
The eXene Widgets Manual
(Version 0.4)

February 11, 1993

Emden R. Gansner
John H. Reppy

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974

COPYRIGHT c 1993 by AT&T Bell Laboratories
ALL RIGHTS RESERVED

Contents

1 Introduction 1

2 Using Widgets 3

2.1 Widget geometry : 3

2.2 Roots : 5

2.3 Widgets : 6

2.4 Programming with Widgets : 7

3 Widgets 11

3.1 Shell : 11

3.2 Composite Widgets : 13

3.2.1 Background : 13

3.2.2 Box : 13

3.2.3 Frame : 15

3.2.4 Pile : 16

3.2.5 Scrollbar layout : 17

3.2.6 Scrollport : 18

3.2.7 Shapes : 18

3.2.8 Viewport : 19

3.2.9 Widget set : 20

3.3 Simple Widgets : 22

3.3.1 Buttons : 22

3.3.2 Canvas : 24

3.3.3 Color rectangle : 25

3.3.4 Divider : 25

3.3.5 Framed widgets : 25

3.3.6 Label : 26

3.3.7 Scrollbar : 26

3.3.8 Slider : 28

i

ii

3.3.9 TextList : 29

3.3.10 Toggles : 30

3.4 Text Widgets : 32

3.4.1 StrEdit : 32

3.4.2 FieldEdit : 33

3.4.3 Virtual terminal : 34

3.4.4 Text : 34

4 Menus 36

4.0.5 Menu button : 37

5 Widget Internals 39

5.1 Keyboard and Mouse Events : 40

5.2 Control Events : 40

5.3 Composite Widgets : 41

5.4 Miscellany : 43

Draft of June 2, 1993 10:25

Chapter 1

Introduction

This document describes the eXene widget library; it is a companion to The eXene Library Manual [RG93],

which is also included in the distribution.

The eXene widget library provides a collection of interface “widgets,” plus the glue for connecting them

into an application program. On the surface, the eXene widgets serve the analogous role to the base eXene
library that the Motif, OpenLook and Athena toolkits play for Xlib. In eXene, however, the widget’s internal

structure and external connections are much more closely tied to the base library. Both the base library and the

widget library were designed to reflect a common design philosophy for building user interfaces. Although

the base library could be used to build libraries and applications in almost any style, it contains various pieces

that strongly support a particular use of subwindows. The widget library uses these pieces to implement its

components and to exemplify the underlying philosophy of constructing graphical interfaces.

The design promoted by eXene for widgets and their interactions with each other and with the application

is based on a collection of related techniques.� Most fundamental is concurrency. Highly-interactive graphical user interfaces are inherently concur-

rent. This concurrency should be made explicit and used. Allowingeach widget its own thread separates

it from other widgets and from the application code. This allows simpler structure inside the widget,

with each widget synchronously reading its own input streams, and cleaner interfaces between widgets.� Dealing with widget input can be further simplified by dividing “messages” to a widget into three

functionally distinct streams, one each for the keyboard, mouse and control. The control stream

provides such messages as “your window has been resized” and “redraw yourself”. With this division,

code for handling the keyboard or mouse can be written in a natural synchronous fashion, with no need

to maintain state explicitly.� Input is distributed hierarchically. Events are passed from the root widget down the hierarchy to the

appropriate target widget. This allows the programmer to interpose widgets at any level to modify

widget characteristics or alter the distribution of events.� Few things are as full of state as graphical widgets. This state can best be controlled, especially in the

context of a language such as ML that encourages immutable values, by encapsulating it within threads

and channels. This avoids the need for the explicit classes, objects and inheritance that are usually

1

2

used in building user interfaces. Additional object-oriented techniques can be replaced with wrapper

widgets and delegation.

The widget library is the most tentative part of the eXene system, and the most likely to undergo radical

alterations in the near future. The current set of widgets is incomplete, and the individual widgets lack

a finished look. The semantics of some widgets are not general enough, or are not what the user might

expect. Some of the necessary protocols, and the underlying support, have not been completely designed or

implemented. Most of the data structures, most notably the Widget structure itself, represent first passes at

what will be necessary. Experience will require that some types be changed, that some fields be added, that

some functions or types be judged wrong. There is, at present, no integration of X resources with the widget

hierarchy.

Despite these shortcomings, the widget library provides a workable fabric for embroidering a collection

of widgets into a user interface. It serves as an initial proof-of-concept for the eXene design philosophy, and

points the direction for the construction of mature libraries based on the eXene design.

Draft of June 2, 1993 10:25

Chapter 2

Using Widgets

The widget library provides a higher-level platform for the construction of graphical interfaces than the basic

eXene library. In particular, it emphasizes the use of widget components as the basic building block, blocks

that can be used modularly in a wide variety of applications. Necessary alterations can be done externally,

through resources, parameter settings, or by wrapping the widget in other widgets.

In order for widgets to work together at this level, a certain uniformity must be assumed. This uniformity is

achieved by requiring widgets to provide a certain external interface and to respect certain internal protocols,

and requiring the programmer to obey a few additional constraints on the construction and use of the widget

hierarchy. The basic types and values for working with eXene widgets are given in the Widget structure,

which matches the WIDGET signature. In this chapter, we describe the pieces of this structure in detail as

they relate to tailoring new widgets from old and combining them into applications. A discussion of the

implementation of a new widget from scratch is left for Chapter 5.

2.1 Widget geometry

In order to specify widget layouts, it is necessary to describe various geometric constraints on widgets, such as

possible sizes and alignments. EXene provides a simple but fairly general way of modeling these constraints.

The assortment of types and values employed for specifying these constraints are given below.

3

4signature WIDGET =sigstructure CML : CONCUR_MLstructure G : GEOMETRYstructure EXB : EXENE_BASEstructure Interact : INTERACTstructure EXW : EXENE_WINdatatype valign = VCenter | VTop | VBottomdatatype halign = HCenter | HRight | HLeftexception BadIncrementdatatype dim = DIM of {base : int,incr : int,min : int,nat : int,max : int option}(* type bounds = { x_dim : dim, y_dim : dim } *)type boundsval mkBounds : { x_dim : dim, y_dim : dim } -> boundsval fixDim : int -> dimval natDim : dim -> intval minDim : dim -> intval maxDim : dim -> int optionval fixBounds : (int * int) -> boundsval compatibleDim : (dim * int) -> boolval compatibleSize : (bounds * G.size) -> bool...end
The valign and halign datatypes provide values for specifying vertical and horizontal alignment, respec-

tively. For example, to specify that a collection of items should be left-justified, the programmer chooses the

value HLeft.

The general size requirements of a widget are given by a value of type bounds. This record has fieldsx_dim and y_dim for specifying requirements in the horizontal and vertical directions, respectively. Thedim datatype represents the size constraints of the widget in a given dimension. These sizes are expressed

as a base size plus some multiple of an increment. Specifically, the minimum size, in pixels, is given

by base + min*incr; the natural size is base + nat*incr; if max = SOME mx, the maximum size isbase + mx*incr, otherwise, the dimension is unbounded. For example, a virtual terminal might use anx_dim ofDIM{base = pad, incr = fontw, min = 1, nat = 24, max = NONE}
where pad is some base padding and fontw is the width of a character. This gives a minimum width of one

character, a natural width of 24 characters, with an unbounded maximum width.

The integer values given in a dim value should satisfy the following constraints:

Draft of June 2, 1993 10:25

5� base >= 0� incr >= 1� base + min*incr >= 1� 0 <= min <= nat <= max.

Note that these constraints are not in general enforced by eXene, but are the responsibility of the programmer.

In certain cases, the exception BadIncrement will be raised if the second constraint is violated. The third

constraint is only necessary because X does not allow windows of zero width or height. It may be possible

relax this constraint in eXene.

The Widget structure provides some auxiliary functions for dealing with dim and bounds values. ThemkBounds function is the identity function. It provides a constructor function for bounds values needed

in functors due to the absence of type abbreviations in signatures. The minDim, natDim and maxDim
functions return the respective sizes in pixels of the given dimension. fixDim and fixBounds return rigid

(i.e., min = nat = max) dimensions and bounds, respectively, corresponding to given parameters. ThecompatibleDim function returns true if the integer argument is at least the minimum size and no more than

the maximum size specified by the dim argument. The compatibleSize function returns true if the size is

compatible with the bounds argument in both dimensions.

2.2 Roots

The root type serves as an abstraction for a single screen. It can be viewed as representing the root window

of the screen. In the future, the root structure may also carry various application specific information.signature WIDGET =sig...type rootval mkRoot : string -> rootval delRoot : root -> unitval sameRoot : (root * root) -> boolval displayOf : root -> displayval screenOf : root -> screen...end
The mkRoot function accepts a string argument specifying the server connection (see Chapter 3 of The eXene

Library Manual for more information). The mkRoot function opens a connection to the specified X server,

and returns a root value corresponding to the default screen of the server.

A root value is needed to create most widgets, and therefore mkRoot is usually invoked early in an

application. Widgets use the root to get access to the display, and thus to various resources such as fonts,

colors and pixmaps, all which require a display argument.

Draft of June 2, 1993 10:25

6

The delRoot function closes the display connection. This has the side effect of deleting all the windows

associated with that root, plus freeing all server resources (e.g., fonts, colors, etc.) associated with the root.

The screenOf, displayOf and sameRoot functions do the obvious.

2.3 Widgets

A widget is essentially a triple consisting of a root value, a boundsOf function, and a realize function. It

is implemented as an abstract type through the mkWidget function.signature WIDGET =sig...type widgetdatatype wstate = Active of bool | Inactive of boolexception AlreadyRealized(* type realize_fn = {* env : in_env,* win : window,* sz : size* } -> unit*)type realize_fnval mkWidget : {root : root,boundsOf : unit -> bounds,realize : realize_fn} -> widgetval rootOf : widget -> rootval boundsOf : widget -> boundsval realizeFn : widget -> realize_fnval sameWidget : (widget * widget) -> boolval natSize : widget -> sizeval boundsFn : widget -> unit -> boundsval okaySize : (widget * size) -> bool...end
The root value simply specifies the root to which the widget belongs. A widget’s window and its external

characteristics (e.g., size, origin, visibility) are controlled by the widget’s parent. The parent creates the

window and passes it to the child through the child’s realize function. A widget can only be realized once;

calling its realize function additional times will raise the AlreadyRealized exception. The child also

receives the size of the window and its environment. The environment contains three event values used to

transmit keyboard, mouse and control events to the child. This is input environment discussed in Chapter 7

of The eXene Library Manual. It is the child’s responsibility to always be available to synchronize on these

events. The realize function will be more fully discussed in terms of widget internals (see Chapter 5).

