

operations and types are defined in the Drawing structure.

5.1 Pens

A pen is similar to the graphics context provided by Xlib. The principal differences are that pens are

immutable, do not specify a font, and can specify clipping rectangles and dash lists (which are handled

separately in the X protocol). The basic operations on pens are:type penval newPen : pen_val list -> penval updatePen : (pen * pen_val list) -> penval defaultPen : pen
The datatype pen_val is used to specify the non-default values when creating a new pen. Table 5.1 lists the

components of a pen, the possible values for each component, and the default value. The drawing functions

used with PV_Function are defined by the datatype graphics_op; these specify how source and destination

colors are logically combined in graphics operations, and are explained by Table 5.2. The newPen function

creates a new pen with the specified values. The updatePen function does a non-destructive update of a pen.

eXene provides a default pen for those rare instances when all default values are appropriate. The semantics

of a pen basically follow the semantics of the Xlib graphics contexts (see Chapter 5 of [Nye90b]).

5.2 Fonts

Unlike in Xlib, fonts are not part of the graphics context (pen in our case). The text drawing operations (see

Section 5.6) take the font as a separate argument.

5.2.1 Opening a font

To open a font, use the function

16

17

Component Values Default
Function PV_Function op PV_Function OP_Copy
Plane mask PV_PlaneMaskmask all ones
Foreground color PV_Foreground color PV_Foreground color0
Background color PV_Background color PV_Background color1
Line width PV_LineWidthwidth PV_LineWidth 0
Line style PV_LineStyle_Solid PV_LineStyle_SolidPV_LineStyle_OnOffDashPV_LineStyle_DoubleDash
Cap style PV_CapStyle_Butt PV_CapStyle_ButtPV_CapStyle_NotLastPV_CapStyle_RoundPV_CapStyle_Projecting
Join style PV_JoinStyle_Miter PV_JoinStyle_MiterPV_JoinStyle_RoundPV_JoinStyle_Bevel
Fill style PV_FillStyle_Solid PV_FillStyle_SolidPV_FillStyle_TiledPV_FillStyle_StippledPV_FillStyle_OpaqueStippled
Fill rule PV_FillRule_EvenOdd PV_FillRule_EvenOddPV_FillRule_Winding
Arc mode PV_ArcMode_PieSlice PV_ArcMode_PieSlicePV_ArcMode_Chord
Tile PV_Tile tile
Stipple PV_Stipple tile
Tile/stipple origin PV_TSOrigin pt PV_TSOrigin(PT{x=0,y=0})
Subwindow mode PV_ClipByChildren PV_ClipByChildrenPV_IncludeInferiors
Clip origin PV_ClipOrigin pt PV_ClipOrigin(PT{x=0,y=0})
Clip mask PV_ClipMask_None PV_ClipMask_NonePV_ClipMask pixmapPV_ClipMask_UnsortedRects rectsPV_ClipMask_YSortedRects rectsPV_ClipMask_YXSortedRects rectsPV_ClipMask_YXBandedRects rects
Dash offset PV_DashOffset n PV_DashOffset 0
Dashes PV_Dash_Fixed n PV_Dash_Fixed 4PV_DashList dashes

Table 5.1: Pen component values

Draft of June 4, 1993 15:03

18OP_Clr dst 0OP_And dst src^ dstOP_AndNot dst src^ dstOP_Copy dst srcOP_AndInverted dst src^ dstOP_Nop dst dstOP_Xor dst src� dstOP_Or dst src_ dstOP_Nor dst src^ dstOP_Equiv dst src� dstOP_Not dst dstOP_OrNot dst src_ dstOP_CopyNot dst srcOP_OrInverted dst src_ dstOP_Nand dst src_ dstOP_Set dst 1

Table 5.2: Graphical operators
The symbol _ is logical or, ^ is logical and, and � is exclusive-or, and the
notation x is the logical negation of x.exception FontNotFoundval openFont : EXB.display -> string -> font

which returns the opened font or raises the exception FontNotFound, if the font cannot be found in the

server’s font path. For information on font naming conventions, see [MIT89].

5.2.2 Character metrics

Fonts and their related character metrics follow the standard X model. However, in eXene, font information

is viewed as logically part of the font; there is no separate font information data structure. Figure 5.1 gives the

types and operations related to the character metrics of fonts. Look in [Nye90b] or [SG92] for an explanation

of the different character metrics.

The function charInfoOf returns information about the give character (specified as an ordinal); it raises

the the exception NoCharInfo if the integer argument does not correspond to a character in the font. The

function textWidth returns the width in pixels of the given string in the given font, and charPositions
returns the position of each character in the string.

5.3 Pixmaps and Tiles

A pixmap is an off-screen rectangle of colors; any drawing operation that will work on a window will also

work on a pixmap. A tile is an immutable pixmap. More information about pixmaps and tiles can be found

in Section 3.3.

