The Standard ML Basis Library


The MONO_ARRAY_SLICE signature


Synopsis

signature MONO_ARRAY_SLICE
structure Word8ArraySlice :> MONO_ARRAY_SLICE
  where type vector = Word8Vector.vector
  where type vector_slice = Word8VectorSlice.slice
  where type array = Word8Array.array
  where type elem = Word8.word
structure CharArraySlice :> MONO_ARRAY_SLICE
  where type vector = CharVector.vector
  where type vector_slice = CharVectorSlice.slice
  where type array = CharArray.array
  where type elem = char
structure WideCharArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = WideCharVector.vector
  where type vector_slice = WideCharVectorSlice.slice
  where type array = WideCharArray.array
  where type elem = WideChar.char
structure BoolArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = BoolVector.vector
  where type vector_slice = BoolVectorSlice.slice
  where type array = BoolArray.array
  where type elem = bool
structure IntArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = IntVector.vector
  where type vector_slice = IntVectorSlice.slice
  where type array = IntArray.array
  where type elem = int
structure WordArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = WordVector.vector
  where type vector_slice = WordVectorSlice.slice
  where type array = WordArray.array
  where type elem = word
structure RealArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = RealVector.vector
  where type vector_slice = RealVectorSlice.slice
  where type array = RealArray.array
  where type elem = real
structure LargeIntArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = LargeIntVector.vector
  where type vector_slice = LargeIntVectorSlice.slice
  where type array = LargeIntArray.array
  where type elem = LargeInt.int
structure LargeWordArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = LargeWordVector.vector
  where type vector_slice = LargeWordVectorSlice.slice
  where type array = LargeWordArray.array
  where type elem = LargeWord.word
structure LargeRealArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = LargeRealVector.vector
  where type vector_slice = LargeRealVectorSlice.slice
  where type array = LargeRealArray.array
  where type elem = LargeReal.real
structure Int<N>ArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = Int{N}Vector.vector
  where type vector_slice = Int{N}VectorSlice.slice
  where type array = Int{N}Array.array
  where type elem = Int{N}.int
structure Word<N>ArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = Word{N}Vector.vector
  where type vector_slice = Word{N}VectorSlice.slice
  where type array = Word{N}Array.array
  where type elem = Word{N}.word
structure Real<N>ArraySlice :> MONO_ARRAY_SLICE  (* OPTIONAL *)
  where type vector = Real{N}Vector.vector
  where type vector_slice = Real{N}VectorSlice.slice
  where type array = Real{N}Array.array
  where type elem = Real{N}.real

The MONO_ARRAY_SLICE signature provides an abstraction of subarrays for monomorphic arrays. A slice value can be viewed as a triple (a, i, n), where a is the underlying array, i is the starting index, and n is the length of the subarray, with the constraint that 0 <= i <= i + n <= |a|, where |a| is the length of the array a. Slices provide a convenient notation for specifying and operating on a contiguous subset of elements in an array.


Interface

type elem
type array
type slice
type vector
type vector_slice
val length : slice -> int
val sub : slice * int -> elem
val update : slice * int * elem -> unit
val full : array -> slice
val slice : array * int * int option -> slice
val subslice : slice * int * int option -> slice
val base : slice -> array * int * int
val vector : slice -> vector
val copy    : {src : slice, dst : array, di : int} -> unit
val copyVec : {src : vector_slice, dst : array, di : int}
                -> unit
val isEmpty : slice -> bool
val getItem : slice -> (elem * slice) option
val appi : (int * elem -> unit) -> slice -> unit
val app  : (elem -> unit) -> slice -> unit
val modifyi : (int * elem -> elem) -> slice -> unit
val modify  : (elem -> elem) -> slice -> unit
val foldli : (int * elem * 'b -> 'b-> 'b -> slice -> 'b
val foldr  : (elem * 'b -> 'b-> 'b -> slice -> 'b
val foldl  : (elem * 'b -> 'b-> 'b -> slice -> 'b
val foldri : (int * elem * 'b -> 'b-> 'b -> slice -> 'b
val findi : (int * elem -> bool)
              -> slice -> (int * elem) option
val find  : (elem -> bool) -> slice -> elem option
val exists : (elem -> bool) -> slice -> bool
val all : (elem -> bool) -> slice -> bool
val collate : (elem * elem -> order)
                -> slice * slice -> order

Description

type array
The underlying monomorphic array type. We denote the length of an array arr of type array by |arr|.

type vector
The underlying monomorphic vector type. We denote the length of a vector vec of type vector by |vec|.

type vector_slice
Slices of the monomorphic vector type.

length sl
returns |sl|, the length (i.e., number of elements) of the slice.

sub (sl, i)
returns the i(th) element of the slice sl. If i < 0 or |sl| <= i, then the Subscript exception is raised.

update (sl, i, a)
sets the i(th) element of the slice sl to a. If i < 0 or |sl| <= i, then the Subscript exception is raised.