The boundsOf function is usually used by a widget’s parent to determine the size constraints of the widget

Draft of June 2, 1993 10:25

7

when positioning the child within the parent’s window. It should be noted that what bounds a widget returns

through its boundsOf function is only a suggestion to the parent. Parent widgets should try to accommodate

a child’s size requests, but sometimes this is not possible. Widgets, in turn, should be designed to safely

accommodate any size. Also note that the boundsOf function should not block; each widget should construct

its boundsOf function to return as quickly as possible.

The Widget structure contains additional functions associated with widget properties. The rootOf,boundsFn and realizeFn functions act as selector functions for these defining attributes of a widget. TheboundsOf function returns the current bounds desired by the widget. The function natSize returns the

current natural size associated with the widget. The function okaySize returns true if the given size is

compatible (see compatibleSize above) with the widgets bounds.

Because of the state implicitlyassociated with widgets, each widget receives a unique stamp in mkWidget.

The sameWidget function reports on the equality of these stamps.

The wstate type is used various places in the widget library to specify widget state. Widgets associated

with a wstate value can be considered either active or inactive. A widget in either state can be either set

or unset. Thus, an active widget that is set would correspond to Active true. Usually, these states are

reflected in the display of the widget. In addition, the user is usually prohibited from changing the set/unset

state of an inactive widget.

Widgets live fairly circumscribed lives. They are created; they are inserted into a parent; they are

realized, being given an input environment and a window; they might be removed from a parent widget; their

environment and window are destroyed. As noted above, the program cannot realize a widget twice. Nor are

there any provisions for removing a widget from the widget hierarchy, and then reinserting it later, even back

into its original parent.

2.4 Programming with Widgets

There are a few rules concerning the use of widgets in building a program. At some point in the program, aroot value must be created. This can be used to create widgets in varying order. Many composite widgets

require a list of child widgets at the time of creation; this necessitates that a child widget be created before its

parent. Certain composite widgets allow child widgets to be added dynamically. Even in these cases, it is a

good practice and more efficient to provide the child widgets at the time the parent is created. At some point,

a widget tree must be attached to a shell widget. To actually instantiate the widget tree (i.e., to realize the

widgets and create and map the underlying windows), the init function must be called on the shell widget.

In most X toolkits, the call to instantiate the widgets causes the application program to give up control to the

event-driven control loop within the toolkit library. Alternatively, the application must be willing to provide

its own event distribution mechanism. Neither of these deficiencies is true in eXene. After instantiating

the widgets, the main application thread is still active and can continue to go about its business, whether

performing computations, reading from standard input or interacting with the widgets.

Figure 2.1 contains the code for a simple program which uses widgets. This example draws a framed

button labeled “Goodbye, Cruel World!”. If the user clicks on the button with any mouse button, then the

function quit is called. The program will also quit if the user enters “quit\n” on standard input. This is

similar to the xgoodbye example in Chapter 2 of [NO90], but differs in one major way. In the xgoodbye,

Draft of June 2, 1993 10:25

8open Widget Box FramedButtonfun goodbye server = letval root = mkRoot serverfun quit () = (delRoot root; RunCML.shutdown())val layout = Box.widgetOf (mkLayout root (VtCenter [Glue {nat=30, min=0, max=NONE},WBox (widgetOf (mkFrTextCmd root {action = quit,foregrnd = SOME(EXB.blackOfScr(screenOf root)),backgrnd = NONE,label="Goodbye, Cruel World!",border_width = 1})),Glue {nat=30, min=0, max=NONE}]))val shell = Shell.mkShell (layout, NONE, win_name = NONE, icon_name = NONE)fun loop () =if (CIO.input_line CIO.std_in) = "quit\n"then quit ()else loop ()inShell.init shell;loop ()end
Figure 2.1: Goodbye

control is passed off to the Xt event loop; in our version, the application retains control (reading the standard

input in this case).

There are many ways new widgets can be tailored from existing ones. In addition to the obvious technique

of altering the parameters and values of a widget, the eXene widget library provides the ability to compose

widgets graphically and functionally.

Graphical composition occurs when the window of a widget is included within the window of a parent

widget. A trivial example of this technique occurred in the example above, in which a button was composed

within a vertical box. Below, in Figure 2.2, we give a more substantial example, in which a label widget and

a slider widget are combined to provide textual feedback for the slider’s value.

The second technique for composing widgets occurs when a widget wraps another in order to interpose

its own behavior. In the following example, the wrapping widget creates a rigid widget by interposing its ownboundsOf function.fun mkRigid w = letfun myBounds () = letval {x_dim,y_dim} = boundsOf win{x_dim = fix x_dim, y_dim = fix y_dim}endinmkWidget{root=rootOf w, boundsOf=myBounds, realize=realizeFn w}end
Draft of June 2, 1993 10:25

9fun mkLabelSlide root (wid, color) = letval label = Label.mkLabel root {label=" 0",foregrnd=color,backgrnd=NONE,font=NONE,align=HRight}val slider = Slider.mkHSlider root {foregrnd=color,wid=wid,init=0,scale=100}val set = Label.setLabel labelval evt = Slider.evtOf sliderfun loop () = loop (set (makestring (sync evt)))inspawn loop;mkLayout root (HzCenter [WBox (Label.widgetOf label),Glue nat=20, min=20, max=SOME 20,WBox (Slider.widgetOf slider)])end
Figure 2.2: Composing label and slider widgets

As another example of wrapping a widget to alter its behavior, Figure 2.3 shows how we can add a pop-up

menu to the example of Figure 2.1. In this example, we have taken the code from the previous example,

defined a menu, and used the attachMenu function to wrap a handler for this menu around the button widget.

This produces a new widget and a CML event. The new widget works identically to the old widget, except

when the user presses the third button in the window. When this happens, a pop-up version of the menu

appears. If the user makes a selection, this selection is reported through the event value. The main loop
function now services both menu selection as well as keyboard input.

The Widget structure provides several high-level functions that support modifying widgets through

wrappers. These are discussed in Section 5.4.

Draft of June 2, 1993 10:25

10

val menu = MENU [MenuItem("item-1", 1),MenuItem("item-2", 2),MenuItem("item-3", 3),Submenu("submenu1", MENU [MenuItem("item-4", 4),MenuItem("item-5", 5),MenuItem("item-6", 6)]),MenuItem("item-7", 7)]fun goodbye server = letval root = mkRoot serverfun quit () = (delRoot root; RunCML.shutdown())val layout = Box.widgetOf (mkLayout root (VtCenter [Glue {nat=30, min=0, max=NONE},WBox (widgetOf (mkFrTextCmd root {action = quit,foregrnd = SOME(EXB.blackOfScr(screenOf root)),backgrnd = NONE,label="Goodbye, Cruel World!",border_width = 1})),Glue {nat=30, min=0, max=NONE}]))val (widget, evt) = attachMenu (layout, [Interact.MButton 3], menu)val shell = mkShell (widget, NONE, win_name = NONE, icon_name = NONE)fun loop () =select[wrap(evt,fn n => (CIO.print("choice = "^ makestring n ^ "\n"); loop())),wrap(CIO.inputLineEvt CIO.std_in,fn line => if line = "quit\n" then quit () else loop ())]ininit shell;loop ()end
Figure 2.3: Goodbye with a pop-up menu

Draft of June 2, 1993 10:25

Chapter 3

Widgets

We note that widgets divide naturally into two classes: composite and simple. The former are those that

take other widgets as parameters. They graphically contain one or more child widgets, and are responsible

for the layout of the child widgets. Simple widgets usually occur as the leaf nodes in the widget hierarchy

and provide the basic pseudo-devices (scrollbars, meters, dials, buttons, etc.) with which the user does input.

These definitions are not meant to be precise. In particular, we note that some simple widgets are in fact

implemented as composite widgets.

All widgets act like subtypes of the widget type. We use the convention that each widget type supplies

an explicit type casting function widgetOf that exposes an underlying widget value.

In the following sections, we describe the currently available widgets. For each widget, we comment

on what it does, how it reacts to some of the important base protocols, how it is created, and how it is

parameterized. Note that there is little consistency as to which parameters, such as color, font or sizes, are

available to the programmer dynamically and which are built into the widget. We assume that this problem

will go away in a future release when a uniform resource mechanism is supplied.

3.1 Shell

The shell type does not define a widget per se. It provides an abstraction for top-level windows, which

obviously cannot be inserted in other widgets, and handles the mismatch between the X model and the eXene
model. It allows the user to provide top-level window information to the window manager. It also hides

various other implementation differences between top-level windows and subwindows.

11

12signature SHELL =sigstructure W : WIDGETtype shelltype wm_args (* = { win_name : string option, icon_name : string option } *)val mkWMArgs : win_name : string option, icon_name : string option -> wm_argstype hints (* = { size_hints : size_hints list, wm_hints : wm_hints list } *)val mkHints : {size_hints : W.EXW.ICCC.size_hints list,wm_hints : W.EXW.ICCC.wm_hints list} -> hintsval mkShell : (widget * W.EXB.color option * wm_args) -> shellval mkTransientShell : W.EXB.window ->(widget * W.EXB.color option * wm_args) -> shellval init : shell -> unitval destroy : shell -> unitval setWMHints : shell -> hints -> unitend
The mkShell function creates a shell using a child widget, an optional color, and optional labels for the

top-level window and its icon. The color specifies the top-level background color; by default, it is white. The

labels are passed to the window manager. They correspond to the win_name and icon_name parameters used

with setWMProperties, as described in Chapter 4 of The eXene Library Manual. The shell will be totally

overlaid by its child widget; the bounds of the shell are the same as its child.