Draft of June 4, 1993 15:03

19

datatype font_draw_dir = FontLeftToRight | FontRightToLeftdatatype font_prop = FontProp of {name : EXB.atom, (* the name of the property *)value : string (* the property value: interpret according to the *)(* property. *)}datatype char_info = CharInfo of {left_bearing : int,right_bearing : int,char_wid : int,ascent : int,descent : int,attributes : int}exception FontPropNotFoundval fontPropertyOf : font -> EXB.atom -> stringval fontInfoOf : font -> {min_bounds : char_info,max_bounds : char_info,min_char : int,max_char : int}exception NoCharInfoval charInfoOf : font -> int -> char_infoval textWidth : font -> string -> intval charPositions : font -> string -> int listval textExtents : font -> string -> {dir : font_draw_dir,font_ascent : int, font_descent : int,overall_info : char_info}val fontHt : font -> {ascent : int, descent : int}
Figure 5.1: Font and character metrics

Draft of June 4, 1993 15:03

20

5.4 Drawables

A drawable is an abstract type that collects together windows, pixmaps, and overlays (discussed in Section 7.5).

The following functions are used to get the drawable of a window or pixmap:val drawableOfPM : pixmap -> drawableval drawableOfWin : window -> drawable
There is also a function to return the depth of a drawable:val depthOfDrawable : drawable -> int
5.5 Drawing graphics

EXene provides a number of drawing operations on drawables; Figure 5.2 gives the signature of these

operations. The semantics of the drawing operations are essentially the same as defined by Xlib, althoughexception BadDrawParameterval drawPts : drawable -> pen -> point list -> unitval drawPtPath : drawable -> pen -> point list -> unitval drawPt : drawable -> pen -> point -> unitval drawLines : drawable -> pen -> point list -> unitval drawPath : drawable -> pen -> point list -> unitval drawSegs : drawable -> pen -> line list -> unitval drawSeg : drawable -> pen -> line -> unitdatatype shape = ComplexShape | NonconvexShape | ConvexShapeval fillPolygon : drawable -> pen -> {verts: point list, shape : shape} -> unitval fillPath : drawable -> pen -> {path : point list, shape : shape} -> unitval drawRects : drawable -> pen -> rect list -> unitval drawRect : drawable -> pen -> rect -> unitval fillRects : drawable -> pen -> rect list -> unitval fillRect : drawable -> pen -> rect -> unitval drawArcs : drawable -> pen -> arc list -> unitval drawArc : drawable -> pen -> arc -> unitval fillArcs : drawable -> pen -> arc list -> unitval fillArc : drawable -> pen -> arc -> unitval drawCircle : drawable -> pen -> {center : point, rad : int} -> unitval fillCircle : drawable -> pen -> {center : point, rad : int} -> unit
Figure 5.2: Drawing operations

the names are different. Functions that draw paths (e.g., drawPtPath) treat their point list argument as

a list of relative coordinates. The first element specifies an absolute coordinate and each successive element

specifies an offset relative to the previous coordinate. All other operations use absolute coordinates. The

exception BadDrawParameter is raised if the argument to a drawable is invalid.

Draft of June 4, 1993 15:03

21

5.5.1 Area operations

To clear a rectangular region (or all) of a drawable, use the functions:val clearArea : drawable -> rect -> unitval clearDrawable : drawable -> unit
For a window, these functions fill with the background color; for a pixmap, they fill with 0. For clearArea,

if the rectangle’s width is zero, then the cleared rectangle is extended to the right edge of the drawable, and

if the height is zero, then the cleared rectangle is extended to the bottom of the drawable. The functionclearDrawable clears the entire drawable.

The X-protocol provides two operations for copying a rectangle from one drawable to another: CopyArea
andCopyPlane. To further complicate things, these operations can have replies in the form ofGraphicsExpose
and NoExpose X-events. When the source drawable is a window, then it is possible that some or all of the

source rectangle might be obscured; in this case, the portions of the destination that did not get updated need

to be redrawn.

In eXene, we provide three versions of four operations, which are fully synchronousexception DepthMismatchexception BadPlaneval pixelBlt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point} -> G.rect listval bitBlt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point} -> G.rect listval planeBlt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point, plane : int} -> G.rect listval copyBlt : drawable -> pen -> {dst_pos : G.point, src_rect : G.rect} -> G.rect listpixelBlt provides the semantics of CopyArea; the exception DepthMismatch is raised if the source and

destination do not have the same depth. planeBlt provides the semantics of CopyPlane; the exceptionBadPlane is raised if the value of plane does not correspond to a legal bitplane in the source. bitBlt is the

same as planeBltwith plane set to zero. The copyBlt function is a pixelBlt operation where the source

and destination are the same drawable.