full arr
creates a slice representing the entire array arr. It is equivalent to slice(arr, 0, NONE).

slice (arr, i, sz)
creates a slice based on the array arr starting at index i of the array arr. If sz is NONE, the slice includes all of the elements to the end of the array, i.e., arr[i..|arr|-1]. This raises Subscript if i < 0 or |arr| < i. If sz is SOME(j), the slice has length j, that is, it corresponds to arr[i..i+j-1]. It raises Subscript if i < 0 or j < 0 or |arr| < i + j. Note that, if defined, slice returns an empty slice when i = |arr|.

subslice (sl, i, sz)
creates a slice based on the given slice sl starting at index i of sl. If sz is NONE, the slice includes all of the elements to the end of the slice, i.e., sl[i..|sl|-1]. This raises Subscript if i < 0 or |sl| < i. If sz is SOME(j), the slice has length j, that is, it corresponds to sl[i..i+j-1]. It raises Subscript if i < 0 or j < 0 or |sl| < i + j. Note that, if defined, slice returns an empty slice when i = |sl|.

base sl
returns a triple (arr, i, n) representing the concrete representation of the slice. arr is the underlying array, i is the starting index, and n is the length of the slice.

vector sl
generates a vector from the slice sl. Specifically, if vec is the resulting vector, we have |vec| = length sl and, for 0 <= i < length sl, element i of vec is sub (sl, i).

copy {src, dst, di}
copyVec {src, dst, di}
These functions copy the given slice into the array dst, with element sub (src,i), for 0 <= i < |src|, being copied to position di + i in the destination array. If di < 0 or if |dst| < di+|src|, then the Subscript exception is raised.
Implementation note:

The copy function must correctly handle the case in which dst and the base array of src are equal, and the source and destination slices overlap.



isEmpty sl
returns true if sl has length 0.

getItem sl
returns the first item in sl and the rest of the slice, or NONE if sl is empty.

appi f sl
app f sl
These apply the function f to the elements of a slice in left to right order (i.e., increasing indices). The more general appi function supplies f with the index of the corresponding element in the slice. The expression app f sl is equivalent to appi (f o #2) sl.

modifyi f sl
modify f sl
These apply the function f to the elements of an array slice in left to right order (i.e., increasing indices), and replace each element with the result. The more general modifyi supplies f with the index of the corresponding element in the slice. The expression modify f sl is equivalent to modifyi (f o #2) sl.

foldli f init sl
foldr f init sl
foldl f init sl
foldri f init sl
These fold the function f over all the elements of an array slice, using the value init as the initial value. The functions foldli and foldl apply the function f from left to right (increasing indices), while the functions foldri and foldr work from right to left (decreasing indices). The more general functions foldli and foldri supply f with the index of the corresponding element in the slice.

Refer to the MONO_ARRAY manual pages for reference implementations of the indexed versions.

The expression foldl f init sl is equivalent to:

foldli (fn (_, a, x) => f(a, x)) init sl
The analogous equivalence holds for foldri and foldr.

findi f sl
find f sl
These apply f to each element of the slice sl, from left to right (i.e., increasing indices), until a true value is returned. If this occurs, the functions return the element; otherwise, they return NONE. The more general version findi also supplies f with the index of the element in the slice and, upon finding an entry satisfying the predicate, returns that index with the element.

exists f sl
applies f to each element x of the slice sl, from left to right (i.e., increasing indices), until f x evaluates to true; it returns true if such an x exists and false otherwise.

all f sl
applies f to each element x of the slice sl, from left to right (i.e., increasing indices), until f x evaluates to false; it returns false if such an x exists and true otherwise. It is equivalent to not(exists (not o f) l)).

collate f (sl, sl2)
performs lexicographic comparison of the two slices using the given ordering f on elements.

See Also

ArraySlice, MONO_ARRAY, MONO_VECTOR, MONO_VECTOR_SLICE

Discussion

If an implementation provides a structure matching MONO_ARRAY_SLICE for some element type ty, it must provide the corresponding monomorphic structures matching the signatures MONO_VECTOR_SLICE, MONO_ARRAY, and MONO_VECTOR, with the vector, array and vector slice types all respectively identified.


[ Top | Parent | Contents | Index | Root ]

Generated October 02, 2003
Last Modified June 20, 2000
Comments to John Reppy.


This document may be distributed freely over the internet as long as the copyright notice and license terms below are prominently displayed within every machine-readable copy.

Copyright © 2003 AT&T and Lucent Technologies. All rights reserved.

Permission is granted for internet users to make one paper copy for their own personal use. Further hardcopy reproduction is strictly prohibited. Permission to distribute the HTML document electronically on any medium other than the internet must be requested from the copyright holders by contacting the editors. Printed versions of the SML Basis Manual are available from Cambridge University Press. To order, please visit www.cup.org (North America) or www.cup.cam.ac.uk (outside North America).