The widget tree attached to the shell is not instantiated until the program calls the init function on the

shell. Only at this point will the underlying windows be created and mapped, and the widget hierarchy will

become visible. The natural size of the top-level window is the natural size of the child widget. The shell uses

the bounds of the top-level window to specify a base, minimum and maximum window size plus window size

increments to the window manager. A call to destroy on a shell causes the destruction of all the windows

in the widget hierarchy below the shell.

The mkTransientShell function allows you to create a “transient” top-level window. X provides three

flavors of top-level windows. Most are meant to be “long-lived” and managed by the window manager.

Typically, the window manager will decorate them with a frame, a title bar and various icons. These are the

windows created by the mkShell function. At the other extreme are pop-up windows. These are meant to

last very short periods of time, as in a pop-up menu, and are not registered with the window manager. At

present, the widget library does not provide direct access to such windows, although they are used in the

implementation of menus. The programmer can create them using the createSimplePopupWin function in

the base library. The third type of window is transient, occupying a middle ground between the other two. A

typical use of a transient window would be in a dialogue box. The window manager knows about the transient

window, but usually does not give it a title bar or other decoration. A transient window is associated with

another window (the first argument to the mkTransientShell function). Typically, the window manager

will iconify/de-iconify a transient window in conjunction with its associated window.

The setWMHints function allows the application to specify hints about the top-level window and the

Draft of June 2, 1993 10:25

13

application to the display manager. In particular, the programmer can use setWMHints to override the default

size hints that the shell passes to the window manager. If setWMHints is called before the init function, the

shell queues the hints, which will be sent when init is called. A more complete description of the hints can

be found in The eXene Library Manual or X manuals (e.g., [Nye90]).

A shell services its child’s control channel. Requests from the child widget for resizing are respected; the

shell will attempt to change the size of the top-level window. Receiving a CO_KillReq from the child is the

same as calling the destroy function.

The mkWMArgs and mkHints functions are identity functions on the respective records.

3.2 Composite Widgets

Composite widgets are used to manage the layout of child widgets within a given window. A composite

widget plays the same role for its window as the window manager plays for the screen. Because of their dual

role as a child widget as well as a parent to various child widgets, composite widgets have more to do than

simple widgets in maintaining the protocols on the control events. Graphically, they usually have little or

nothing to do.

3.2.1 Background

The background widget is used to provide a default background color to a widget and its descendants.

The X graphic model associates a background color with a window. It is this color that is used in the

graphics operations clearArea and clearDrawable (cf. Chapter 5 in The eXene Library Manual). By

default, windows in eXene inherit their parent’s background color, which is set when the shell is created

(cf. Section 3.1).signature BACKGROUND =sigtype backgroundval mkBackground : { color : color option, widget : widget } -> backgroundval widgetOf : background -> widgetend
The mkBackground command creates a new widget with a new associated background color. The argument

widget and all its descendents will inherit the new color, until a background is created lower in the hierarchy.

If no color is specified, white is used.

3.2.2 Box

Box widgets provide for the non-overlapping placement of child widgets along a horizontal or vertical axis.

A child widget is expanded or contracted to fill as much of its innermost containing box as possible, but the

size bounds of a child are never violated.

Draft of June 2, 1993 10:25

14signature BOX =sigexception BadIndexdatatype box= HzTop of box list| HzCenter of box list| HzBottom of box list| VtLeft of box list| VtCenter of box list| VtRight of box list| Glue of { nat : int, min : int, max : int option }| WBox of widgettype box_layoutval mkLayout : root -> box -> box_layoutval widgetOf : box_layout -> widgetval insert : box_layout -> (int * box list) -> unitval append : box_layout -> (int * box list) -> unitval delete : box_layout -> int list -> unitval mapBox : box_layout -> int list -> unitval unmapBox : box_layout -> int list -> unitend
The mkLayout function requires a display root and a box value. The layout of the widgets is recursive. The

boxes in a list are laid out from left to right in horizontal boxes, and from top to bottom in vertical boxes.Glue boxes act like transparent widgets and are used to provide spacing between other boxes.

The layout algorithm is simple. We describe the case for a horizontal box. Vertical boxes work the same

way, switching the roles of horizontal and vertical. Each child is given its natural width. If the sum of these

widths does not fill the width of the box, the slack is allocated uniformly to the child widgets, but only in

multiples of a child’s increment value and a child’s maximum width is never exceeded. If there is still slack

after all children have been increased to the maximum widths, it is placed to the right of all the children. If

the sum of the widths is too large for the box, the excess is removed uniformly from the child widgets, but a

child’s minimum width and increment value are respected. If there is still excess after all children have been

decreased to the minimum widths, some of the rightmost children will not appear in the window.

Each child is guaranteed its minimum height. If this does not equal the height of the box, the child’s

height is increased as much as possible, in multiples of the child’s increment, up to its maximum height. If

this is still not equal to the height of the box, the child is aligned vertically according to the box’s alignment

parameter. Thus, a HzCenter box will center its components vertically, while a HzTop box will top justify

its components. If a child’s height is too large for the box, the child is still aligned vertically according to the

box’s alignment parameter, but part of the child will not be visible.

We now describe the bounds of a box. It seems reasonable that the minimum, natural and maximum

widths of a horizontal box should be the sums of the respective widths of its children. To this end, we set the

base width base to be the sum of the minimum widths of its children, in pixels. The horizontal incrementincr is the minimum of the horizontal increments of all children with a non-fixed horizontal size. The min
value is set to zero. The nat value is the least integer such that base + nat*incr is greater than or equal

Draft of June 2, 1993 10:25

15

to the sum of the natural widths of its children. The max value is defined analogously. The natural height of

the box is the maximum of the natural heights of its children. The minimum height of a box is the maximum

of the minimum heights of its children. The maximum height of a box is the maximum of the natural height

of the box along with the non-infinite maximum heights of its children, or infinite if all children have infinite

height. We then set the base height base to the minimum height and min to 0. The vertical increment is the

minimum of the vertical increments of all children with non-fixed vertical size and whose vertical increment

is greater that 1. If there are no such children, the vertical increment is set to 1. As in the horizontal direction,nat and max are taken to be the smallest integers such that base + nat*incr and base + max*incr are

greater than or equal to the natural height and the maximum height, respectively. In horizontal boxes, glue

components act like widgets whose horizontal bounds are given by the glue’s parameters, with an implicitbase of 0 and incr of 1, and whose vertical bounds have a natural size of zero, with infinite shrinking and

stretching.

The rules given above for determining the bounds of a box are obviously heuristics. They should work

well in a given dimension when the sub-boxes have a fixed size in that dimension, have an increment of

one, or have “compatible” sizes (e.g., the same natural size with increments that are multiples of some base

increment). These conditions hold true in such common cases as attaching a scrollbar or using sufficient glue.

When these conditions are not satisfied, the resultant bounds of a box can be unexpected.

If the box argument b to mkLayout is a Glue or WBox value, it is treated as HzCenter [b]. TheWidget.BadIncrement exception is raised if a widget has a zero increment.

The box tree managed by a box layout widget can be dynamically altered using functions provided in

the Box structure. At present, these changes can only be made in the top-level list in the box tree. (This

is not a serious restriction, as a box_layout can be inserted within another box_layout.) A call ofinsert layout (n,bl) inserts the list of boxes bl before the nth box in the top-level box list. Indexing of

boxes starts at 0; n can be any integer up to and including the length of the top-level box list, the maximum

value corresponding to appending bl to the list. Any other value of n causes the exception BadIndex to be

raised. When a collection of boxes in inserted into a box layout, the layout is recomputed using the geometry

of the new boxes. The widgets in the new boxes are assumed to be unrealized; they will be realized at this

time. append layout (n,bl) is equivalent to insert layout (n+1,bl).delete layout il removes the boxes whose indices are given in the index list il. This destroys any

windows associated with widgets in the boxes, and effectively destroys the widgets. The unmapBox tells the

layout widget to pretend that the boxes whose indices are given in the argument list have zero size and to

reposition its children accordingly. Unmapping an already unmapped box has no effect. The mapBox function

allows unmapped boxes to be made visible again. Mapping an already mapped box has no effect. All boxes

are assumed to be in a mapped state when inserted. In all these three functions, an invalid index will cause

the exception BadIndex to be raised.

3.2.3 Frame

The ability to specify a border of an X window is a programming convenience in simple applications, and

improves performance by allowing the server to perform damage control on borders which would otherwise

have to be handled by the application. On the negative side, the use of borders unnecessarily complicates the

computation of window geometries. Knowing the upper left corner of a window and the size of its drawing

Draft of June 2, 1993 10:25

16

region is not enough to calculate the actual bounding box of the window; the window’s border must be taken

into account.

For these reasons, the eXene widget library assumes all underlying X windows will have borders of width

zero. To provide borders, the library supplies frame widgets. A frame widget creates a border of a given size

and color around its child widget.signature FRAME =sigval mkFrame : {color : color option,width : int,widget : widget} -> widgetval widgetOf : frame -> widgetval setColor : frame -> color option -> unitend
The mkFrame function takes an optional color (the parent’s background if NONE), a border width, and the child

widget about which the border is wrapped. A negative border width causes the LibBase.BadArg exception

to be raised. The bounds of a frame are the same as those of its child except that the base is increased to allow

for the border. Except for the actual border, a frame widget is transparent, inheriting its parent’s background.

The setColor function can be used to change the frame’s color dynamically.

3.2.4 Pile

Where a box_layout widget composes its children in non-overlapping rows and columns, a pile widget

maintains a list of children, only one of which is visible at a time.signature PILE =sigtype pileexception NoWidgetsexception BadIndexval mkPile : root -> widget list -> pileval widgetOf : pile -> widgetval mkVisible : pile -> int -> unitval visible : pile -> intval size : pile -> intval insert : pile -> (int * widget list) -> unitval append : pile -> (int * widget list) -> unitval delete : pile -> int list -> unitend
Draft of June 2, 1993 10:25

17

The mkPile function takes a root and a list of widgets and creates a pile widget. In a pile, only one child

widget is visible at a time. The bounds and resize behavior of a pile widget are the same as its currently

visible child. The child widgets are indexed consecutively from zero. Initially child 0 is visible. mkVisible
causes the child with the given index to become the new visible widget. This raises the exception BadIndex
if the index is invalid. Note that, in this model, the currently visible child is not placed at the front of the

list of children: it is only marked as the visible child. As long as no widgets are added or deleted to a pile,

the indexing of the children remains fixed. The query functions visible and size return the index of the

currently visible child and the number of children, respectively.