The source drawable may be a window, pixmap or tile, and is specified using the following datatype:datatype draw_src= WSRC of window| PMSRC of pixmap| TSRC of tile
The return value is a list of rectangles in the destination, which were not updated because the corresponding

source rectangles were obscured. When the source drawable is a tile or pixmap, then the return result will

Draft of June 4, 1993 15:03

22

always be the empty list; if the source tile or pixmap is smaller than the destination rectangle, then the extra

space will be filled with the zero pixel (i.e., color0).

The synchronous forms of the BLT operations can produce a performance bottleneck; this is why the X-

protocol uses events instead of replies. In CML, however, we can provide an asynchronous remote-procedure

call (or promise) interface to these operations, and thus can hide the X-events. To do this, we provide

event-valued forms of the above operations:val pixelBltEvt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point} -> G.rect list CML.eventval bitBltEvt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point} -> G.rect list CML.eventval planeBltEvt : drawable -> pen -> {src : draw_src, src_rect : G.rect, dst_pos : G.point, plane : int} -> G.rect list CML.eventval copyBltEvt : drawable -> pen -> {dst_pos : G.point, src_rect : G.rect} -> G.rect list CML.event
Note that when the source drawable is not a window, then no synchronization is necessary.

The operationval tileBlt : drawable -> pen -> {src : tile, dst_pos : G.point} -> unit
is a bitBlt operation using a depth-1 tile as the source. The source rectangle is the whole tile.

5.6 Drawing text

Figure 5.3 gives the signature of the various text drawing operations provided by eXene. There are two stylesval drawString : drawable -> pen -> font -> (point * string) -> unitval imageString : drawable -> pen -> font -> (point * string) -> unitdatatype text= TEXT of (font * text_item list)and text_item= TXT_FONT of (font * text_item list)| TXT_STR of string| TXT_DELTA of intval drawText : drawable -> pen -> (point * text) -> unit
Figure 5.3: Text drawing operations

of text drawing: opaque and transparent. Opaque text, provided by imageString, is drawn by first filling

Draft of June 4, 1993 15:03

23

in the bounding rectangle with the background color, and then drawing the text with the foreground color.

The function and fill-style of the pen are ignored, replaced in effect by OP_Copy and PV_FillStyle_Solid.

In transparent text, as provided by drawString and drawText, the pixels corresponding to bits set in a

character’s glyph are drawn using the foreground color in the context of the other relevant pen values, while

the other pixels are unmodified. The drawText function provides a user-level batching mechanism for

drawing multiple strings of the same line with possible intervening font changes or horizontal shifts.

Draft of June 4, 1993 15:03

Chapter 6

Color

This release of eXene supports the most basic use of color supported by X: read-only access to the default

colormap using either RGB values or names to specify the color. A device-independent mechanism for

specifying colors is part of the X11R5 standard[TA91, SG92]. We plan to use this as the basis for future color

support in eXene. The current color interface is defined in the EXeneBase structure and is given in Figure 6.1.

To determine whether a screen supports color, one can use the functiondisplayClassOfScr to determine thedatatype display_class= StaticGray | GrayScale | StaticColor | PseudoColor | TrueColor | DirectColorval displayClassOfScr : screen -> display_classdatatype color_spec= CMS_Name of string| CMS_RGB of {red : int, green : int, blue : int}val white : color_specval black : color_specval color0 : colorval color1 : colorexception BadRBGexception NoColorCellval colorOfScr : screen -> color_spec -> colorval blackOfScr : screen -> colorval whiteOfScr : screen -> color
Figure 6.1: eXene color operations

screen’s display class. A monochrome screen, for example, will usually have the display class StaticGray
and a depth of one. For a discussion of the display classes and X color model, see Chapter 7 of [Nye90b].

Colors are specified by either name or RGB value, using the color_spec datatype. The values black
and white specify their respective colors. A color_spec value is mapped to an abstract color value using

the function colorOfScr. The functions blackOfScr and whiteOfScr return the black and white colors

24

25

for the given screen. The colors color0 and color1 represent the 0 and 1 pixel values, and are used to draw

on pixmaps.

Draft of June 4, 1993 15:03

Chapter 7

User interaction

It is in the area of handling user input that eXene differs most significantly from traditional X libraries.

Traditional X libraries, such as Xlib, Xt, and CLX, use event loops and call-back functions to simulate

concurrency; in eXene we make the concurrency explicit.

The X protocol provides 33 different event messages and a complicated semantics of which events a client

will receive and under what circumstances. In eXene we have tried to simplify the model.