A pile allows widgets to be dynamically inserted and deleted with the insert, append and delete
functions. Inserting or appending widgets does not alter the currently visible widget. It does change the

indices associated with the widgets, so it is possible the currently visible widget will have a new index.

Similary, deleting widgets does not necessarily alter the currently visible widget, though it does cause a

reindexing. However, if the visible widget is one of those removed from the pile, widget 0 of the remaining

widgets becomes the new visible widget. Additional semantics associated with these functions are analogous

to the similar functions in Box (cf. Section 3.2.2).

An empty pile acts like a transparent widget whose bounds are fixed at one pixel by one pixel. Invokingvisible on an empty pile raises the NoWidgets exception.

3.2.5 Scrollbar layout

The ScrollLayout structure implements a utility function for combining widgets into a typical “widget with

scrollbar” layout. This layout consists of the main widget, with an auxiliary widget placed to the left or right

of the main widget, and another auxiliary widget place below or above the main widget. The resulting widget

is a straightforward application of mkLayout.signature SCROLL_LAYOUT =sigstructure Box : BOXval mkSBLayout : root ->widget : widget,hsb : {sb : widget, pad : int, top : bool} option,vsb : {sb : widget, pad : int, left : bool} option-> Box.box_layoutend
ThemkSBLayout function takes a root,plus the main and auxiliary widgets (plus some formatting information)

and produces a box_layoutwidget. If hsb is not NONE, the associated widget will be centered above (below)

the main widget if top is true (false). The pad parameter specifies how much space, in pixels, to leave

between the main and auxiliary widget. The vsb field is handled analogously.

The bounds functions of the auxiliary widgets are not modified. If the programmer desires that they

always occupy an entire side of the main widget, they must have bounds that are flexible in the appropriate

dimension. The sb fields purposely take widget values rather than scrollbar values. This makes the

function useful in more general cases. Even when an auxiliary widget is basically a scrollbar, it might still be

Draft of June 2, 1993 10:25

18

framed or composed with arrow buttons and therefore would not be usable as a scrollbar in the composite

widget.

3.2.6 Scrollport

The ScrollPort structure is a first attempt at automatically attaching panning features to a widget. The

programmer supplies a widget, and the scroll port attaches scrollbars. The user can use the scrollbars to pan

over the underlying widget.signature SCROLL_PORT =sigtype scroll_portval mkScrollPort : {widget : widget,continuous : bool,color : color option,hsb : {top : bool} option,vsb : {left : bool} option} -> scroll_portval widgetOf : scroll_port -> widgetend
The widget argument to mkScrollPort specifies the underlying widget whose view is to be controlled

by the scroll port. The hsb and vsb arguments specify whether horizontal and vertical scrollbars are to be

attached, and to which side they should be attached. The color argument is passed to the scrollbar creation

functions (cf. Section 3.3.7). If continuous is true, the scroll port will attempt to keep the widget view

continuously in step with the scrollbar position. Otherwise, it will wait until the user releases the mouse,

fixing a final position, before it updates the widget view. The latter choice is recommended if it is expensive

for a widget to update its display.

3.2.7 Shapes

The widgets in theShape structure allow the programmer to control the bounds requirements of a given widget.

The mkShape function takes a widget whose bounds are to be constrained and two constraint functions. It

creates a new widget wrapping the given widget. The new widget is identical to the given widget except for

two aspects. The new widget’s boundsOf function returns the value given by the bounds_fn when called

with the child’s boundsOf function. In addition, whenever the child asks to be resized, the resize request is

only passed on to the parent if the resize_fn, invoked with the child’s boundsOf function, returns true.

Draft of June 2, 1993 10:25

19signature SHAPE =sigval mkShape : {widget : widget,bounds_fn : ((unit -> bounds) -> bounds),resize_fn : ((unit -> bounds) -> bool)} -> widgetval mkRigid : widget -> widgetval mkFlex : widget -> widgetval fixSize : (widget * size) -> widgetval freeSize : (widget * size) -> widgetend
The remaining functions are a special cases of mkShape. The fixSize function creates a widget whose

bounds will always be fixed at the given size, and which will never request to be resized. The freeSize
function creates a widget whose natural size will always be the given size, but is totally flexible in both

dimensions. The widget will always pass on resize requests from its child. The mkRigid and mkFlex
functions apply the fixSize and freeSize functions, respectively, using the natural size of the argument

widget.

3.2.8 Viewport

The Viewport structure is an initial primitive attempt at providing the basis for general-purpose panning

over widget. A viewport object provides a classical window on the virtual graphical space of an underlying

window. In effect, the underlying widget can be arbitrarily large, but only the part of it that is projected

through the viewport’s window is visible. The amount of the underlying window that can be seen depends on

the size of the viewport window. In addition, the viewport’s position relative to the underlying widget can be

changed, providing panning. A viewport is usually tied to other widgets such as scrollbars to give the user

control over the panning (cf. Section 3.2.6).signature VIEWPORT =sigtype viewportval mkViewport : widget -> viewportval widgetOf : viewport -> widgetval getGeometry : viewport -> {rect : rect, childSz : size}val setOrig : viewport -> point -> unitval setHorz : viewport -> int -> unitval setVert : viewport -> int -> unitval evtOf : viewport -> {rect : rect, childSz : size} eventend
A viewport is obtained by applying mkViewport to a widget. The bounds of the viewport will have the

same natural size as the underlying widget, but can be arbitrarily shrunk or grown. If the underlying widget

Draft of June 2, 1993 10:25

20

is potentially large, it is therefore usually a good idea to wrap a viewport in another widget to constrain its

size. At realization time, the window of the underlying widget is made a subwindow of the viewport window.

Regardless of the size of the viewport’s window, the subwindow is precisely the size requested by the child

widget.

In the current model, the viewport cannot extend beyond the boundaries of the underlying widget. In

particular, it can be no larger than the widget’s window. The viewport determines a rectangle in the underlying

widgets coordinate system.

There are various functions for monitoring and controlling the viewport’s position. The functiongetGeometry returns the underlying widget’s current size, and the viewport’s rectangle in the child widget’s

coordinates. The setOrig function can be used to move the viewport’s origin in the widget’s coordinate sys-

tem. This raises the exception LibBase.BadArg if the new rectangle is illegal. The x and y coordinates can

be set independently using setHorz and setVert. These functions involve the same exception as setOrig.

Any changes to the viewport configuration are reported through the event supplied by evtOf. Monitoring

this event allows these changes to be reflected in any associated widgets such as scrollbars.

3.2.9 Widget set

Strictly speaking, a widget_set is not a widget. It provides a mechanism for managing a collection of

widgets, some of which can be selected, either by the user or under program control. A typical use would

involve a collection of toggle buttons, each setting a piece of shared program state to some value. Using

a widget_set, the user could change the state by clicking on one of the buttons; the button indicating the

previous state setting would automatically be unset.

Draft of June 2, 1993 10:25

21signature WIDGET_SET =sigexception BadIndexexception MultipleChoicestype widget_set(* type set_item = {* widget : widget,* state : wstate,* pick_fn : bool -> unit,* active_fn : bool -> unit* }*)type set_itemval mkSetItem : {widget : widget,state : wstate,pick_fn : bool -> unit,active_fn : bool -> unit} -> set_itemval mkMultiSet : root -> set_item list -> (widget_set * widget list)val mkSingleSet : root -> set_item list -> (widget_set * widget list)val setChosen : widget_set -> (int * bool) list -> unitval setActive : widget_set -> (int * bool) list -> unitval getChosen : widget_set -> int listval getState : widget_set -> Widget.wstate listval insert : widget_set -> (int * set_item list) -> widget listval append : widget_set -> (int * set_item list) -> widget listend
The mkMultiSet and mkSingleSet functions are used to create a widget set. The principal difference is

that the former allows multiple items to be set, whereas the latter allows at most one item to be set. These

functions take a root and a list of items to be included in the set. They return a list of wrapped widgets,

and a widget_set value for controlling the set. The widget_set does no placement and is not a composite

widget. The return widgets must still be inserted into the widget hierarchy through some composite widget.

Each set_item specifies an underlying widget, the initial state of the widget, a function to be called when

the widget changes between set and unset, and a function to be called when a transition is made between

active and inactive. These functions are only called due to subsequent transitions in the widget_set; they

are not applied to the initial widget state.

It is assumed that widgets are chosen that graphically reflect the current state. If the user clicks mouse

button 1 on an active widget, the widget is put in the set state. If it is already in the set state, nothing happens.

Otherwise, if it is in a singleton set, the pick_fn of any currently set item is called with false. Then thepick_fn of the new item is called with true. If the user clicks mouse button 2 on an active widget, the widget

is put in the unset state. If it is already in the unset state, nothing happens. Otherwise, its pick_fn is called

with false. User clicks on an inactive item have no effect. All input environment events, including mouse

clicks, are passed to the underlying widget after processing by the widget set.

Draft of June 2, 1993 10:25

22

The states of the widgets are under program control. The setChosen function can be used to set the items

whose indices are given to the specified state. Note that setChosen affects inactive as well as active items.

The getChosen function returns a list of the indices of currently selected items. The setActive function

can be used to alter which items are currently active. The getState function returns a list of the current

widget states in order. Invalid indices with setChosen and setActive cause the BadIndex exception to be

raised.

The composition of a widget_set can be changed dynamically, using the insert and append functions.

Semantics associated with indexing are the same as with the analogous functions in Box (cf. Section 3.2.2).

The returned list widgets must be inserted into some composite widget to be realized.

If multiple widgets in a set state are passed to mkSingleSet, or if insert or append cause multiple items

in a singleton set to be in a set state, the exception MultipleChoices is raised. However, the setChosen
processes its list sequentially, as though the user were making the choices. The setting of any item will cause

a currently set item to be unset.

3.3 Simple Widgets

Simple widgets have no subwidgets, at least explicitly. They form the basic set from which more complex

widgets can be composed. Simple widgets can be modified in various ways. Parameters can be set at creation

or dynamically. The widget can be wrapped functionally within another widget, which can interpose control

over the inner widget’s boundsOf function or its input and control events. As an example, a widget might set

bounds that allow it to be stretched or shrunk. A programmer wishing to nail the widget down to a specific

size could wrap the widget in another widget that could reset the size changes to zero (cf. Section 3.2.7).

The current widget set is not very rich or well-developed, nor particularly pleasing to the eye. There are a

variety of notable omissions. Some of the implementations are not graphically efficient. However, the current

set is enough to demonstrate how widgets should be written and interconnected within the eXene framework.

3.3.1 Buttons

TheButton structure provides various simple buttons for user input. There are two different control semantics.

The command button semantics simply calls a given function whenever the button is pressed. (A button is

pressed by moving the mouse over the button and pressing any mouse button.) The button will usually

indicate graphically that it has been pressed. In the more general semantics, the button provides an event

registering button transitions and the button-down state. When the button is pressed, the button generates aBtnDown event indicating the mouse button pressed. It continues to generate BtnDown events until the button

is released, at which point it generates a BtnUp event, or until the mouse leaves the window, at which point it

generates a BtnExit event.

Draft of June 2, 1993 10:25

23signature BUTTON =sigdatatype arrow_dir= AD_Up| AD_Down| AD_Left| AD_Rightdatatype button_act= BtnDown of mbutton| BtnUp of mbutton| BtnExittype buttonval evtOf : button -> button_act eventval widgetOf : button -> widgetval setActive : (button * bool) -> unitval getActive : button -> boolval mkArrowBtn : root -> {backgrnd : color option,dir : arrow_dir,foregrnd : color option,sz : int} -> buttonval mkArrowCmd : root -> {action : unit -> unit,backgrnd : color option,dir : arrow_dir,foregrnd : color option,sz : int} -> buttonval mkTextBtn : root -> {rounded : bool,backgrnd : color option,foregrnd : color option,label : string} -> buttonval mkTextCmd : root -> {rounded : bool,action : unit -> unit,backgrnd : color option,foregrnd : color option,label : string} -> buttonend
To create a button, the user supplies a display root, and various display characteristics. The foregrnd andbackgrnd colors specify optional choices for foreground and background colors. The default colors are black

and white, respectively.

Draft of June 2, 1993 10:25

24

Arrow buttons require a direction parameter indicating which way the arrow should point, and a size, a

square of that size being used as the natural size of the button. If sz < 4, the LibBase.BadArg exception is

raised.

Text buttons require a text label for the buttons. The button sets its bounds to be just large enough to

contain its text. If rounded is true, the text buttonappears withina rectangle with rounded corners. Otherwise,

no frame is attached to a text button. Text buttons use the 8x13 font.

The action attached to a command button is invoked on BtnUp. Thus, a user can cancel an action after

pressing a button by first moving the mouse off the button and then releasing the mouse button. The program

should not synchronize on the event of a command button; a thread is spawned to monitor this event and

invoke the action routine.

Buttons and toggle buttons (cf. Section 3.3.10) are actually constructed as the cross-product of items in

view and control modules. The structure ButtonView describes a simple state-view protocol, and provides

various visual button representations (arrows, text, icons, etc.) accepting this protocol. The ButtonCtrl andToggleCtrl structures implement input control semantics using the protocol. The buttons provided in theButton and Toggle structures are just common combinations of a view and a control. A programmer can

easily create new buttons using different combinations, or combining a new view with an old controller or

vice versa.

N.B. It is the programmer’s responsibility to provide a thread to synchronize on the button event supplied

by the evtOf function. Otherwise, the button thread will block. The protocol for the delivery of button events

is that an initial BtnDown and a terminating BtnUp or BtnExit event are guaranteed to be generated and must

be synchronized upon. In the interim, the button widget will supply a BtnDown event every time the client

synchronizes on the button event value.

3.3.2 Canvas

The canvas widget provides a drawing surface that can also be used as basis for building new widgets.signature CANVAS =sigstructure D : DRAWINGtype canvasval mkCanvas : root -> bounds -> (canvas * size * in_env)val widgetOf : canvas -> widgetval sizeOf : canvas -> sizeval drawableOfCanvas : canvas -> D.drawableend
To create a canvas, the programmer provides a display root and a preferred bounds. The mkCanvas function

returns a canvas on which to draw, the current size of the canvas and an input environment. The functiondrawableOfCanvas returns the drawable for the canvas. This can be used with the drawing operations of theDrawing module in the eXene library. The drawable is not available until the canvas widget is realized. A

Draft of June 2, 1993 10:25

25

call to drawableOfCanvasbeforehand will cause the calling thread to block. The programmer is responsible

for handling the input environment in the same manner as the programmer of a raw widget (cf. Chapter 5).

There is also a sizeOf function, which returns the current size of the canvas. The actual event of the canvas

being resized is reported, as usual, through the input environment.

3.3.3 Color rectangle

The ColorRect structure implements a widget that fills its window with a fixed color.signature COLOR_RECT =sigval mkColorRect : root -> (color option * (unit -> bounds)) -> widgetend
The mkColorRect takes a root value, plus an optional color and a bounds function. The resulting widget

uses the given bounds function to specify its size requirements. If the color is NONE, black is used.

3.3.4 Divider

The Divider structure provides for flexible lines to be used as dividers between other widgets.signature DIVIDER =sigval mkHorzDivider : root -> {color : color option, width : int} -> widgetval mkVertDivider : root -> {color : color option, width : int} -> widgetend
The color of the divider is specified by the color option; black is used by default. In a horizontal divider,

the bounds are fixed to width in the vertical direction, and are arbitrarily flexible in the horizontal direction.

A vertical divider is similar with the horizontal and vertical roles reversed. A negative width raises theLibBase.BadArg exception.

3.3.5 Framed widgets

Various basic widgets with text labels do not possess frames or boundaries. This allows them to be used in

situations where frames are undesired. Following the eXene approach, a programmer can add borders by

wrapping a widget in a frame widget (cf. Section 3.2.3). However, since certain framed widgets are such

common idioms, the library provides three structures FramedButton,FramedLabel and FramedToggle that

provide this wrapping. The resulting types fr_button, fr_label and fr_toggle have the same semantics

as their unframed brethren. The constructor functions takes the same arguments, with the assumption that the

shape will be rectangular and with the addition of a border width argument. If this last argument is negative,

the exception Frame.BadWidth is raised. The foreground color is used as the frame color.

Draft of June 2, 1993 10:25

26

3.3.6 Label

A label widget allows the programmer to put unadorned text in the interface. The text and colors are mutable,

under control of the programmer.signature LABEL =sigtype labelval mkLabel : root -> {label : string,font : string option,foregrnd : color option,backgrnd : color option,align : halign} -> labelval widgetOf : label -> widgetval setLabel : label -> string -> unitval setBackground : label -> color option -> unitval setForeground : label -> color option -> unitend
A label is created by supplying a display root, an initial label string, an optional font, optional foreground

and background colors and an alignment. On the screen, a label consists of the string written in the given

foreground color (black by default) on the given background color (by default, the parent’s background). The

font argument specifies the name of the font to use (the 8x13 font is used by default). A label is naturally

high enough to contain any string written in the font, and wide enough to contain the current string, plus a

bit of padding around the string. A label specifies no shrinking or stretching. If the window provided for the

label is larger than necessary, the text will be aligned within the window according to the align parameter.

The functions setLabel, setForeground and setBackground allow the program to modify the ap-

pearance of the label. If a new label is too large for the current window, the widget requests more space.

Otherwise, the new text is written with the specified alignment.

3.3.7 Scrollbar

The scrollbar widget is used to indicate a position and a size, and to allow the user to change the position.

Scrollbars are used most commonly to specify the view a window gives on a logically much larger display

area, and to allow the user to pan the window over the display area.

Draft of June 2, 1993 10:25

27signature SCROLLBAR =sigdatatype scroll_evt= ScrUp of real| ScrDown of real| ScrStart of real| ScrMove of real| ScrEnd of realtype scrollbarval mkHScrollbar : root -> {color : color option,sz : int} -> scrollbarval mkVScrollbar : root -> {color : color option,sz : int} -> scrollbarval evtOf : scrollbar -> scroll_evt eventval widgetOf : scrollbar -> widgetval setVals : scrollbar -> {sz:real option,top:real option} -> unitend
The functions mkHScrollbar and mkVScrollbarmake horizontal and vertical scrollbars, respectively. The

user supplies a display root, an optional color and a size. The size indicates the desired size of the minor axis,

and is used in the bounds with no stretch or shrink. If dim is non-positive, the exception LibBase.BadArg is

raised. Along the major axis, the scrollbar allows arbitrary stretching and shrinking. The scrollbar is drawn

in the given color on its parent’s background. By default, the color is black.

Scroll values fall in the range [0.0,1.0]. The setVals function allows an application or another widget to

specify the current scrollbar values. Thus, the callsetVals sb {sz = SOME 0.2, top = SOME 0.5}
causes the start of the scrollbar curosr or “thumb” to be half way along the window and be one-fifth the window

size. If either sz or top is not given, the present value is retained. The scrollbar values are additionally

constrained by top + sz <= 1.0.

When the user interacts with the scrollbar, the scrollbar generates an event of type scroll_evt. The

following protocols are associated with these events. ScrStart indicates that the user has begun to move the

scrollbar cursor with the middle mouse button, with the top at the given relative position. The scrollbar will

continue to generate ScrMove events as the user continues to move the thumb. When the user has stopped, theScrEnd reports this with the final top position. During this interaction, the scrollbar automatically updates its

values and display.