7.1 Modifier buttons

X attempts to provide a portable model of input devices; part of this includes support for modifier keys; i.e.,

keys that do not have an individual meaning, but which modify the meaning of other keys. The following

datatype represents the X modifier keys:datatype modkey = ShiftKey | LockKey | ControlKey| Mod1Key | Mod2Key | Mod3Key | Mod4Key | Mod5Key| AnyModifier
The state of the modifier buttons (i.e., which are depressed) is represented by the type:eqtype modkey_state
A modifier key state can be built using the functionval mkModState : modkey list -> modkey_state
which returns the state with exactly the listed buttons depressed. The standard set operations are supported

on modifier states:val unionMod : (modkey_state * modkey_state) -> modkey_stateval intersectMod : (modkey_state * modkey_state) -> modkey_state
The following predicates test modifier states for status of individual buttons:

26

27val emptyMod : modkey_state -> boolval shiftIsSet : modkey_state -> boolval lockIsSet : modkey_state -> boolval cntrlIsSet : modkey_state -> boolval modIsSet : (modkey_state * int) -> bool
A modifier state created with AnyModifier is special; essentially it is the> of the set lattice.

7.2 Mouse buttons

The buttons on the mouse are represented by values of the typedatatype mbutton = MButton of int
where the integer ranges from 1 to 5. As with the modifier keys, it is often necessary to know the state of the

buttons; the abstract typeeqtype mbutton_state
represents a mouse button state (i.e., a set of depressed mouse buttons). The functionval mkButState : mbutton list -> mbutton_state
returns a button state with the listed buttons depressed. Some standard set operations on mouse states are

provided:val unionMBut : (mbutton_state * mbutton_state) -> mbutton_stateval intersectMBut : (mbutton_state * mbutton_state) -> mbutton_stateval invertMBut : (mbutton_state * mbutton) -> mbutton_state
The functions unionMBut and intersectMButdo the obvious. The function invertMBut inverts the setting

of the given button. There are a number of predicates on mouse states:val mbutAllClr : mbutton_state -> boolval mbutSomeSet : mbutton_state -> boolval mbut1IsSet : mbutton_state -> boolval mbut2IsSet : mbutton_state -> boolval mbut3IsSet : mbutton_state -> boolval mbut4IsSet : mbutton_state -> boolval mbut5IsSet : mbutton_state -> boolval mbutIsSet : (mbutton_state * mbutton) -> bool
The predicate mbutAllClr is true if no buttons are depressed; mbutSomeSet is true if one or more buttons

is set. The other predicates test the status of single button.

7.3 The window environment

eXene provides a model of input that is similar to that of [Pik89] and [Haa90]. Each window has an

environment, consisting of three input streams (mouse, keyboard and control) and an output stream for talking

Draft of June 4, 1993 15:03

28

to the window’s parent. There are two sides to an environment: the parent sees an output environment for each

child, and each child sees an input environment from its parent. Each side of this connection is represented

by its own type (see Figure 7.1). The functiondatatype in_env = InEnv of { (* this is the window's view of its *)(* environment *)k : kbd_msg addr_msg CML.event,m : mouse_msg addr_msg CML.event,ci : cmd_in addr_msg CML.event,co : cmd_out -> unit CML.event}datatype out_env = OutEnv of { (* this is the parent's view of one of its *)(* children's environment. *)k : kbd_msg addr_msg -> unit CML.event,m : mouse_msg addr_msg -> unit CML.event,ci : cmd_in addr_msg -> unit CML.event,co : cmd_out CML.event}
Figure 7.1: Window environment typesval createWinEnv : unit -> (in_env * out_env)

creates the channels for a window’s environment and returns the input and output sides.

There are a number of operations for reconfiguring input environments. The following operations provide

applicative updates of a given input stream:val replaceMouse : (in_env * mouse_msg addr_msg CML.event) -> in_envval replaceKey : (in_env * kbd_msg addr_msg CML.event) -> in_envval replaceCI : (in_env * cmd_in addr_msg CML.event) -> in_env
Often, a window will want to ignore a given input stream, but since communication is synchronous it must

still read messages to avoid locking its parent. The following operations attach null threads to the given input

stream and replace the stream with another:val ignoreMouse : in_env -> in_envval ignoreKey : in_env -> in_envval ignoreInput : in_env -> in_envval ignoreAll : in_env -> in_env
The function ignoreInput causes both the mouse and keyboard streams to be ignored, while the functionignoreAll also ignores the control stream.

Sometimes a thread will intercept messages on a single stream, while passing on those on the other streams.

A new environment, which has a dummy in the intercepted slot can be created by using the appropriate replace

function from above and the valueval nullStream : 'a addr_msg CML.event
Draft of June 4, 1993 15:03

29

This stream will never produce a message; synchronizing on it will block.