The ScrUp and ScrDown events are discrete events associated with the user clicking on the scrollbar with

buttons 1 and 3 respectively. The application can interpret these events as appropriate. By convention, the user

has indicated a desire to move the application window up or down, with the value being the indicated relative

position. For example, one application might use ScrUp v to move its window up to the value corresponding

to v. A text window might instead interpret this event by moving the top line of the window to the position

indicated by the user. As these events are application-dependent, it is up to the application to reposition its

view and then use setVals to register this new view with the scrollbar.

N.B. It is the programmer’s responsibility to provide a thread to synchronize on the scrollbar event supplied

Draft of June 2, 1993 10:25

28

by the evtOf function. Otherwise, the scrollbar thread will block.

3.3.8 Slider

The slider widget provides an analogue means for a user to supply a numerical value. It is comparable to

a scrollbar, having a slide piece that can be moved along a track using any mouse button. The value varies

linearly with the position of the slide piece. Unlike a scrollbar, a slider supports a state of only a single value

rather than a range of values.signature SLIDER =sigtype sliderval mkHSlider : root -> {foregrnd : color option,wid : int,init : int,scale : int} -> sliderval mkVSlider : root -> {foregrnd : color option,wid : int,init : int,scale : int} -> sliderval widgetOf : slider -> widgetval evtOf : slider -> int eventval setValue : slider -> int -> unitval getValue : slider -> intval getScale : slider -> intend
To create a slider, the programmer supplies the display root, an optional foreground color (with black the

default), an integer value specifying the “width” (the size of the slider perpendicular to the slide track), a

scale and an initial value. The mkHSlider function returns a slider widget with a horizontal slide track, andmkVSlider returns one with a vertical track.

The slider is drawn in the specified color on its parent’s background. The size of the slider perpendicular

to the slide track is fixed to the value of wid. It is arbitrarily flexible along the dimension parallel to the slide

track.

The slider’s value will fall in the range[0,scale]. The initial slider value is init. The slider constructors

require that 0 <= init <= scale and scale > 0. They raise the LibBase.BadArg exception otherwise.

Clients wishing a different range format (e.g., [~5,10]), a different range type (e.g., reals), or a non-linear

function can wrap the widget as necessary.

The functions getValue and getScale allow one to query the slider’s state. The setValue can be used

to change the slider’s value, which is reflected in the position of the slide piece. An invalid value will raise

the LibBase.BadArg exception.

Draft of June 2, 1993 10:25

29

The evtOf function returns an integer event associated with the changing of the slider’s value. As the

user moves the slide piece along the track or the slider value is changed by setValue, the slider uses the

event to report the current value.

N.B. It is the programmer’s responsibility to provide a thread to synchronize on the slider event supplied

by the evtOf function. Otherwise, the slider thread will block.

3.3.9 TextList

A text list provides the user with a list of strings, and allows the user to select items from the list. The user

selects an item by clicking on it with the left mouse button. The user can unselect an item by clicking on it

with the middle button. The widget reports user selections as events, which can be tied to application-specific

actions. There are two types of list behavior, viz., lists allowing multiple selections and lists allowing at most

one selection. In the single selection case, selecting a new item automatically causes a previously selected

item to be unselected (cf. Section 3.2.9).signature TEXT_LIST =sigexception BadIndexexception MultipleChoicestype 'a text_listdatatype 'a list_evt = Set of 'a | Unset of 'adatatype list_mode = OneSet | MultiSettype 'a list_item (* = (string * 'a * wstate) *)val mkItem : (string * 'a * W.wstate) -> 'a list_itemval mkHList : root -> {mode : list_mode,backgrnd : color option,foregrnd : color option,items : '2a list_item list} -> '2a text_listval mkVList : root -> {mode : list_mode,backgrnd : color option,foregrnd : color option,items : '2a list_item list} -> '2a text_listval evtOf : 'a text_list -> 'a list_evt eventval widgetOf : 'a text_list -> widgetval setChosen : 'a text_list -> (int * bool) list -> unitval setActive : 'a text_list -> (int * bool) list -> unitval getChosen : 'a text_list -> int listval getState : 'a text_list -> wstate listend
Draft of June 2, 1993 10:25

30

To create a text list, the programmer supplies the display root, optional foreground and background colors

(with black and white the respective defaults), the selection mode of the widget, and a list of items. ThemkHList function returns a horizontal list widget while mkVList returns one with a vertical orientation. The

selection mode specifies which of the two list behaviors is desired, withOneSet and MultiSet corresponding

respectively to allowing at most one selection and allowing multiple selections. An item is essentially a triple

of a string, a value and an initial state. The string specifies the text displayed in the list. The value is returned

when the user selects the item. The initial state specifies whether or not the item is active, and whether or not

the item is set.

The set of selected and active items can be controlledby the program using thesetChosenand setActive
functions. The getChosen and getState allow the program to query the state of the list.

The evtOf function returns an 'a list_evt event associated with items being selected or unselected.

The list_evt indicates whether the user has selected (Set) or unselected (Unset) an item, along with the

value associated with the item. In the OneSet mode, in which the widget automatically unsets the currently

selected item when a new one is chosen, the widget supplies an Unset event before reporting the Set event.

The constraints and exceptions associated with creating and using a text list are described in Section 3.2.9.

N.B. It is the programmer’s responsibility to provide a thread to synchronize on the list event supplied by

the evtOf function. Otherwise, the list widget will block.

3.3.10 Toggles

Toggles are buttons that maintain an on-off state. The user changes the toggle’s state by clicking on the button

with any mouse button. As with ordinary buttons, toggle buttons can also be active or inactive. A button’s

display usually indicates both aspects of the button’s state.

Draft of June 2, 1993 10:25

31signature TOGGLE =sigtype toggleval widgetOf : toggle -> widgetval getState : toggle -> boolval setState : (toggle * bool) -> unitval setActive : (toggle * bool) -> unitval getActive : toggle -> boolval mkToggleCheck : root -> {state : wstate,action : bool -> unit,color : color option,sz : int} -> toggleval mkToggleText : root -> {state : wstate,rounded : bool,action : bool -> unit,backgrnd : color option,foregrnd : color option,label : string} -> toggleval mkToggleSwitch : root -> {state : wstate,action : bool -> unit,backgrnd : color option,foregrnd : color option} -> toggleval mkToggleCircle : root -> {state : wstate,action : bool -> unit,backgrnd : color option,foregrnd : color option,radius : int} -> toggleval mkToggleIcon : root -> {state : wstate,action : bool -> unit,backgrnd : color option,foregrnd : color option,icon : tile} -> toggleend
All constructors take an initial toggle state and an action function that is called whenever the toggle changes

from on to off or from off to on. The new value, with on mapped to true, off mapped to false, is passed

to the action function. The action function is not invoked on the initial toggle state. The various toggle

constructors produce widgets differing only in the appearance of the widget. These differences are reflected

in the remaining constructor arguments.

Draft of June 2, 1993 10:25

32mkToggleCheck produces a check mark toggle within a square widget. The sz parameter indicates

the desired size of a side. The widget bounds are set to a fixed square of this size. If sz < 14, theLibBase.BadArg exception is raised. The toggle is drawn in the specified color (black by default) on the

parent’s background.mkToggleTextproduces a text button toggle. The display parameters have the same use as in mkTextBtn
(cf. Section 3.3.1).

The mkToggleSwitch toggle is represented by a rocker switch of fixed bounds. The switch is drawn in

the foreground color (black by default) on a field of the background color (white by default).

The mkCircleToggle button appears as a circular button, with the radius parameter specifying the

desired radius. The widget’s bounds will be a fixed square slightly larger than what is necessary to hold a

circle of the given radius. If radius < 4, the LibBase.BadArg exception is raised. The widget is drawn in

the foreground color (black by default) on a field of the background color (white by default).

The toggle produced by mkIconToggledisplays the argument icon, using the foreground and background

colors supplied. As usual, these colors are black and white, respectively, by default. The widget’s bounds are

fixed at the size of the icon.

As toggles are implemented using the same button views as the buttons described above in Section 3.3.1,

most of the remarks in that section apply here. The only difference is that toggles supply the functionsgetState to query the toggle state and setState to set the toggle state. The program can change a toggle’s

state even if the toggle is inactive.

3.4 Text Widgets

Widgets providing textual input form a special class of widgets. Going beyond a simple mouse interface,

these widgets are combinations of virtual terminals and editors. The underlying model is more complex, but

the user is familiar with the model and expects a richer, more complicated set of interactions. In this section,

we describe an initial set of widgets whose interface is principally based on the keyboard and characters. The

text widgets are probably the least fully developed of the eXene widget set. For example, there is currently

no support for text selection.

3.4.1 StrEdit

TheStrEdit structure provides a simple string editingwidget. As the user types, the correspondingcharacters

are entered at the cursor position. The backspace character ("\Ĥ") can be used to erase the character preceding

the cursor. The entire string can be deleted by typing "\X̂". The user can reposition the cursor by clicking

the mouse on the desired character. If the insertion or deletion of a character would cause the cursor to move

off the window, the widget shifts the window’s view appropriately.

Draft of June 2, 1993 10:25

33signature STREDIT =sigtype str_editval mkStrEdit : root -> {foregrnd : color option,backgrnd : color option,initval : string,minlen : int} -> str_editval setString : str_edit -> string -> unitval getString : str_edit -> stringval shiftWin : str_edit -> int -> unitval widgetOf : str_edit -> widgetend
The mkStrEdit function takes a display root, optional foreground and background colors (black and

white, by default), an initial string and a minimum length. Initially, the cursor is placed at the end of the

string.

The widget uses the font 9x15. The natural height of the widget is the font height, with no vertical

shrinking or stretching. Horizontally, the natural size specifies enough space to display all the characters in

the string or minlen characters, which ever is larger. The widget will expand indefinitely, but will only shrink

to the minlen minimum. Whenever the widget’s string goes from fitting to not fitting within the widget’s

window, or vice versa, it requests its parent to resize it.

Note that the widget does not provide the user the ability to move the widget’s window over the text. It does

provide the shiftWin function, which an application can use to provide this interface (cf. the FieldEdit
widget below). Using shiftWin v moves the widget view |v| characters to the left if v is negative and to

the right if v is positive.