Because many applications, such as menus, need to wait until the mouse has reached a stable state, eXene
provides the functionval whileMouseState : (mbutton_state -> bool) -> (mbutton_state * mouse_msg CML.event)-> unit
which eats mouse events until the given predicate is satisfied. The mbutton_state argument is the initial

mouse button state and the mouse_msg event value provides the stream of mouse events. The predicates

described in Section 7.2 are useful for this purpose. For example, the functionfun downLoop (mouseEvt, mouseBut) = letval whileSomeSet = whileMouseState mbutSomeSetfun loop () = (case (msgBodyOf (sync mevt))of (MOUSE_Up {but, state, ...}) => if (but = mouseBut)then (action (); whileSomeSet (state, mevt))else loop ()| (MOUSE_LastUp _) => action()| _ => loop ())inloop ()end
will read mouse events from the stream represented by mouseEvt until the specified mouse button (mbut) is

released. At that time, it will call the action function and then wait until all mouse buttons are up before

returning. This idiom is useful for guaranteeing that the mouse buttons are in a stable state before handling

more mouse button transitions.

7.3.1 Addressed messages and routing

The messages passed along the environment streams are addressed to a particular target window (e.g., the

window in which a mouse click occurred). Addressed messages have the typetype 'a addr_msg
The actual contents of an addressed message can be extracted usingval msgBodyOf : 'a addr_msg -> 'a
A message address is a path through the window hierarchy. There are a number of operations designed to

support routing of addressed messages:datatype 'a next_win = Here of 'a | ToChild of 'a addr_msgval stripMsg : 'a addr_msg -> 'a next_winexception NoMatchWinval whichWindow : (EXB.window * 'a) list -> 'b addr_msg -> 'aval toWindow : ('a addr_msg * EXB.window) -> boolval addrLookup : 'a EXB.window_map -> 'b addr_msg -> 'a
Draft of June 4, 1993 15:03

30

The function stripMsg looks at the next step in the path and returns Here, if the message has reached its

destination, otherwise it returns ToChild with one address stripped from the path. The function toWindow
compares the next window in a path with a specific window and returns true if they match. The functionwhichWindow searches a list of windows for an address match; it raises the exception NoMatchWin if no

match is found. When a window has many children, a more efficient lookup scheme is necessary; the functionaddrLookup does an address lookup in a window hash table (see Section 3.5.2).

Because we divide the stream of input events into three separate streams, we lose the causal ordering of

input events. For most applications, this isn’t important, but to handle the cases in which it is important, there

is a total ordering on addressed messages. The functionval beforeMsg : ('a addr_msg * 'a addr_msg) -> bool
will return true if its first argument is before its second argument in the ordering.

7.3.2 Control messages

Control messages are used by a parent window to notify its children of changes in their status and by a child

window to request changes.

The control messages passed down from the top-level window are addressed messages and correspond to

X-events. The messages currently provided aredatatype cmd_in= CI_Redraw of G.rect list| CI_Resize of G.rect| CI_ChildBirth of EXB.window| CI_ChildDeath of EXB.window| CI_OwnDeath
The CI_Redrawmessage is a notification that a window has been damaged; the argument is a list of damaged

rectangles. TheCI_Resizemessage is a notification of a change in the size of a window. TheCI_ChildBirth
and CI_ChildDeath messages are used to inform a window of changes in the status of its children. The

system guarantees that a CI_ChildBirth message will be seen before any other control messages for that

child, and that there will be no control messages for the child after the CI_ChildDeathmessage. In addition,

corresponding synchronization messages are also passed down the mouse and keyboard streams to allow a

barrier style synchronization on configuration changes (see sections 7.3.3 and 7.3.4). These messages are

used in the widget message routers to automatically reconfigure the message routing in composite widgets

(see Chapter 5 of [GR93]). The CI_OwnDeath message tells a window that it is dead (i.e., that it no longer

exists on the X-server).

The control messages going from the child to the parent are not addressed, since they only need to go one

hop. There are currently only two messages supported:datatype cmd_out= CO_ResizeReq| CO_KillReq
These messages are requests for services that the parent window may choose to honor. The actual protocol for

Draft of June 4, 1993 15:03

31

using these messages is left to the widget level, but it is worth noting that the bi-directional communication

provided by control messages is a potential source of deadlock.

7.3.3 Keyboard messages

Keyboard messages are addressed messages that notify a window of keyboard events that occurred while the

keyboard focus was in the window. The messages aredatatype kbd_msg= KEY_Press of (keysym * modkey_state)| KEY_Release of (keysym * modkey_state)| KEY_ConfigSync
The first two of these correspond to the pressing and releasing of a key by the user. The argument to these

messages specifies the actual key pressed via a keysym and the state of the modifier keys. Keysyms are a

portable representation of keys; Section 7.4 discusses the translation of keysyms into ASCII strings.