The setString and getString functions allow the application to query and set the widget’s string.

3.4.2 FieldEdit

The FieldEdit structure provides a widget derived from the string edit widget above. The interface and

interaction are almost identical. The only difference is that the field edit widget provides scroll buttons to

allow the user to move the view of the underlying text when it does not all fit within the window. The buttons

are only made available when this situation arises.

Draft of June 2, 1993 10:25

34signature FIELD_EDIT =sigtype field_editval mkFieldEdit : root -> {foregrnd : color option,backgrnd : color option,initval : string,minlen : int} -> field_editval setString : field_edit -> string -> unitval getString : field_edit -> stringval widgetOf : field_edit -> widgetend
3.4.3 Virtual terminal

The virtual terminal widget provides a simple way to support traditional IO stream-based applications1. It is

implemented on top of the text widget (see Section 3.4.4), adding a device driver for the keyboard and theinstream/outstream interface. The structure Vtty has the signature VTTY:signature VTTY =sigstructure CIO : CONCUR_IOtype vttyval mkVtty : root -> {rows : int, cols : int} -> vttyval openVtty : vtty -> (CIO.instream * CIO.outstream)val widgetOf : vtty -> widgetend (* VTTY *)
See the CML manual for the details of the operations provided by the CIO structure ([Rep90]). Writing on

the outstream displays text in the window. User input is line-buffered: it is only available on the instream
after the user has typed a carriage return ("M̂") or newline ("\n"). An input line can be edited, with backspace

("\Ĥ") and delete ("\127") erasing the previously input character. Tab characters are not handled correctly,

nor does the vtty provide a visible cursor.

3.4.4 Text

The text widget is a low-level widget for managing a window of text. It provides limited highlighting, and

a single font; a prototype text widget supporting multipl fontsand color has been implemented, and will be

included in the next release.
1Thanks to Thomas Yan for finishing our implementation of this widget.

Draft of June 2, 1993 10:25

35signature TEXT_WIDGET =sigdatatype char_coord = ChrCrd of {col : int, row : int}type text_widgetval mkTextWidget : root -> {rows : int, cols : int} -> text_widgetval widgetOf : text_widget -> widgetval charSizeOf : text_widget -> {rows : int, cols : int}val sizeOf : text_widget -> sizeval ptToCoord : text_widget -> point -> char_coordval coordToRect : text_widget -> char_coord -> rectval scrollUp : text_widget -> {from : int, nlines : int} -> unitval scrollDown : text_widget -> {from : int, nlines : int} -> unitval writeText : text_widget -> {at: char_coord, text : string} -> unitval highlightText : text_widget -> {at: char_coord, text : string} -> unitval insertLn : text_widget -> {lnum : int, text : string} -> unitval deleteLn : text_widget -> int -> unitval deleteLns : text_widget -> {lnum : int, nlines : int} -> unitval clearToEOL : text_widget -> char_coord -> unitval clearToEOS : text_widget -> char_coord -> unitval moveCursor : text_widget -> char_coord -> unitval cursorPos : text_widget -> char_coordval cursorOn : text_widget -> unitval cursorOff : text_widget -> unitend (* TEXT_WIDGET *)
Draft of June 2, 1993 10:25

Chapter 4

Menus

The eXene widgets currently provide a simple form of pop-up menu support in the structure SimpleMenu.

Figure 4.1 has the signature of this structure. A menu value specifies the structure of a menu and the valuesignature SIMPLE_MENU =sigdatatype 'a menu = MENU of 'a menu_item listand 'a menu_item= MenuItem of (string * 'a)| Submenu of (string * 'a menu)val attachMenu : (widget * mbutton list * '1a menu)-> (widget * '1a event)val attachLabeledMenu : (widget * mbutton list * string * '1a menu)-> (widget * '1a event)datatype menu_pos = Absolute of point | Item of intdatatype where_info =WI ofbut : mbutton,pt : point,scr_pt : point,time : timeval buttonMenu : (widget * mbutton list * '1a menu * (where_info -> menu_pos))-> (widget * '1a event)val popupMenu : (root * '1a menu * string option)-> (mbutton * menu_pos * point * mouse_msg addr_msg event)-> '1a option eventend
Figure 4.1: Simple menus

associated with each entry. The Submenu constructor is used for defining hierarchical menus. The display

36

37

form of these menus is essentially that used by twm [?]. The menu remains displayed and active as long as

some mouse button is depressed. The user’s choice corresponds to the item under the mouse cursor when the

last mouse button is released.

Once a menu has been defined, there are various ways it can be used. The simplest way is to attach it

to a widget using one of the two attach functions. For menus without labels, use attachMenu; if a label is

desired, then use attachLabeledMenu. The result of attaching a menu to a widget is a new widget and an

event value that provides the user’s menu choices as a stream of CML events. When attaching a menu to a

widget, the programmer specifies the mouse buttons that are to be used to pop up the menu. If the user presses

a specified mouse button while the cursor is over the widget to which the menu is attached, then the menu

will be popped up. Any other mouse button press events, and all other mouse events, are passed on to the

underlying widget. If the user selects a menu item, then the associated value is reported through the event. If

the user does not select an item, no event is generated.

Figure 2.3 and the accompanying text provide an example of the this use of menus.

The buttonMenu function is the same as attachMenu, except it provides control over menu placement.

In particular, as its name suggests, buttonMenu can be used to implement menu buttons (see Section 4.0.5).

When a mouse button press triggers the display of the menu, the user-supplied function is invoked, being

passed a value of type where_info. This is essentially the information supplied by the MOUSE_FirstDown
event corresponding to the button press. The function returns a hint as to where the menu should appear.

If the function returns Absolute pt, the upper left corner of the menu will be placed at pt, given in screen

coordinates. If the function returns Item n, the menu will be positioned so that the mouse cursor is centered

over item n of the menu, indexed from 0. The first form can be used to implement menu buttons; the latter

form can be used to redisplay a menu with the last selected item chosen by default. The code will honor the

position hint unless it has to shift the menu to make sure it fits on the screen.

At times, these high-level menu interfaces to not provide enough control. For these situations, the structure

provides the popupMenu function. This low-level routine takes a root, a menu and an optional string. It

returns a function that can be used to activate a pop-up menu on the given display. To use the activation

function, a thread waits for some mouse button press and then calls the activation function with a tuple(btn, pos, pt, mouse). The btn argument denotes the pressed mouse button. The pos parameter provides

control of menu placement, as described in the previous paragraph. The pt parameter is the mouse position,

in screen coordinates, reported with the button press event. Finally, the mouse parameter is the widget’s

mouse event stream. The function returns a CML event. The menu will be displayed and managed by a

separate thread, getting its input from the mouse event stream. The protocol requires that the calling thread

does not read events from that stream until it is notified, through synchronization on the menu event, that the

menu thread is done. If the user did not make a choice, the event will evaluate to NONE. Otherwise, the value

associated with the chosen menu item will be supplied.

4.0.5 Menu button

A menu button is a text button with a menu attached. When the user presses any mouse button on the menu

button, the menu is displayed as a pull-down menu. They can be combined to form menu bars.

Draft of June 2, 1993 10:25

38signature MENU_BUTTON =sigstructure Menu : SIMPLE_MENUval mkMenuButton : root -> (string * '1a Menu.menu)-> (widget * '1a event)end
The mkMenuButton function takes a root, and a label and a menu, and returns a widget plus an event. The

widget appears as a plain rectangular text button, using the supplied label. If the user makes a selection using

the menu, the selection is reported through the event value.

Draft of June 2, 1993 10:25

Chapter 5

Widget Internals

We now turn to the internal widget structure and the low-level details of building a widget. The creation

of a widget value is usually a simple affair, involving some initial parameter computation, the allocation

of certain resources such as fonts, colors and pixmaps, and perhaps the spawning of a thread to encapsulate

mutable widget data. No eXene windows are created at this stage. The widget value returned by mkWidget
encapsulates the associated root value, a boundsOf function and a realize function (see Section 2.3). The

semantics of the boundsOf function were described above. Here we discuss what should happen when a

widget’s realize function is called.

First, we note that in the eXene widget library, the parent widget controls the child’s window resources.

The parent allocates the child’s window; it positions the window; it changes its size; it deletes it. If the child

needs any of these actions performed, then it asks the parent to perform the action. A child should never

directly alter the external configuration of its window; it should only deal with what is inside its window.

The parent widget invokes the child’s realize function, passing in three arguments. One argument is

the input environment. This is the value through which the child receives all of its input and by which it

communicates with its parent. This will be discussed in detail below. The remaining arguments are the

child’s window and its size. The window’s origin and size are presumably set by the parent using the child’sboundsOf function. This window is the child’s canvas. It can draw on the window using any of the functions

supplied in the Draw structure in the base library. The size is supplied for convenience.

A widget’s realize function must do the following: configure itself corresponding to the given size

and spawn the necessary threads to handle graphics operations and events on its input environment. If the

widget is a composite widget, then the realize function must also layout its children, allocate their windows,

arrange to handle input to and from the children, and recursively call their realize functions. A composite

widget is also responsible for mapping its children’s windows (using the eXene function mapWin). A simple

widget should not map or unmap itself.

All window system events come to a window through its input environment. This environment is defined

in the WindowEnv structure.

39

40datatype in_env = InEnv of {m : mouse_msg addr_msg event,k : kbd_msg addr_msg event,ci : cmd_in addr_msg event,co : cmd_out -> unit event}
It is assumed that a widget will spawn one or more threads to be able to synchronize on the m, k, and ci
events immediately. The addr_msg implicitly contains a window path that specifies the target window of the

accompanying value. This path is only of concern to composite widgets, and will be discussed below. For

now, we assume that a widget has received an event targeted for it and has stripped off the window path part

(using the eXene function msgBodyOf) and is left with the base value.

5.1 Keyboard and Mouse Events

Keyboard events are reported as either key presses or key releases. The related values specify an X keysym

value and the state of the modifier keys. Keysyms can be translated into strings using functions related to

the translation type of the base library. Mouse events correspond to mouse motion, button presses and

releases, and window enter and leave events. Note that when a window receives a mouse button press, it

is guaranteed to receive all mouse events on its mouse stream until all mouse buttons have been released.