When certain changes occur in a window’s configuration, the parent window is notified of these changes

through a control message (e.g., the CI_ChildBirth and CI_ChildDeath messages in Section 7.3.2). In

order for the parent to synchronize its state with the three event channels, a KEY_ConfigSync message is

generated at the same time on its keyboard channel. A similar message is also generated on the mouse

channel.

7.3.4 Mouse messages

Mouse messages are addressed messages that notify the target window of mouse events. Figure 7.2 gives themouse_msg datatype. The MOUSE_Motion message is a notification of a change in the mouse position; its

arguments specify the mouse position in the window’s coordinates (pt) and in absolute screen coordinates

(scr_pt). The time of the mouse motion is given as a value of the typedatatype time = TIME of {sec : int, usec : int}
The messages MOUSE_FirstDown,MOUSE_Down,MOUSE_LastUp, and MOUSE_Up are notifications of changes

in the state of the mouse buttons. The arguments to these messages includes position and time infor-

mation, the button being pressed and the state of all of the mouse buttons after the transition1. TheMOUSE_Enter and MOUSE_Leavemessages notify the window that the mouse has entered or left the window.

The MOUSE_ConfigSync message plays the same role for the mouse channel that the KEY_ConfigSync
message plays for the keyboard channel (cf. Section 7.3.3).

7.4 Keysym translation

Keysyms are a portable representation of the symbols on the key caps (see [Nye90a] for the list of keysym

codes).datatype keysym = KEYSYM of int | NoSymbol
1Note that this differs from the semantics of the ButtonPressand ButtonReleaseX-events, which report the pre-transition state.

Draft of June 4, 1993 15:03

32

datatype mouse_msg= MOUSE_Motion of {pt : G.point,scr_pt : G.point,time : time}| MOUSE_FirstDown of {but : mbutton,pt : G.point,scr_pt : G.point,time : time}| MOUSE_LastUp of {but : mbutton,pt : G.point,scr_pt : G.point,time : time}| MOUSE_Down of {but : mbutton,pt : G.point,scr_pt : G.point,state : mbutton_state,time : time}| MOUSE_Up of {but : mbutton,pt : G.point,scr_pt : G.point,state : mbutton_state,time : time}| MOUSE_Enter| MOUSE_Leave| MOUSE_ConfigSync
Figure 7.2: Mouse messages

Draft of June 4, 1993 15:03

33

A complex algorithm is used translate a keysym and modifier state to an actual ASCII character. In eXene,

this translation is supported by the following type and operationstype translationexception KeysymNotFoundval defaultTranslation : translationval lookupString : translation -> (keysym * modkey_state) -> stringval rebind : translation -> (keysym * modkey list * string) -> translation
The function lookupString uses a translation to map a keysym and modifier state (as carried by theKEY_Press message) to a string. For the defaultTranslation, this mapping returns the singleton strings

for the ASCII key set. Additional or different bindings can be added using rebind.

7.5 Rubberbanding

Rubberbanding is a technique for supplying the user with immediate graphical feedback when specifying

a geometric object. EXene supports rubberbanding with two separate mechanisms: overlay windows and

feedback drawables.

An overlay window provides exclusive access to a window’s drawing surface, so that other graphical

operations do not interfere with the feedback drawing. An overlay is created by the function:val createOverlay : window -> {drawable : drawable, release : unit -> unit}
from the Drawing structure. The result of createOverlay is the drawable to use for the feedback graphics,

and a function to release the exclusive access when the rubberbanding is finished.

A feedback drawable is an unbuffered connection to the server, which can be used to provide immediate

graphical response to user interaction. The functionval feedback : drawable -> drawable
is used to create a feedback drawable from an existing drawable.2

A common example of rubberbanding is sweeping out a rectangle to specify the size of a window.

Figure 7.3 gives the code for such an interaction. When the user presses the mouse button, the current cursor

position is fixed as an anchor point. As the mouse is moved, feedback in the form of a rectangle with one

corner at the fixed anchor point and the opposite corner at the current mouse position. When the mouse button

is released, the window is created using the current rectangle as its size and shape.

2Note that using feedback drawable reduces performance, because of extra system-call overhead.

Draft of June 4, 1993 15:03

34

fun getRect (win, anchorPt, mevt) = letval {release, drawable} = createOverlay winval draw = drawRect (feedback drawable)(newPen [PV_Function OP_Xor, PV_Foreground color1])val {sz=sz as SIZE{wid, ht}, ...} = geomOfWin winfun clip (PT{x, y}) = PT{x = if x < 0 then 0 else if x >= wid then (wid-1) else x,y = if y < 0 then 0 else if y >= ht then (ht-1) else y}fun ptsToRect (PT{x, y}, PT{x=x', y=y'}) = letfun minmax (a : int, b) = if a <= b then (a, b-a) else (b, a-b)val (ox, sx) = minmax(x, x')val (oy, sy) = minmax(y, y')inRECT{x=ox, y=oy, wid=sx, ht=sy}endfun doRect () = letval initRect = ptsToRect (anchorPt, anchorPt)fun loopRect (r, p) = (case (msgBodyOf (sync mevt))of MOUSE_LastUp{but, pt, ...} => (draw r; release(); r)| MOUSE_Motion{pt, ...} => update (r, p, clip pt)| _ => loopRect (r,p)(* end case *))and update (oldRect, oldPt, newPt) =if newPt = oldPtthen loopRect (oldRect, oldPt)else letval newRect = ptsToRect (anchorPt, newPt)indraw oldRect; draw newRect;loopRect (newRect, newPt)endindraw initRect;loopRect (initRect, anchorPt)end (* doRect *)indoRect ()end (* getRect *)
Figure 7.3: Code to get a rectangle from the user

Draft of June 4, 1993 15:03

Chapter 8

Inter-client communication

The X standard includes a complex set of conventions for inter-client communication[Ros89]. While eXene
does not currently support these conventions, we consider such support vital to making eXene useful for

building applications. A future release will support (at the minimum) both selections and cut buffers.

8.1 Atoms

Atoms are unique identifiers corresponding to a string name; the X-server maintains the mapping between

the string names and atoms. The following operations on atoms are provided:val internAtom : display -> string -> atomval lookupAtom : display -> string -> atom optionval nameOfAtom : display -> atom -> string
The internAtom function maps a string name to an atom, creating a new atom if necessary. The functionlookupAtom also maps a string to an atom, but, if the atom does not already exist, then NONE is returned. A

client can get the string name associated with an atom by calling nameOfAtom.

X defines a set of standard atoms; these atoms are defined in the ICCC structure. A standard atom name is

represented by the identifier atom_name. For example, the PRIMARY atom is represented by atom_PRIMARY.

8.2 Selections

Selections are currently unsupported.

8.3 Cut buffers

Cut buffers are currently unsupported.

35

36

8.4 Window hints

The various window manager and size hints used by the setWMProperties function (described in Chapter 4)

are defined in the ICCC structure.datatype size_hints= HINT_USPosition| HINT_PPosition of G.point (* obsolete in X11R4 *)| HINT_USSize| HINT_PSize of G.size (* obsolete in X11R4 *)| HINT_PMinSize of G.size| HINT_PMaxSize of G.size| HINT_PResizeInc of G.size| HINT_PAspect of {min : int * int, max : int * int}| HINT_PBaseSize of G.size| HINT_PWinGravity of EXB.gravitydatatype wm_hints= HINT_Input of bool| HINT_WithdrawnState| HINT_NormalState| HINT_IconicState| HINT_IconTile of EXB.tile| HINT_IconPixmap of EXB.pixmap| HINT_IconWindow of EXB.window| HINT_IconMask of EXB.pixmap| HINT_IconPosition of G.point| HINT_WindowGroup of EXB.window

Draft of June 4, 1993 15:03

Chapter 9

Graphics utilities

In addition to the library, there is a collection of graphics utilities that are neither part of the library or widget

set. We describe these here.

9.1 Ellipses

The Ellipse structure provides code for drawing rotated ellipses. It has the following signature:signature ELLIPSE =sigstructure G : GEOMETRYexception BadAxisval ellipse : (G.point * int * int * real) -> G.point listend; (* ELLIPSE *)
The application ellipse (pt, a, b, �) produces a list of points describing the ellipse defined by the

following equation: x2a2 + y2b2 = 1

translated to the the point pt and rotated by � radians in a counterclockwise direction. The function ellipse
raises the exception BadAxis, if either a or b is less than zero. If either a or b is zero, then the empty list is

returned. The result of applying ellipse can be drawn using the drawLines function.

9.2 Splines

The Spline structure provides routines for drawing Bézier splines. The signature of this structure is:

37

38signature SPLINE =sigstructure G : GEOMETRYval curve : (G.point * G.point * G.point * G.point) -> G.point listval simpleBSpline : G.point list -> G.point listval bSpline : G.point list -> G.point listval closedBSpline : G.point list -> G.point listend (* SPLINE *)
The meanings of the operations are:curve (p0; p1; p2; p2)

Return a list of points corresponding to a Bézier cubic section, starting at p0, ending at p3, with p1, p2

as control points.simpleBSpline [p0; : : : ; pn]
Compute a simple B-spline with the given control points.bSpline [p0; : : : ; pn]
This is defined as simpleBSpline ([p1, p1, p1, : : :, pn, pn, pn])
The replication of p1 and pn constrains the resultant spline to connect p1 and pn.closedBSpline [p0; p1; p2; : : : ; pn]
Compute a closed B-spline. This is defined assimpleBSpline [p0; p1; p2; : : : ; pn; p0; p1; p2]
Note that the first and last points of the result are the same.