This corresponds to an active grab in X terminology (cf. The eXene Library Manual and [Nye90]). Also

note that the first mouse button event a widget receives is a MOUSE_FirstDown event, and the last will be aMOUSE_LastUp event. Keyboard and mouse events also provide a synchronization value that can be used by

composite widgets to coordinate event routing with window changes.

5.2 Control Events

The events received via the ci event correspond to window system events not directly related to user input.

A widget should act as follows upon one of these events.� A CI_Redrawmessage corresponds to an X Expose event, informing the widget that part of its window

has been corrupted and it should redraw those parts. The event provides the list of rectangles, in the

window’s coordinate system, that should be redrawn. It is always safe, though not necessarily efficient,

to redraw the entire window.� A CI_Resize message corresponds to a notification that the widget’s window has changed size (or

position). The rectangle parameter specifies its new size and its origin in its parent’s coordinate system.

The actual resizing of the window was performed by the parent. On receiving this event, a widget should

reconfigure itself, recomputing whatever window size dependent parameters it uses. In particular, a

composite widget should recompute the layout of its children and, if necessary, call the moveWin,resizeWin or moveAndResizeWin to reposition them. The corresponding CI_Resizemessages will

be automatically generated by the system and delivered to the child through its input environment. Upon

receiving a CI_Resize event, a widget should not automatically redraw itself. If this is necessary, it

will receive a CI_Redraw event. Note that a widget is informed of its initial window size when itsrealize function is called.

Draft of June 2, 1993 10:25

41� A CI_OwnDeath tells a widget that its window has been destroyed. At this point, it should cease from

performing any further output to its window. N.B. It must still service its mouse and keyboard events,

as these events may still be queued somewhere in the hierarchy. One approach is to attach null loops to

these events.� The CI_ChildBirth and CI_ChildDeath events are used by composite widgets to synchronize the

routing of input.

A widget may require certain services of its parent. That is the purpose of the co field of the input

environment. A CO_ResizeReq message passed to its parent informs the parent that the child’s size needs

have changed. The parent should call the widget’s boundsOf function to determine these needs and try to

meet them by repositioning the child’s window. The parent is not obligated to meet these needs, and the child

cannot assume anything has changed until it receives a CI_Resize event. The CO_KillReqmessage informs

the parent that the child wishes its window destroyed. The parent should attempt to perform this service,

using the destroyWin command. It will be informed of the loss of its window via a CI_OwnDeathmessage

(see the item on handling the CI_OwnDeathmessage above).

5.3 Composite Widgets

A composite widget, containing one or more child widgets, must handle its own input environment, as

described above, as well as manage its children. This involves several tasks. One task is the layout of child

widgets within its window. Another task is creating a child’s window and input environment, By convention,

widget windows in eXene do not explicitly use the border or background property of windows in X, but rely

on wrapper widgets (e.g., frame and background) to supply these effects. We adopted this convention as

being cleaner and more consistent, and in order to better divorce the widget level from the specific X graphics

model. The utility function wrapCreate conforms to this convention, and the writer of composite widgets is

encouraged to use this function to create child windows. The createWinEnv function from the base library

can be used to create the necessary input environment. Additional tasks require calling a child’s realize
function with its window and environment, and mapping the child’s window.

A further task concerns servicing requests from a child. For each child and its input environment, the parent

widget maintains the corresponding output environment. Upon receiving a CO_ResizeReqor a CO_KillReq,

the composite widget should attempt to handle this as described above. Note that a parent widget can attempt

to resize the child within the parent’s current bounds, or has the opportunity of percolating a resize request

further up the hierarchy.

We also emphasize the possibility of deadlock implicit in the two-way protocols between a composite

widget and its children. For example, a composite widget might be in the process of positioning its children,

during which it calls a child’s boundsOf function. Meanwhile, because of user input, the child might

be sending a resize request to its parent, with deadlock possibly ensuing. Because of the synchronous

communication and hierarchical distribution of events used in eXene, this local deadlock could quickly

disseminate throughout an application. It is the responsibility of the programmer implementing a widget to

code against such possibilities. In the specific case of child-to-parent communication using control messages,

we assume the additional specification that it is the parent’s responsibility to always be receptive to control

messages from its children. The Widget structure provides the function wrapQueue that wraps a queue

Draft of June 2, 1993 10:25

42

around a CML event. This can be used to safely queue child requests on the co event if other processing is

going on.

The final task of a composite widget is handling the routing of all events to widgets in its subtree. Each

event coming through its input environment may be targeted for the composite widget or one of its children

or their children. Each input event is implicitly tagged with a routing path to the correct window. TheInteract structure provides various functions with which a widget can determine if a message is for itself

or one of its children. If the message is targeted for a child, the message must be distributed to that child’s

input environment.

The eXene widget library’s Router structure provides functions that can handle typical routing scenarios.signature ROUTER =sigstructure EXB : EXENE_BASEstructure Interact : INTERACTexception NotFoundtype routerval mkRouter : Interact.in_env * Interact.out_env *(EXB.window * Interact.out_env) list -> routerval addChild : router -> EXB.window * Interact.out_env -> unitval delChild : router -> EXB.window -> unitval getChildEnv : router -> EXB.window -> Interact.out_envval routePair : Interact.in_env * Interact.out_env * Interact.out_env -> unitend
At realization time, a composite widget can create a router using the mkRouter function, passing it the input

environment that it received via the invocation of its realize function. In addition, the composite widget

should create an new input/output environment pair, and pass the output component as the second argument tomkRouter. The widget will then receive its input from the corresponding input component of the environment

pair. In addition, for each child widget, the composite widget should create an input/output environment pair.

The input environment should be handed to the child through its realize function. The child’s window and

output environment are registered with the router. If desired, a list of these pairs can be passed as the third

argument in creating the router. Alternatively, these pairs can be incrementally inserted and deleted from the

router using addChild and delChild, respectively. The getChildEnv returns the output environment that

was registered with the given window. The exception NotFound is raised if no such environment is registered.

For composite widget’s with a single child, the Router module provides the routePair function. This

creates a router that takes the composite widget’s initial input environment, the new output environment for

the composite widget and the output environment for the child widget.

With either of these routers, all events for children will be automatically routed to them. Only events

targeted specifically to the composite widget will be received through its new input environment. We remark

that this routing scheme is tentative, and may be replaced by more appropriate mechanisms in later releases.

The following schema illustrates the routing technique described above, plus a mechanism for allocating

Draft of June 2, 1993 10:25

43

child windows and instantiating child widgets.fun realize {env, win, sz} = letval (myInEnv, myOutEnv) = createWinEnv ()val router = mkRouter (env, myInEnv, [])fun doChild (childWidget, childPt, childSz) =val crect = mkRect(childPt, childSz)val cwin = wrapCreate (win, crect)val (cinenv, coutenv as OutEnv{co=childco,...}) = createWinEnv ()inaddChild router (cwin, coutenv);realizeFn childWidget {env=cinenv, win=cwin, sz=childSz};mapWin cwinendfun loop () =... (** obtain input events from myInEnv; handle child requests* received on childco.*)...inapp doChild children;spawn loopend
The wrapCreate function is a utility function provided by the Widget structure for creating child windows.

It returns a subwindow of the given parent with the given placement. The LibBase.BadArg exception is

raised if the height or width of the rectangle is not positive.

A composite widget may wish to allow widgets to be inserted and removed from it dynamically. If a

widget is inserted, it should be assumed to be unrealized. The composite widget should reposition its children

in light of the new widget, and allocate resources for and realize the new widget. If a widget is to be removed

from a composite widget, the parent widget should destroy the child’s window and remove the child from the

router.

5.4 Miscellany

Rather than have a programmer write a widget from scratch, eXene promotes creating, when possible, a new

widget by wrapping an old one. This is the compositional technique discussed in Section 2.4, and supported

by the hierarchical routing of events. The wrapping widget interposes itself between the parent and the

child, and alters the event streams between parent and child. This idiom is common enough that the Widget
structure provides several functions to support it.

Draft of June 2, 1993 10:25

44signature WIDGET =sig...val filterMouse : widget ->(widget *((mouse_msg addr_msg event * mouse_msg addr_msg chan) event))val filterKey : widget ->(widget *((kbd_msg addr_msg event * kbd_msg addr_msg chan) event))val filterCmd : widget ->(widget *((cmd_in addr_msg event * cmd_in addr_msg chan) event))val ignoreMouse : widget -> widgetval ignoreKey : widget -> widget...end
The filterMouse function takes a widget and returns a new widget wrapped around the old widget. The

new widget lets the application have access to the plumbing of mouse events to the original widget. Before

the original widget is realized, the wrapper widget uses the returned event value to supply the receiving end

of the widget’s stream of mouse events, plus a channel by which the application can transmit mouse events

to the original widget. As usual with these event values, the application must be capable of synchronizing

on the mouse event with little delay. The filterKey and filterCmd functions are the obvious analogues.

The ignoreMouse and ignoreKeywrappers filter out all mouse and keyboard events, respectively, from the

original widget.

The Widget structure has a utility function val colorOf : root -> color_spec -> color which

provides a widget-level translation of color specifications into colors. The call colorOf root spec is equiv-

alent to colorOfScr (screenOf root) spec.

Draft of June 2, 1993 10:25

Bibliography

[NO90] Nye, A. and T. O’Reilly. X Toolkit Intrinsics Programming Manual, vol. 4. O’Reilly & Associates,

Inc., 1990.

[Nye90] Nye, A. Xlib Programming Manual, vol. 1. O’Reilly & Associates, Inc., 1990.

[Rep90] Reppy, J. H. Concurrent programming with events – The Concurrent ML manual. Department of

Computer Science, Cornell University, Ithaca, N.Y., November 1990. (Last revised February 1993).

[RG93] Reppy, J. H. and E. R. Gansner. The eXene Library Manual. AT&T Bell Laboratories, Murray Hill,

N.J. 07974, February 1993. Included in the eXene distribution.

45