9.3 Rounded rectangles

Two utility functions are provided for drawing rectangles with rounded corners. These can be found in the

structure RoundedRect, which has the following signature:signature ROUNDED_RECT =sigstructure G : GEOMETRYval drawRoundedRect : Drawing.drawable -> Drawing.pen-> {rect : G.rect, c_wid : int, c_ht : int} -> unitval fillRoundedRect : Drawing.drawable -> Drawing.pen-> {rect : G.rect, c_wid : int, c_ht : int} -> unitend (* ROUNDED_RECT *)
Draft of June 4, 1993 15:03

39

The function drawRoundedRect draws the outline of a rectangle, while the function fillRoundedRect
draws a filled rectangle. The arguments c_wid and c_ht specify the width and height of the rounded corners.

9.4 Bitmap I/O

Draft of June 4, 1993 15:03

Chapter 10

Unsupported X-windows features

X-windows is a large and complicated system and there are many aspects of the X-protocol and Xlib that

eXene does not support. Some of these are features that we plan to support in the near future, others are

unlikely to ever be supported. The following is a partial list of the currently unsupported features and our

plans with respect to support:

Full color support: This release only supports the default static colormap provided for each screen (see

chapter 6).

X resources: We have an implementation of the X resource database, but it is currently not included in the

release. We will include it once we understand how to use resources to configure widgets.

ICCC: There is only limited support for the X Inter-Client Communication Conventions. As we add more

pieces to eXene we expect this support to fill out into full compliance with the standard[Ros89].

Extensions: The X-window specification is designed to be extensible and there are a fair number of existing

extensions, such as the MIT Shape extension and the Adobe Display Postscript extension. This release

of eXene does not support extensions, but we are planning on adding such support. A future release

will contain support for binding new extensions as well as a sample implementation (probably for the

Shape extension).

Window-manager support: A large fraction of the X-protocol’s function is designed to support the imple-

mentation of window managers as clients. We have made no attempt to support these operations in

eXene, and it is unlikely that we ever will. Note, however, that the protocol translation routines (in the

files protocol/xrequest.sml and protocol/xreply.sml) do implement those features.

40

Bibliography

[GR91] Gansner, E. R. and J. H. Reppy. eXene. In Proceedings of the 1991 CMU Workshop on Standard

ML, Carnegie Mellon University, September 1991.

[GR93] Gansner, E. R. and J. H. Reppy. The eXene Widgets Manual. AT&T Bell Laboratories, Murray

Hill, N.J. 07974, February 1993. Included in the eXene distribution.

[Haa90] Haahr, D. Montage: Breaking windows into small pieces. In USENIX Summer Conference, June

1990, pp. 289–297.

[MIT89] MIT X Consortium Standard. Logical Font Description Conventions (version 1.3), 1989.

[Nye90a] Nye, A. X Protocol Reference Manual, vol. 0. O’Reilly & Associates, Inc., 1990.

[Nye90b] Nye, A. Xlib Programming Manual, vol. 1. O’Reilly & Associates, Inc., 1990.

[Nye90c] Nye, A. (ed.). Xlib Reference Manual, vol. 2. O’Reilly & Associates, Inc., 1990.

[Pau91] Paulson, L. C. ML for the Working Programmer. Cambridge University Press, New York, N.Y.,

1991.

[Pik89] Pike, R. A concurrent window system. Computing Systems, 2(2), 1989, pp. 133–153.

[Rep90] Reppy, J. H. Concurrent programming with events – The Concurrent ML manual. Department

of Computer Science, Cornell University, Ithaca, N.Y., November 1990. (Last revised February

1993).

[Rep91a] Reppy, J. H. CML: A higher-order concurrent language. In Proceedings of the SIGPLAN’91

Conference on Programming Language Design and Implementation, June 1991, pp. 293–305.

[Rep91b] Reppy, J. H. An operational semantics of first-class synchronous operations. Technical Report TR

91-1232, Department of Computer Science, Cornell University, August 1991.

[Rep92] Reppy, J. H. Higher-order concurrency. Ph.D. dissertation, Department of Computer Science,

Cornell University, Ithaca, NY, January 1992. Available as Technical Report TR 92-1285.

[Ros89] Rosenthal, D. Inter-Client Conventions Manual (version 1.0). MIT X Consortium Standard, 1989.

[SG92] Scheifler, R. W. and J. Gettys. The X Window System. Digital Press, 3rd edition, 1992.

[TA91] Tabayoyan, A. and C. Adams. X Color Management System – An Xlib Enhancement (Public Review

Draft), April 1991.

41

